1
|
Julio A, Guedes-Silva TC, Berni M, Bisch PM, Araujo H. A Rhodnius prolixus catalytically inactive Calpain protease patterns the insect embryonic dorsal-ventral axis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100094. [PMID: 39262636 PMCID: PMC11387712 DOI: 10.1016/j.cris.2024.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
The calcium dependent Calpain proteases are modulatory enzymes with important roles in cell cycle control, development and immunity. In the fly model Drosophila melanogaster Calpain A cleaves Cactus/IkappaB and consequently modifies Toll signals during embryonic dorsal-ventral (DV) patterning. Here we explore the role of Calpains in the hemiptera Rhodnius prolixus, an intermediate germband insect where the Bone Morphogenetic Protein (BMP) instead of the Toll pathway plays a major role in DV patterning. Phylogenetic analysis of Calpains in species ranging from Isoptera to Diptera indicates an increase of Calpain sequences in the R. prolixus genome and other hemimetabolous species. One locus encoding each of the CalpC, CalpD and Calp7 families, and seven Calpain A/B loci are present in the R. prolixus genome. Several predicted R. prolixus Calpains display a unique architecture, such as loss of Calcium-binding EF-hand domains and loss of catalytic residues in the active site CysPc domain, yielding catalytically dead Calpains A/B. Knockdown for one of these inactive Calpains results in embryonic DV patterning defects, with expansion of ventral and lateral gene expression domains and consequent failure of germ band elongation. In conclusion, our results reveal that Calpains may exert a conserved function in insect DV patterning, despite the changing role of the Toll and BMP pathways in defining gene expression territories along the insect DV axis.
Collapse
Affiliation(s)
- Alison Julio
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainan C Guedes-Silva
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mateus Berni
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil (INCT-EM)
| | | | - Helena Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil (INCT-EM)
| |
Collapse
|
2
|
Demko V, Belova T, Messerer M, Hvidsten TR, Perroud PF, Ako AE, Johansen W, Mayer KFX, Olsen OA, Lang D. Regulation of developmental gatekeeping and cell fate transition by the calpain protease DEK1 in Physcomitrium patens. Commun Biol 2024; 7:261. [PMID: 38438476 PMCID: PMC10912778 DOI: 10.1038/s42003-024-05933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Calpains are cysteine proteases that control cell fate transitions whose loss of function causes severe, pleiotropic phenotypes in eukaryotes. Although mainly considered as modulatory proteases, human calpain targets are directed to the N-end rule degradation pathway. Several such targets are transcription factors, hinting at a gene-regulatory role. Here, we analyze the gene-regulatory networks of the moss Physcomitrium patens and characterize the regulons that are misregulated in mutants of the calpain DEFECTIVE KERNEL1 (DEK1). Predicted cleavage patterns of the regulatory hierarchies in five DEK1-controlled subnetworks are consistent with a pleiotropic and regulatory role during cell fate transitions targeting multiple functions. Network structure suggests DEK1-gated sequential transitions between cell fates in 2D-to-3D development. Our method combines comprehensive phenotyping, transcriptomics and data science to dissect phenotypic traits, and our model explains the protease function as a switch gatekeeping cell fate transitions potentially also beyond plant development.
Collapse
Affiliation(s)
- Viktor Demko
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84104, Bratislava, Slovakia
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Tatiana Belova
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ako Eugene Ako
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, Nottinghamshire, NG25 0QF, UK
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354, Freising, Germany
| | - Odd-Arne Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Daniel Lang
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Bundeswehr Institute of Microbiology, Microbial Genomics and Bioforensics, 80937, Munich, Germany.
| |
Collapse
|
3
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
5
|
Haddadi M, Ataei R. wde, calpA, if, dap160, and poe genes knock down Drosophila models exhibit neurofunctional deficit. Gene 2022; 829:146499. [PMID: 35447243 DOI: 10.1016/j.gene.2022.146499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Intellectual disability (ID) is a heterogeneous disorder with high prevalence and remarkable social and cost burdens. Novel genetic variants of ATF7IP, CAPN9, ITGAV, ITSN1, and UBR4 genes are reported to be associated with the ID among Iranian families. However, in vivo validation is required to confirm the functional role of these variants in ID development. Drosophila melanogaster is a convenient model for such functional investigations as its genome bears ortholog of more than 75% of the disease-causing genes in human and represents numerous approaches to study defects in neuronal function. In this connection, RNAi gene silencing was applied to wde, calpA, if, dap160, and poe genes, the Drosophila ortholog of the selected human genes, and then consequent structural and functional changes in neurons were studied by means of immunohistochemistry and confocal microscopy of mushroom bodies (MBs) and validated behavioural assays including larvae and adult conditioning learning and memories, and ethanol sensitivity. Down-regulation of these genes led to neuronal loss which was evident by decline in total fluorescent signal intensity in micrographs of MBs structure. The gene silencing caused neuronal dysfunction and induction of ID-like symptoms manifested by deficits in larval preference learning, and short-term olfactory memory and courtship suppression learning in adults. Moreover, the RNAi flies showed higher sensitivity to ethanol vapour. Interestingly, the poe knock-down flies exhibited the most severe phenotypes among other genes. Altogether, we believe this study is first-of-its-kind and findings are highly applicable to confirm pathogenecity of the selected ID gene variants in Iranian population.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Reza Ataei
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
6
|
Valencia CPL, Franco LÁÁ, Herrera DH. Association of single nucleotide polymorphisms in the CAPN, CAST, LEP, GH, and IGF-1 genes with growth parameters and ultrasound characteristics of the Longissimus dorsi muscle in Colombian hair sheep. Trop Anim Health Prod 2022; 54:82. [PMID: 35088174 DOI: 10.1007/s11250-022-03086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Recognition of the genes that influence livestock production characteristics has allowed researchers to identify single nucleotide polymorphisms (SNPs) associated with phenotypic traits that contribute to higher productivity. The objective of this research was to associate SNPs in the genes calpain (CAPN), calpastatin (CAST), leptin (LEP), growth hormone (GH), and insulin-like growth factor 1 (IGF-1) with the growth characteristics birth weight (BW), weaning weight adjusted at 120 days (WW), daily pre-weaning gain (PRADG), adjusted weight at 210 days (AW210), and daily post-weaning gain (POADG), and the measures of the Longissimus dorsi muscle based on ultrasound, namely loin eye area (LEA), loin depth (LD), and back fat thickness (BFT), in Colombian hair sheep (OPC). The association between phenotypic and genotypic characteristics was made using the PLINK v.1.9 program using linear regression analysis. There was a statistically significant association (p < 0.05) between the CAST polymorphism (M/N) and BW, a tendency (p = 0.07) for an association between the T → C SNP of the CAPN gene and AW210, and a trend (p = 0.07) for an association between the A → G SNP of the IGF-1 locus and POADG. The LEA and BFT characteristics were not associated with a SNP, while PL was significantly affected by SNPs in the GH and IGF-1 genes. In conclusion, all the genes evaluated were polymorphic, the CAST gene significantly influenced BW, and the GH and IGF-1 genes were associated with LD characteristics. These results could be used to identify individuals with favorable genotypes to implement a marker-assisted selection method.
Collapse
|
7
|
A reaction-diffusion network model predicts a dual role of Cactus/IκB to regulate Dorsal/NFκB nuclear translocation in Drosophila. PLoS Comput Biol 2021; 17:e1009040. [PMID: 34043616 PMCID: PMC8189453 DOI: 10.1371/journal.pcbi.1009040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/09/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Dorsal-ventral patterning of the Drosophila embryo depends on the NFκB superfamily transcription factor Dorsal (Dl). Toll receptor activation signals for degradation of the IκB inhibitor Cactus (Cact), leading to a ventral-to-dorsal nuclear Dl gradient. Cact is critical for Dl nuclear import, as it binds to and prevents Dl from entering the nuclei. Quantitative analysis of cact mutants revealed an additional Cact function to promote Dl nuclear translocation in ventral regions of the embryo. To investigate this dual Cact role, we developed a predictive model based on a reaction-diffusion regulatory network. This network distinguishes non-uniform Toll-dependent Dl nuclear import and Cact degradation, from the Toll-independent processes of Cact degradation and reversible nuclear-cytoplasmic Dl flow. In addition, it incorporates translational control of Cact levels by Dl. Our model successfully reproduces wild-type data and emulates the Dl nuclear gradient in mutant dl and cact allelic combinations. Our results indicate that the dual role of Cact depends on the dynamics of Dl-Cact trimers along the dorsal-ventral axis: In the absence of Toll activation, free Dl-Cact trimers retain Dl in the cytoplasm, limiting the flow of Dl into the nucleus; in ventral-lateral regions, Dl-Cact trimers are recruited by Toll activation into predominant signaling complexes and promote Dl nuclear translocation. Simulations suggest that the balance between Toll-dependent and Toll-independent processes are key to this dynamics and reproduce the full assortment of Cact effects. Considering the high evolutionary conservation of these pathways, our analysis should contribute to understanding NFκB/c-Rel activation in other contexts such as in the vertebrate immune system and disease. In Drosophila, Toll pathway establishes spatially distinct gene expression territories that define the embryonic dorsal-ventral axis. Toll activation leads to degradation of the IκB inhibitor Cactus, releasing the NFκB superfamily transcription factor Dorsal for nuclear entry. Recently, quantitative analysis of cact mutants revealed that Cact displays an additional function to promote Dl nuclear translocation in ventral regions of the embryo. To understand this novel activity, we developed a predictive theoretical model that shows that the kinetics of Dorsal-Cactus complex formation prior to their recruitment to Toll-signaling complexes is an essential regulatory hub. Cactus controls the balance between the recruitment of these complexes by active Toll receptor and association-dissociation events that generate free Dorsal for direct nuclear import.
Collapse
|
8
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
9
|
Chen Y, Su Z, Liu F. Effects of functionally diverse calpain system on immune cells. Immunol Res 2021; 69:8-17. [PMID: 33483937 DOI: 10.1007/s12026-021-09177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.
Collapse
Affiliation(s)
- Yueqi Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
10
|
Su W, Zhou Q, Wang Y, Chishti A, Li QQ, Dayal S, Shiehzadegan S, Cheng A, Moore C, Bi X, Baudry M. Deletion of the Capn1 Gene Results in Alterations in Signaling Pathways Related to Alzheimer's Disease, Protein Quality Control and Synaptic Plasticity in Mouse Brain. Front Genet 2020; 11:334. [PMID: 32328086 PMCID: PMC7161415 DOI: 10.3389/fgene.2020.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Calpains represent a family of calcium-dependent proteases participating in a multitude of functions under physiological or pathological conditions. Calpain-1 is one of the most studied members of the family, is ubiquitously distributed in organs and tissues, and has been shown to be involved in synaptic plasticity and neuroprotection in mammalian brain. Calpain-1 deletion results in a number of phenotypic alterations. While some of these alterations can be explained by the acute functions of calpain-1, the present study was directed at studying alterations in gene expression that could also account for these phenotypic modifications. RNA-seq analysis identified 354 differentially expressed genes (DEGs) in brain of calpain-1 knock-out mice, as compared to their wild-type strain. Most DEGs were classified in 10 KEGG pathways, with the highest representations in Protein Processing in Endoplasmic Reticulum, MAP kinase and Alzheimer's disease pathways. Most DEGs were down-regulated and validation of a number of these genes indicated a corresponding decreased expression of their encoded proteins. The results indicate that calpain-1 is involved in the regulation of a significant number of genes affecting multiple brain functions. They also indicate that mutations in calpain-1 are likely to be involved in a number of brain disorders.
Collapse
Affiliation(s)
- Wenyue Su
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Qian Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Athar Chishti
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Qingshun Q. Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Sujay Dayal
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Shayan Shiehzadegan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Ariel Cheng
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Clare Moore
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
11
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
12
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|