1
|
Babu V, Bahari R, Laban N, Kulaga J, Abdul Z, Zakkar B, Al-Najjar A, Lesus J, Al-Rifai AAR, Sattar H, Irukulla S, Gunniya P, Requena T, Lysakowski A. RotaRod and acoustic startle reflex performance of two potential mouse models for Meniere's disease. Eur J Neurosci 2023; 58:2708-2723. [PMID: 37461313 DOI: 10.1111/ejn.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Meniere's disease (MD) is a disorder of the inner ear characterized by chronic episodes of vertigo, tinnitus, increased aural pressure, and sensorineural hearing loss. Causes of MD are unknown, but endolymphatic hydrops is a hallmark. In addition, 5%-15% of MD cases have been identified as familial. Whole-genome sequencing studies of individuals with familial MD identified DTNA and FAM136A as candidate genes for autosomal dominant inheritance of MD. Although the exact roles of these genes in MD are unknown, FAM136A encodes a mitochondrial protein, and DTNA encodes a cytoskeletal protein involved in synapse formation and maintenance, important for maintaining the blood-brain barrier. It is also associated with a particular aquaporin. We tested vestibular and auditory function in dtna and fam136a knockout (KO) mice, using RotaRod and startle reflex-based clicker tests, respectively. Three-factor analysis of variance (ANOVA) results indicated that sex, age, and genotype were significantly correlated with reduced mean latencies to fall ("latencies") for male dtna KO mice, while only age was a significant factor for fam136a KO mice. Fam136a KO mice lost their hearing months before WTs (9-11 months vs. 15-20 months). In male dtna KO mice, divergence in mean latencies compared with other genotypes was first evident at 4 months of age, with older males having an even greater decrease. Our results indicate that fam136a gene mutations generate hearing problems, while dtna gene mutations produce balance deficits. Both mouse models should help to elucidate hearing loss and balance-related symptoms associated with MD.
Collapse
Affiliation(s)
- Vidya Babu
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Rose Bahari
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Nora Laban
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Jacob Kulaga
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Zahid Abdul
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Basil Zakkar
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Ahmad Al-Najjar
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Joseph Lesus
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Heba Sattar
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Suhitha Irukulla
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Pranav Gunniya
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Teresa Requena
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Anna Lysakowski
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Requena T, Keder A, zur Lage P, Albert JT, Jarman AP. A Drosophila model for Meniere's disease: Dystrobrevin is required for support cell function in hearing and proprioception. Front Cell Dev Biol 2022; 10:1015651. [PMID: 36438562 PMCID: PMC9688402 DOI: 10.3389/fcell.2022.1015651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 08/04/2023] Open
Abstract
Meniere's disease (MD) is an inner ear disorder characterised by recurrent vertigo attacks associated with sensorineural hearing loss and tinnitus. Evidence from epidemiology and Whole Exome Sequencing (WES) suggests a genetic susceptibility involving multiple genes, including α-Dystrobrevin (DTNA). Here we investigate a Drosophila model. We show that mutation, or knockdown, of the DTNA orthologue in Drosophila, Dystrobrevin (Dyb), results in defective proprioception and impaired function of Johnston's Organ (JO), the fly's equivalent of the inner ear. Dyb and another component of the dystrophin-glycoprotein complex (DGC), Dystrophin (Dys), are expressed in support cells within JO. Their specific locations suggest that they form part of support cell contacts, thereby helping to maintain the integrity of the hemolymph-neuron diffusion barrier, which is equivalent to a blood-brain barrier. These results have important implications for the human condition, and notably, we note that DTNA is expressed in equivalent cells of the mammalian inner ear.
Collapse
Affiliation(s)
- T. Requena
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - A. Keder
- Ear Institute, University College London, London, United Kingdom
| | - P. zur Lage
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - J. T. Albert
- Ear Institute, University College London, London, United Kingdom
| | - A. P. Jarman
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Hawkes CA, Heath CJ, Sharp MM, Górecki DC, Carare RO. α-Dystrobrevin knockout mice have increased motivation for appetitive reward and altered brain cannabinoid receptor 1 expression. Acta Neuropathol Commun 2022; 10:127. [PMID: 36045406 PMCID: PMC9434862 DOI: 10.1186/s40478-022-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
α-Dystrobrevin (α-DB) is a major component of the dystrophin-associated protein complex (DAPC). Knockout (KO) of α-DB in the brain is associated with astrocytic abnormalities and loss of neuronal GABA receptor clustering. Mutations in DAPC proteins are associated with altered dopamine signaling and cognitive and psychiatric disorders, including schizophrenia. This study tested the hypothesis that motivation and associated underlying biological pathways are altered in the absence of α-DB expression. Male wildtype and α-DB KO mice were tested for measures of motivation, executive function and extinction in the rodent touchscreen apparatus. Subsequently, brain tissues were evaluated for mRNA and/or protein levels of dysbindin-1, dopamine transporter and receptor 1 and 2, mu opioid receptor 1 (mOR1) and cannabinoid receptor 1 (CB1). α-DB KO mice had significantly increased motivation for the appetitive reward, while measures of executive function and extinction were unaffected. No differences were observed between wildtype and KO animals on mRNA levels of dysbindin-1 or any of the dopamine markers. mRNA levels of mOR1were significantly decreased in the caudate-putamen and nucleus accumbens of α-DB KO compared to WT animals, but protein levels were unaltered. However, CB1 protein levels were significantly increased in the prefrontal cortex and decreased in the nucleus accumbens of α-DB KO mice. Triple-labelling immunohistochemistry confirmed that changes in CB1 were not specific to astrocytes. These results highlight a novel role for α-DB in the regulation of appetitive motivation that may have implications for other behaviours that involve the dopaminergic and endocannabinoid systems.
Collapse
|
4
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
5
|
Romo-Yáñez J, Rodríguez-Martínez G, Aragón J, Siqueiros-Márquez L, Herrera-Salazar A, Velasco I, Montanez C. Characterization of the expression of dystrophins and dystrophin-associated proteins during embryonic neural stem/progenitor cell differentiation. Neurosci Lett 2020; 736:135247. [DOI: 10.1016/j.neulet.2020.135247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
|
6
|
Oh EH, Shin JH, Kim HS, Cho JW, Choi SY, Choi KD, Rhee JK, Lee S, Lee C, Choi JH. Rare Variants of Putative Candidate Genes Associated With Sporadic Meniere's Disease in East Asian Population. Front Neurol 2020; 10:1424. [PMID: 32038468 PMCID: PMC6987317 DOI: 10.3389/fneur.2019.01424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: The cause of Meniere's disease (MD) is unclear but likely involves genetic and environmental factors. The aim of this study was to investigate the genetic basis underlying MD by screening putative candidate genes for MD. Methods: Sixty-eight patients who met the diagnostic criteria for MD of the Barany Society were included. We performed targeted gene sequencing using next generation sequencing (NGS) panel composed of 45 MD-associated genes. We identified the rare variants causing non-synonymous amino acid changes, stop codons, and insertions/deletions in the coding regions, and excluded the common variants with minor allele frequency >0.01 in public databases. The pathogenicity of the identified variants was analyzed by various predictive tools and protein structural modeling. Results: The average read depth for the targeted regions was 1446.3-fold, and 99.4% of the targeted regions were covered by 20 or more reads, achieving the high quality of the sequencing. After variant filtering, annotation, and interpretation, we identified a total of 15 rare heterozygous variants in 12 (17.6%) sporadic patients. Among them, four variants were detected in familial MD genes (DTNA, FAM136A, DPT), and the remaining 11 in MD-associated genes (PTPN22, NFKB1, CXCL10, TLR2, MTHFR, SLC44A2, NOS3, NOTCH2). Three patients had the variants in two or more genes. All variants were not detected in our healthy controls (n = 100). No significant differences were observed between patients with and without a genetic variant in terms of sex, mean age of onset, bilaterality, the type of MD, and hearing threshold at diagnosis. Conclusions: Our study identified rare variants of putative candidate genes in some of MD patients. The genes were related to the formation of inner ear structures, the immune-associated process, or systemic hemostasis derangement, suggesting the multiple genetic predispositions in the development of MD.
Collapse
Affiliation(s)
- Eun Hye Oh
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jin-Hong Shin
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Hyang-Sook Kim
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae Wook Cho
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Seowhang Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Sciences and Technology, Ulsan, South Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Sciences and Technology, Ulsan, South Korea
| | - Jae-Hwan Choi
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
7
|
Requena T, Cabrera S, Martín-Sierra C, Price SD, Lysakowski A, Lopez-Escamez JA. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. Hum Mol Genet 2014; 24:1119-26. [PMID: 25305078 DOI: 10.1093/hmg/ddu524] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Meniere's disease (MD) is a chronic disorder of the inner ear defined by sensorineural hearing loss, tinnitus and episodic vertigo, and familial MD is observed in 5-15% of sporadic cases. Although its pathophysiology is largely unknown, studies in human temporal bones have found an accumulation of endolymph in the scala media of the cochlea. By whole-exome sequencing, we have identified two novel heterozygous single-nucleotide variants in FAM136A and DTNA genes, both in a Spanish family with three affected cases in consecutive generations, highly suggestive of autosomal-dominant inheritance. The nonsense mutation in the FAM136A gene leads to a stop codon that disrupts the FAM136A protein product. Sequencing revealed two mRNA transcripts of FAM136A in lymphoblasts from patients, which were confirmed by immunoblotting. Carriers of the FAM136A mutation showed a significant decrease in the expression level of both transcripts in lymphoblastoid cell lines. The missense mutation in the DTNA gene produces a novel splice site which skips exon 21 and leads to a shorter alternative transcript. We also demonstrated that FAM136A and DTNA proteins are expressed in the neurosensorial epithelium of the crista ampullaris of the rat by immunohistochemistry. While FAM136A encodes a mitochondrial protein with unknown function, DTNA encodes a cytoskeleton-interacting membrane protein involved in the formation and stability of synapses with a crucial role in the permeability of the blood-brain barrier. Neither of these genes has been described in patients with hearing loss, FAM136A and DTNA being candidate gene for familiar MD.
Collapse
Affiliation(s)
- Teresa Requena
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain
| | - Sonia Cabrera
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain
| | - Carmen Martín-Sierra
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain
| | - Steven D Price
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA and
| | - José A Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada 18016, Spain, Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería 04700, Spain
| |
Collapse
|
8
|
Rangrez AY, Bernt A, Poyanmehr R, Harazin V, Boomgaarden I, Kuhn C, Rohrbeck A, Frank D, Frey N. Dysbindin is a potent inducer of RhoA-SRF-mediated cardiomyocyte hypertrophy. ACTA ACUST UNITED AC 2014; 203:643-56. [PMID: 24385487 PMCID: PMC3840930 DOI: 10.1083/jcb.201303052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysbindin activates RhoA–SRF and MEK1–ERK1 signaling pathways in cardiomyocytes to promote cardiac hypertrophy. Dysbindin is an established schizophrenia susceptibility gene thoroughly studied in the context of the brain. We have previously shown through a yeast two-hybrid screen that it is also a cardiac binding partner of the intercalated disc protein Myozap. Because Dysbindin is highly expressed in the heart, we aimed here at deciphering its cardiac function. Using a serum response factor (SRF) response element reporter-driven luciferase assay, we identified a robust activation of SRF signaling by Dysbindin overexpression that was associated with significant up-regulation of SRF gene targets, such as Acta1 and Actc1. Concurrently, we identified RhoA as a novel binding partner of Dysbindin. Further phenotypic and mechanistic characterization revealed that Dysbindin induced cardiac hypertrophy via RhoA–SRF and MEK1–ERK1 signaling pathways. In conclusion, we show a novel cardiac role of Dysbindin in the activation of RhoA–SRF and MEK1–ERK1 signaling pathways and in the induction of cardiac hypertrophy. Future in vivo studies should examine the significance of Dysbindin in cardiomyopathy.
Collapse
Affiliation(s)
- Ashraf Yusuf Rangrez
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Górecki DC. Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem 2012; 287:41374-85. [PMID: 23043099 DOI: 10.1074/jbc.m112.400044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Kim J, Kim JS, Jeon YJ, Kim DW, Yang TH, Soh Y, Lee HK, Choi NJ, Park SB, Seo KS, Chung HM, Lee DS, Chae JI. Identification of maturation and protein synthesis related proteins from porcine oocytes during in vitro maturation. Proteome Sci 2011; 9:28. [PMID: 21649931 PMCID: PMC3236306 DOI: 10.1186/1477-5956-9-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro maturation (IVM) of mammalian oocytes is divided into the GV (germinal vesicle stage), MI (metaphase I stage) and MII (metaphase II stage) stages, and only fully mature oocytes have acquired the ability to be fertilized and initiate zygotic development. These observations have been mostly based on morphological evaluations, but the molecular events governing these processes are not fully understood.The aim of the present study was to better understand the processes involved in the molecular regulation of IVM using 2-DE analysis followed by mass spectrometry to identify proteins that are differentially expressed during oocyte IVM. RESULT A total of 16 up-regulated and 12 down-regulated proteins were identified. To investigate the IVM process, we specifically focused on the proteins that were up-regulated during the MII stage when compared with the GV stage, which included PRDX 2, GST, SPSY, myomegalin, PED4D, PRKAB 1, and DTNA. These up-regulated proteins were functionally involved in redox regulation and the cAMP-dependent pathway, which are essential for the intracellular signaling involved in oocyte maturation. Interestingly, the PDE4D and its partner, myomegalin, during the MII stage was consistently confirmed up-regulation by western blot analyses. CONCLUSION These results could be used to better understand some aspects of the molecular mechanisms underlying porcine oocyte maturation. This study identified some regulatory proteins that may have important roles in the molecular events involved in porcine oocyte maturation, particularly with respect to the regulation of oocyte meiotic resumption, MII arrest and oocyte activation. In addition, this study may have beneficial applications not only to basic science with respect to the improvement of oocyte culture conditions but also to mammalian reproductive biotechnology with potential implications.
Collapse
Affiliation(s)
- Jumi Kim
- CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| | - Dong-Wook Kim
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| | - Tae-Ho Yang
- Division of Biological Sciences, Chonbuk National University, Jeonju 561-756, Korea
| | - Yunjo Soh
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| | - Hak Kyo Lee
- Genomic Informatics Center, Hankyong National University, 67 Sukjong-dong, Ansung-city, Kyongi-do, 456-749, Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural & Life Science, Chonbuk National University, Jeonju, Korea
| | - Soo-Bong Park
- National Institute of animal Science, Suwon 441-706 Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Hyung Min Chung
- CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea.,Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, 605 -21 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - Dong-Seok Lee
- College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|
11
|
Pócsai K, Bagyura Z, Kálmán M. Components of the basal lamina and dystrophin-dystroglycan complex in the neurointermediate lobe of rat pituitary gland: different localizations of beta-dystroglycan, dystrobrevins, alpha1-syntrophin, and aquaporin-4. J Histochem Cytochem 2010; 58:463-79. [PMID: 20124096 PMCID: PMC2857818 DOI: 10.1369/jhc.2010.954768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/21/2010] [Indexed: 11/22/2022] Open
Abstract
The so-called neurointermediate lobe is composed of the intermediate and neural lobes of the pituitary. The present immunohistochemical study investigated components of the basal lamina (laminin, agrin, and perlecan), the dystrophin-dystroglycan complex (dystrophin, beta-dystroglycan, alpha1-dystrobrevin, beta-dystrobrevin, utrophin, and alpha1-syntrophin), and the aquaporins (aquaporin-4 and -9). Glia markers (GFAP, S100, and glutamine synthetase) and components of connective tissue (collagen type I and fibronectin) were also labeled. In the neurohypophysis, immunostaining of basal lamina delineated meningeal invaginations. In these invaginations, vessels were seen to penetrate the organ without submerging into its parenchyma. On the parenchymal side of the invaginations, beta-dystroglycan was detected, whereas utrophin was detected in the walls of vessels. Immunostaining of alpha1-dystrobrevin and alpha1-syntrophin did not delineate the vessels. The cells of the intermediate lobe were fully immunoreactive to alpha1-dystrobrevin and alpha1-syntrophin, whereas components of the basal lamina delineated the contours of the cells. GFAP-immunoreactive processes surrounded them. Aquaporin-4 localized at the periphery of the neurohypophysis, mainly adjacent to the intermediate lobe but not along the vessels. It colocalized only partially with GFAP and not at all with alpha1-syntrophin. Aquaporin-9 was not detected. These results emphasize the possibility that the components of the dystrophin-dystroglycan complex localize differently and raise the question about the roles of dystrobrevins, alpha1-syntrophin, and aquaporin-4 in the functions of the intermediate and neural lobes, respectively.
Collapse
Affiliation(s)
- Károly Pócsai
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzoltó 58, Budapest, H-1094, Hungary
| | | | | |
Collapse
|
12
|
Böhm SV, Constantinou P, Tan S, Jin H, Roberts RG. Profound human/mouse differences in alpha-dystrobrevin isoforms: a novel syntrophin-binding site and promoter missing in mouse and rat. BMC Biol 2009; 7:85. [PMID: 19961569 PMCID: PMC2796648 DOI: 10.1186/1741-7007-7-85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/04/2009] [Indexed: 11/29/2022] Open
Abstract
Background The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain) is its distant relative, α-dystrobrevin. The α-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The choice of isoform is understood, amongst other things, to determine the stoichiometry of syntrophins (and their ligands) in the dystrophin glycoprotein complex. Results We show here that, contrary to the literature, most α-dystrobrevin genes, including that of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression pattern of human and mouse α-dystrobrevin isoforms, and show that two major gene features (the novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-specific isoforms α-dystrobrevin-4 and -5) are present in most mammals but specifically ablated in mouse and rat. Conclusion Lineage-specific mutations in the murids mean that the mouse brain has fewer than half of the α-dystrobrevin isoforms found in the human brain. Our finding that there are likely to be fundamental functional differences between the α-dystrobrevins (and therefore the dystrophin glycoprotein complexes) of mice and humans raises questions about the current use of the mouse as the principal model animal for studying Duchenne muscular dystrophy and other related disorders, especially the neurological aspects thereof.
Collapse
Affiliation(s)
- Sabrina V Böhm
- Division of Medical & Molecular Genetics, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
13
|
Synaptic alpha-dystrobrevin: localization of a short alpha-dystrobrevin isoform in melanin-concentrating hormone neurons of the hypothalamus. Brain Res 2008; 1201:52-9. [PMID: 18314094 DOI: 10.1016/j.brainres.2008.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/23/2007] [Accepted: 01/05/2008] [Indexed: 10/22/2022]
Abstract
The expression of the two members of the dystrobrevin (DB) family in the adult brain was thought to be highly specific for the two main cell types: alpha-dystrobrevin (alpha-DB) and beta-dystrobrevin (beta-DB) has been identified as glial and neuronal proteins, respectively. In the present work we show that a subset of neurons in the hypothalamus contains alpha-DB. Comparative immunohistochemical studies with two alpha-DB antibodies of different specificity indicate that the neurons contain short alpha-DB isoform(s) alpha-DB-2 and/or alpha-DB-4. Immunoreactive multipolar or spindle-shaped neurons form clusters with bilateral symmetry, localized predominantly in the lateral hypothalamic area, with extensions into the zona incerta and the dorso-medial and ventro-medial hypothalamic region. alpha-DB immunoreactivity was localized in cell processes and at postsynaptic densities, furthermore in the endoplasmic reticulum within the perikarya. alpha-DB-positive neurons are beta-dystrobrevin immunoreactive, but alpha- and beta-DB do not co-localize with their usual molecular anchors like dystrophins or high molecular weight forms of utrophin. Colocalization with nNOS was also not observed. The pattern of alpha-DB immunoreactive neurons gave a perfect colocalization with melanin-concentrating hormone (MCH) neurons throughout the whole region studied. We propose that alpha-DB plays a role in a structure or regulation mechanism unique to MCH-expressing neurons.
Collapse
|
14
|
Böhm S, Jin H, Hughes SM, Roberts RG, Hinits Y. Dystrobrevin and dystrophin family gene expression in zebrafish. Gene Expr Patterns 2007; 8:71-8. [PMID: 18042440 DOI: 10.1016/j.modgep.2007.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/21/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Dystrophin/dystrobrevin superfamily proteins play structural and signalling roles at the plasma membrane of many cell types. Defects in them or the associated multiprotein complex cause a range of neuromuscular disorders. Members of the dystrophin branch of the family form heterodimers with members of the dystrobrevin branch, mediated by their coiled-coil domains. To determine which combinations of these proteins might interact during embryonic development, we set out to characterise the gene expression pattern of dystrophin and dystrobrevin family members in zebrafish. gamma-dystrobrevin (dtng), a novel dystrobrevin recently identified in fish, is the predominant form of dystrobrevin in embryonic development. Dtng and dmd (dystrophin) have similar spatial and temporal expression patterns in muscle, where transcripts are localized to the ends of differentiated fibres at the somite borders. Dtng is expressed in the notochord while dmd is expressed in the chordo-neural hinge and then in floor plate and hypochord. In addition, dtng is dynamically expressed in rhombomeres 2 and 4-6 of the hindbrain and in the ventral midbrain. alpha-dystrobrevin (dtna) is expressed widely in the brain with particularly strong expression in the hypothalamus and the telencephalon; drp2 is also expressed widely in the brain. Utrophin expression is found in early pronephros and lateral line development and utrophin and dystrophin are both expressed later in the gut. beta-dystrobrevin (dtnb) is expressed in the pronephric duct and widely at low levels. In summary, we find clear instances of co-expression of dystrophin and dystrobrevin family members in muscle, brain and pronephric duct development and many examples of strong and specific expression of members of one family but not the other, an intriguing finding given the presumed heterodimeric state of these molecules.
Collapse
Affiliation(s)
- Sabrina Böhm
- Department of Medical & Molecular Genetics, Guy's Campus, King's College London, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
15
|
Rees MLJ, Lien CF, Górecki DC. Dystrobrevins in muscle and non-muscle tissues. Neuromuscul Disord 2007; 17:123-34. [PMID: 17251025 DOI: 10.1016/j.nmd.2006.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/26/2006] [Accepted: 11/20/2006] [Indexed: 01/23/2023]
Abstract
The alpha- and beta-dystrobrevins belong to the family of dystrophin-related and dystrophin-associated proteins. As constituents of the dystrophin-associated protein complex, alpha-dystrobrevin was believed to have a role predominantly in muscles and beta-dystrobrevin in non-muscle tissues. Recent reports described novel localisations and molecular characteristics of alpha-dystrobrevin isoforms in non-muscle tissues (developing and adult). While single and double knockout studies have revealed distinct functions of dystrobrevin in some tissues, these also suggested a strong compensatory mechanism, where dystrobrevins displaying overlapping tissue expression pattern and structure/function similarity can substitute each other. No human disease has been unequivocally associated within mutations of dystrobrevin genes. However, some significant exceptions to these overlapping expression patterns, mainly in the brain, suggest that dystrobrevin mutations might underlie some specific motor, behavioural or cognitive defects. Dystrobrevin binding partner DTNBP1 (dysbindin) is a probable susceptibility gene for schizophrenia and bipolar affective disorder in some populations. As dysbindin abnormality is linked to Hermansky-Pudlak syndrome, dystrobrevins and/or their binding partners may also be required for proper function of other non-muscle tissues.
Collapse
Affiliation(s)
- Melissa L J Rees
- Department of Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | | | | |
Collapse
|
16
|
Veroni C, Grasso M, Macchia G, Ramoni C, Ceccarini M, Petrucci TC, Macioce P. β-dystrobrevin, a kinesin-binding receptor, interacts with the extracellular matrix components pancortins. J Neurosci Res 2007; 85:2631-9. [PMID: 17265465 DOI: 10.1002/jnr.21186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dystrobrevins (alpha and beta) are components of the dystrophin-associated protein complex (DPC), which links the cytoskeleton to the extracellular matrix and serves as a scaffold for signaling proteins. The precise functions of the beta-dystrobrevin isoform, which is expressed in nonmuscle tissues, have not yet been determined. To gain further insights into the role of beta-dystrobrevin in brain, we performed a yeast two-hybrid screen and identified pancortin-2 as a novel beta-dystrobrevin-binding partner. Pancortins-1-4 are neuron-specific olfactomedin-related glycoproteins, highly expressed during brain development and widely distributed in the mature cerebral cortex of the mouse. Pancortins are important constituents of the extracellular matrix and are thought to play an essential role in neuronal differentiation. We characterized the interaction between pancortin-2 and beta-dystrobrevin by in vitro and in vivo association assays and mapped the binding site of pancortin-2 on beta-dystrobrevin to amino acids 202-236 of the beta-dystrobrevin molecule. We also found that the domain of interaction for beta-dystrobrevin is contained in the B part of pancortin-2, a central region that is common to all four pancortins. Our results indicate that beta-dystrobrevin could interact with all members of the pancortin family, implying that beta-dystrobrevin may be involved in brain development. We suggest that dystrobrevin, a motor protein receptor that binds kinesin heavy chain, might play a role in intracellular transport of pancortin to specific sites in the cell.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Lien CF, Hazai D, Yeung D, Tan J, Füchtbauer EM, Jancsik V, Górecki DC. Expression of alpha-dystrobrevin in blood-tissue barriers: sub-cellular localisation and molecular characterisation in normal and dystrophic mice. Cell Tissue Res 2006; 327:67-82. [PMID: 16868787 DOI: 10.1007/s00441-006-0241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
The alpha- and beta-dystrobrevins (DBs) belong to a family of dystrophin-related and dystrophin-associated proteins that are members of the dystrophin-associated protein complex (DAPC). This complex provides a link between the cytoskeleton and the extracellular matrix or other cells. However, specific functions of the two dystrobrevins remain largely unknown, with alpha-DB being believed to have a role mainly in skeletal muscle. Here, we describe previously unknown expression patterns and the localisation and molecular characteristics of alpha-DB isoforms in non-muscle mouse tissues. We demonstrate a highly specific sub-cellular distribution of alpha-DB in organs forming blood-tissue barriers. We show alpha-DB expression and localisation in testicular Sertoli cells, stomach and respiratory epithelia and provide electron-microscopic evidence for its immunolocalisation in these cells and in the central nervous system. Moreover, we present the molecular characterisation of alpha-DB transcript in these tissues and provide evidence for a distinct heterogeneity of associations between alpha-DB and dystrophins and utrophin in normal and dystrophic non-muscle tissues. Together, our results indicate that alpha-DB, in addition to its role in skeletal muscle, may also be required for the proper function of specific non-muscle tissues and that disruption of DAPC might lead to tissue-blood barrier abnormalities.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, UK
| | | | | | | | | | | | | |
Collapse
|