1
|
Hinostroza F, Araya-Duran I, Piñeiro A, Lobos I, Pastenes L. Transcription factor roles in the local adaptation to temperature in the Andean Spiny Toad Rhinella spinulosa. Sci Rep 2024; 14:15158. [PMID: 38956427 PMCID: PMC11220030 DOI: 10.1038/s41598-024-66127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Environmental temperature strongly influences the adaptation dynamics of amphibians, whose limited regulation capabilities render them susceptible to thermal oscillations. A central element of the adaptive strategies is the transcription factors (TFs), which act as master regulators that orchestrate stress responses, enabling species to navigate the fluctuations of their environment skillfully. Our study delves into the intricate relationship between TF expression and thermal adaptation mechanisms in the Rhinella spinulosa populations. We sought to elucidate the dynamic modulations of TF expression in prometamorphic and metamorphic tadpoles that inhabit two thermally contrasting environments (Catarpe and El Tatio Geyser, Chile) and which were exposed to two thermal treatments (25 °C vs. 20 °C). Our findings unravel an intriguing dichotomy in response strategies between these populations. First, results evidence the expression of 1374 transcription factors. Regarding the temperature shift, the Catarpe tadpoles show a multifaceted approach by up-regulating crucial TFs, including fosB, atf7, and the androgen receptor. These dynamic regulatory responses likely underpin the population's ability to navigate thermal fluctuations effectively. In stark contrast, the El Tatio tadpoles exhibit a more targeted response, primarily up-regulating foxc1. This differential expression suggests a distinct focus on specific TFs to mitigate the effects of temperature variations. Our study contributes to understanding the molecular mechanisms governing thermal adaptation responses and highlights the resilience and adaptability of amphibians in the face of ever-changing environmental conditions.
Collapse
Affiliation(s)
- Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Centro Para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro Piñeiro
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Isabel Lobos
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Luis Pastenes
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
2
|
Gandhi S, Ezin M, Bronner ME. Reprogramming Axial Level Identity to Rescue Neural-Crest-Related Congenital Heart Defects. Dev Cell 2020; 53:300-315.e4. [PMID: 32369742 DOI: 10.1016/j.devcel.2020.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/07/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
The cardiac neural crest arises in the hindbrain, then migrates to the heart and contributes to critical structures, including the outflow tract septum. Chick cardiac crest ablation results in failure of this septation, phenocopying the human heart defect persistent truncus arteriosus (PTA), which trunk neural crest fails to rescue. Here, we probe the molecular mechanisms underlying the cardiac crest's unique potential. Transcriptional profiling identified cardiac-crest-specific transcription factors, with single-cell RNA sequencing revealing surprising heterogeneity, including an ectomesenchymal subpopulation within the early migrating population. Loss-of-function analyses uncovered a transcriptional subcircuit, comprised of Tgif1, Ets1, and Sox8, critical for cardiac neural crest and heart development. Importantly, ectopic expression of this subcircuit was sufficient to imbue trunk crest with the ability to rescue PTA after cardiac crest ablation. Together, our results reveal a transcriptional program sufficient to confer cardiac potential onto trunk neural crest cells, thus implicating new genes in cardiovascular birth defects.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Max Ezin
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Diao Y, Jin B, Huang L, Zhou W. MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J Cell Mol Med 2018; 22:2357-2367. [PMID: 29431269 PMCID: PMC5867105 DOI: 10.1111/jcmm.13529] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/02/2017] [Indexed: 01/05/2023] Open
Abstract
This study purposed to explore the correlation between miR-129-5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR-129-5p expression levels in glioma tissues and cells were measured by qRT-PCR. CCK-8 assay, flow cytometer, transwell assay and wound-healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual-luciferase reporting assay was performed to confirm the targeted relationship between miR-129-5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR-129-5p on tumorigenesis in vivo. MiR-129-5p expression was down-regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual-luciferase reporter assay validated the targeting relation between miR-129-5p and TGIF2. Overexpression of miR-129-5p or down-regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR-129-5p overexpression repressed the tumour development in vivo. MiR-129-5p and TGIF2 had opposite biological functions in glioma cells. MiR-129-5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.
Collapse
Affiliation(s)
- Yuling Diao
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Baozhe Jin
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Liyong Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Wenke Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| |
Collapse
|
4
|
Zhao M, Su Z, Zhang S, Zhuang L, Xie Y, Li X. Suppressive Role of MicroRNA-148a in Cell Proliferation and Invasion in Ovarian Cancer Through Targeting Transforming Growth Factor-β-Induced 2. Oncol Res 2017; 24:353-360. [PMID: 27712592 PMCID: PMC7838687 DOI: 10.3727/096504016x14685034103275] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological malignancies. MicroRNAs (miRs) play a crucial role in the development and progression of OC, but the underlying mechanism remains largely unclear. Our study investigated the regulatory role of miR-148a in OC cell proliferation and invasion. We found that miR-148a was significantly downregulated in OC tissues compared to their matched adjacent nontumor tissues. In addition, its expression was also reduced in OC cell lines (SKOV3, ES-2, OVCAR, and A2780) compared to normal ovarian epithelial cells. Overexpression of miR-148a caused a significant decrease in OC cell proliferation and invasion, as well as reduced MMP9 protein levels. Transforming growth factor-β-induced 2 (TGFI2) was further identified as a target gene of miR-148a, and its protein expression was downregulated in OC cells after miR-148a overexpression. Restoration of TGFI2 attenuated the suppressive effects of miR-148a on OC cell proliferation and invasion. Moreover, we found that TGFI2 was remarkably upregulated in OC tissues when compared with their matched adjacent nontumor tissues, and observed a reverse correlation between miR-148a and TGFI2 expression in OC tissues. On the basis of these findings, we suggest that miR-148a inhibits OC cell proliferation and invasion partly through inhibition of TGFI2. Therefore, our study highlights the importance of the miR-148a/TGFI2 axis in the malignant progression of OC.
Collapse
Affiliation(s)
- Min Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | |
Collapse
|
5
|
Pramfalk C, Eriksson M, Parini P. Role of TG-interacting factor (Tgif) in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:9-12. [PMID: 25088698 DOI: 10.1016/j.bbalip.2014.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
Abstract
TG interacting factors (Tgifs) 1 and 2 are members of the TALE (three-amino-acid loop extension) superfamily of homeodomain proteins. These two proteins bind to the same DNA sequence and share a conserved C-terminal repression domain. Mutations in TGIF1 have been linked to holoprosencephaly, which is a human genetic disease that affects craniofacial development. As these proteins can interact with the ligand binding domain of retinoid X receptor α, a common heterodimeric partner of several nuclear receptors [e.g., liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs)], Tgif1 and Tgif2 might repress other transcriptional pathways activated by lipids. In line with this, Tgif1 interacts with LXRα and Tgif1 null mice have increased expression of the two Lxrα target genes apolipoproteins (Apo) c2 and a4. Also, we have recently identified Tgif1 to function as a transcriptional repressor of the cholesterol esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase 2 (gene name SOAT2). As no studies yet have shown involvement of Tgif2 in the lipid metabolism, this review will focus on the role of Tgif1 in lipid and cholesterol metabolism. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden
| | - Mats Eriksson
- Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden.
| |
Collapse
|
6
|
Saunders LR, McClay DR. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Development 2014; 141:1503-13. [PMID: 24598159 DOI: 10.1242/dev.101436] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.
Collapse
|
7
|
Hu Y, Yu H, Shaw G, Renfree MB, Pask AJ. Differential roles of TGIF family genes in mammalian reproduction. BMC DEVELOPMENTAL BIOLOGY 2011; 11:58. [PMID: 21958027 PMCID: PMC3204290 DOI: 10.1186/1471-213x-11-58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/29/2011] [Indexed: 01/06/2023]
Abstract
Background TG-interacting factors (TGIFs) belong to a family of TALE-homeodomain proteins including TGIF1, TGIF2 and TGIFLX/Y in human. Both TGIF1 and TGIF2 act as transcription factors repressing TGF-β signalling. Human TGIFLX and its orthologue, Tex1 in the mouse, are X-linked genes that are only expressed in the adult testis. TGIF2 arose from TGIF1 by duplication, whereas TGIFLX arose by retrotransposition to the X-chromosome. These genes have not been characterised in any non-eutherian mammals. We therefore studied the TGIF family in the tammar wallaby (a marsupial mammal) to investigate their roles in reproduction and how and when these genes may have evolved their functions and chromosomal locations. Results Both TGIF1 and TGIF2 were present in the tammar genome on autosomes but TGIFLX was absent. Tammar TGIF1 shared a similar expression pattern during embryogenesis, sexual differentiation and in adult tissues to that of TGIF1 in eutherian mammals, suggesting it has been functionally conserved. Tammar TGIF2 was ubiquitously expressed throughout early development as in the human and mouse, but in the adult, it was expressed only in the gonads and spleen, more like the expression pattern of human TGIFLX and mouse Tex1. Tammar TGIF2 mRNA was specifically detected in round and elongated spermatids. There was no mRNA detected in mature spermatozoa. TGIF2 protein was specifically located in the cytoplasm of spermatids, and in the residual body and the mid-piece of the mature sperm tail. These data suggest that tammar TGIF2 may participate in spermiogenesis, like TGIFLX does in eutherians. TGIF2 was detected for the first time in the ovary with mRNA produced in the granulosa and theca cells, suggesting it may also play a role in folliculogenesis. Conclusions The restricted and very similar expression of tammar TGIF2 to X-linked paralogues in eutherians suggests that the evolution of TGIF1, TGIF2 and TGIFLX in eutherians was accompanied by a change from ubiquitous to tissue-specific expression. The distribution and localization of TGIF2 in tammar adult gonads suggest that there has been an ultra-conserved function for the TGIF family in fertility and that TGIF2 already functioned in spermatogenesis and potentially folliculogenesis long before its retrotransposition to the X-chromosome of eutherian mammals. These results also provide further evidence that the eutherian X-chromosome has actively recruited sex and reproductive-related genes during mammalian evolution.
Collapse
Affiliation(s)
- Yanqiu Hu
- ARC Centre of Excellence for Kangaroo Genomics, Department of Zoology, The University of Melbourne, VIC, 3010, Australia
| | | | | | | | | |
Collapse
|
8
|
Kerr TC, Cuykendall TN, Luettjohann LC, Houston DW. Maternal Tgif1 regulates nodal gene expression in Xenopus. Dev Dyn 2008; 237:2862-73. [PMID: 18816846 DOI: 10.1002/dvdy.21707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Xenopus, the maternal transcription factor VegT is necessary and sufficient to initiate the expression of nodal-related genes, which are central to many aspects of early development. However, little is known about regulation of VegT activity. Using maternal loss-of-function experiments, we show that the maternal homeoprotein, Tgif1, antagonizes VegT and plays a central role in anteroposterior patterning by negatively regulating a subset of nodal-related genes. Depletion of Tgif1 causes the anteriorization of embryos and the up-regulation of nodal paralogues nr5 and nr6. Furthermore, Tgif1 inhibits activation of nr5 by VegT in a manner that requires a C-terminal Sin3 corepressor-interacting domain. Tgif1 has been implicated in the transcriptional corepression of transforming growth factor-beta (TGFbeta) and retinoid signaling. However, we show that Tgif1 does not inhibit these pathways in early development. These results identify an essential role for Tgif1 in the control of nodal expression and provide insight into Tgif1 function and mechanisms controlling VegT activity.
Collapse
Affiliation(s)
- Tyler C Kerr
- University of Iowa, Department of Biology, Iowa City, Iowa 52246-1324, USA
| | | | | | | |
Collapse
|
9
|
Satoh S, Watanabe S. TGIF, a homeodomain transcription factor, regulates retinal progenitor cell differentiation. Exp Eye Res 2008; 87:571-9. [PMID: 18926818 DOI: 10.1016/j.exer.2008.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 09/09/2008] [Accepted: 09/12/2008] [Indexed: 12/29/2022]
Abstract
TG-interacting factor (TGIF) is a TALE homeodomain protein expressed predominantly in the central nervous system and functions as a transcriptional repressor. Several mutations in TGIF have been identified in patients with holoprosencephaly, the most common congenital malformation of the developing human forebrain. However, the precise role of TGIF in neural development is not well understood. We found that TGIF was expressed strongly in the mouse retina during early stages of development, and that its expression gradually decreased as retinal development progressed. In vitro explant cultures of mouse retina mimic the in vivo development of retinal subtypes. Forced expression of TGIF using a retrovirus in explant culture induced the differentiation of amacrine cells from retinal progenitor cells. A TGIF paralog, TGIF2, showed a similar transition in expression during retinal development, and TGIF2 also promoted amacrine cell differentiation in a retinal explant culture system. However, no apparent difference between wild-type and TGIF-knockout mouse retina was observed, suggesting that TGIF and TGIF2 function redundantly in that tissue. Forced expression of TGIF homeodomain (HD)-EnR (repressing) rather than TGIF HD-VP16 (activating) resulted in a phenotype similar to that induced by wild-type TGIF, suggesting that TGIFs may act as transcriptional repressors to induce amacrine genesis.
Collapse
Affiliation(s)
- Shinya Satoh
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
10
|
Ousati Ashtiani Z, Ayati M, Modarresi MH, Raoofian R, Sabah Goulian B, Greene WK, Heidari M. Association of TGIFLX/Y mRNA expression with prostate cancer. Med Oncol 2008; 26:73-7. [DOI: 10.1007/s12032-008-9086-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
11
|
Bartholin L, Melhuish TA, Powers SE, Goddard-Léon S, Treilleux I, Sutherland AE, Wotton D. Maternal Tgif is required for vascularization of the embryonic placenta. Dev Biol 2008; 319:285-97. [PMID: 18508043 DOI: 10.1016/j.ydbio.2008.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/25/2022]
Abstract
The mammalian placenta is the site of exchange of nutrients and waste between mother and embryo. In humans, placental insufficiency can result in intrauterine growth retardation, perinatal death and spontaneous abortion. We show that in C57BL/6J mice a null mutation in the gene encoding the transcriptional corepressor, Tgif, causes placental defects. The major defects are decreased vascularization of the placenta, due to a decrease in the fetal blood vessels, and decreased expression of the gap junction protein Gjb2 (Cx26). These defects result in severe growth retardation in a proportion of Tgif null embryos in Tgif heterozygous mothers, and an overall growth delay in Tgif null animals. Placental defects are much more severe if the mother also completely lacks Tgif function, and placentas from heterozygous Tgif embryos are defective in a Tgif null mother. Embryo transfer experiments show that even the placenta from a wild type embryo is compromised in the absence of maternal Tgif. These results demonstrate that Tgif functions in the normal development of the placenta, and suggest a role for maternal factors in regulating the morphogenesis of embryonically-derived placental tissues.
Collapse
Affiliation(s)
- Laurent Bartholin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Spagnoli FM, Brivanlou AH. The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. Development 2007; 135:451-61. [PMID: 18094028 DOI: 10.1242/dev.008458] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanisms underlying regional specification of distinct organ precursors within the endoderm, including the liver and pancreas, are still poorly understood. This is particularly true for stages between endoderm formation and the initiation of organogenesis. In this report, we have investigated these intermediate steps downstream of the early endodermal factor Gata5, which progressively lead to the induction of pancreatic fate. We have identified TGIF2 as a novel Gata5 target and demonstrate its function in the establishment of the pancreatic region within dorsal endoderm in Xenopus. TGIF2 acts primarily by restricting BMP signaling in the endoderm to allow pancreatic formation. Consistently, we found that blocking BMP signaling by independent means also perturbs the establishment of pancreatic identity in the endoderm. Previous findings demonstrated a crucial role for BMP signaling in determining dorsal/ventral fates in ectoderm and mesoderm. Our results now extend this trend to the endoderm and identify TGIF2 as the molecular link between dorsoventral patterning of the endoderm and pancreatic specification.
Collapse
Affiliation(s)
- Francesca M Spagnoli
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
13
|
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V. Holoprosencephaly. Orphanet J Rare Dis 2007; 2:8. [PMID: 17274816 PMCID: PMC1802747 DOI: 10.1186/1750-1172-2-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 02/02/2007] [Indexed: 12/14/2022] Open
Abstract
Holoprosencephaly (HPE) is a complex brain malformation resulting from incomplete cleavage of the prosencephalon, occurring between the 18th and the 28th day of gestation and affecting both the forebrain and the face. It is estimated to occur in 1/16,000 live births and 1/250 conceptuses. Three ranges of increasing severity are described: lobar, semi-lobar and alobar HPE. Another milder subtype of HPE called middle interhemispheric variant (MIHF) or syntelencephaly is also reported. In most of the cases, facial anomalies are observed in HPE, like cyclopia, proboscis, median or bilateral cleft lip/palate in severe forms, ocular hypotelorism or solitary median maxillary central incisor in minor forms. These latter midline defects can occur without the cerebral malformations and then are called microforms. Children with HPE have many medical problems: developmental delay and feeding difficulties, epilepsy, instability of temperature, heart rate and respiration. Endocrine disorders like diabetes insipidus, adrenal hypoplasia, hypogonadism, thyroid hypoplasia and growth hormone deficiency are frequent. To date, seven genes have been positively implicated in HPE: Sonic hedgehog (SHH), ZIC2, SIX3, TGIF, PTCH, GLI2 and TDGF1. A molecular diagnosis can be performed by gene sequencing and allele quantification for the four main genes SHH, ZIC2, SIX3 and TGIF. Major rearrangements of the subtelomeres can also be identified by multiplex ligation-dependent probe amplification (MLPA). Nevertheless, in about 70% of cases, the molecular basis of the disease remains unknown, suggesting the existence of several other candidate genes or environmental factors. Consequently, a "multiple-hit hypothesis" of genetic and/or environmental factors (like maternal diabetes) has been proposed to account for the extreme clinical variability. In a practical approach, prenatal diagnosis is based on ultrasound and magnetic resonance imaging (MRI) rather than on molecular diagnosis. Treatment is symptomatic and supportive, and requires a multidisciplinary management. Child outcome depends on the HPE severity and the medical and neurological complications associated. Severely affected children have a very poor prognosis. Mildly affected children may exhibit few symptoms and may live a normal life.
Collapse
Affiliation(s)
- Christèle Dubourg
- UMR 6061 CNRS, Institut de Génétique et Développement de Rennes, Université de Rennes1, IFR 140 GFAS, Faculté de Médecine, Rennes, 35000, France
- Laboratoire de Génétique Moléculaire et Hormonologie, Centre Hospitalier et Universitaire de Pontchaillou, Rennes, 35000, France
| | - Claude Bendavid
- UMR 6061 CNRS, Institut de Génétique et Développement de Rennes, Université de Rennes1, IFR 140 GFAS, Faculté de Médecine, Rennes, 35000, France
- Laboratoire de Génétique Moléculaire et Hormonologie, Centre Hospitalier et Universitaire de Pontchaillou, Rennes, 35000, France
| | - Laurent Pasquier
- Service de Génétique Médicale, Hôpital Sud, Rennes, 35000, France
| | - Catherine Henry
- Laboratoire de Cytogénétique, Centre Hospitalier et Universitaire de Pontchaillou, Rennes, 35000, France
| | - Sylvie Odent
- Service de Génétique Médicale, Hôpital Sud, Rennes, 35000, France
| | - Véronique David
- UMR 6061 CNRS, Institut de Génétique et Développement de Rennes, Université de Rennes1, IFR 140 GFAS, Faculté de Médecine, Rennes, 35000, France
- Laboratoire de Génétique Moléculaire et Hormonologie, Centre Hospitalier et Universitaire de Pontchaillou, Rennes, 35000, France
| |
Collapse
|
14
|
El-Jaick KB, Powers SE, Bartholin L, Myers KR, Hahn J, Orioli IM, Ouspenskaia M, Lacbawan F, Roessler E, Wotton D, Muenke M. Functional analysis of mutations in TGIF associated with holoprosencephaly. Mol Genet Metab 2007; 90:97-111. [PMID: 16962354 PMCID: PMC1820763 DOI: 10.1016/j.ymgme.2006.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 11/19/2022]
Abstract
Holoprosencephaly (HPE) is the most common structural malformation of the forebrain and face in humans. Our current understanding of the pathogenesis of HPE attempts to integrate genetic susceptibility, evidenced by mutations in the known HPE genes, with the epigenetic influence of environmental factors. Mutations or deletions of the human TGIF gene have been associated with HPE in multiple population cohorts. Here we examine the functional effects of all previously reported mutations, and describe four additional variants. Of the eleven sequence variations in TGIF, all but four can be demonstrated to be functionally abnormal. In contrast, no potentially pathogenic sequence alterations were detected in the related gene TGIF2. These results provide further evidence of a role for TGIF in HPE and demonstrate the importance of functional analysis of putative disease-associated alleles.
Collapse
Affiliation(s)
- Kenia B. El-Jaick
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda 20892-3717 MD USA
| | - Shannon E. Powers
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| | - Laurent Bartholin
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| | - Kenneth R. Myers
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
- Cell and Developmental Biology Program, University of Virginia
| | - Jin Hahn
- Stanford University Medical School, Stanford, CA
| | - Ieda M. Orioli
- Laboratory of Congenital Malformations, University of Rio de Janeiro, Brazil
| | - Maia Ouspenskaia
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda 20892-3717 MD USA
| | - Felicitas Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda 20892-3717 MD USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda 20892-3717 MD USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda 20892-3717 MD USA
- Corresponding author: *Maximilian Muenke, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive - MSC 3717, Building 35, Room 1B-203, Bethesda, MD 20892-3717, Tel.: (301) 402-8167, Fax.: (301) 480-7876,
| |
Collapse
|