1
|
Tagboto S, Orish V. Drug development for onchocerciasis-the past, the present and the future. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.953061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Onchocerciasis affects predominantly rural communities in Africa, and with small foci in South America and the Yemen. The disease is a major cause of blindness and other significant morbidity and mortality. Control programs have achieved a major impact on the incidence and prevalence of onchocerciasis by interrupting transmission with vector control programs, and treatment with mass drug administration using the microfilaricide ivermectin. Over the last few decades, several microfilaricides have been developed. This initially included diethylcarbamazine, which had significant side effects and is no longer used as such. Ivermectin which is a safe and highly effective microfilaricide and moxidectin which is a longer acting microfilaricide are presently recognized therapies. Suramin was the first effective macrofilaricide but was prohibitively toxic. Certain antibiotics including doxycycline can help eliminate adult worms by targeting its endosymbiont bacteria, Wolbachia pipientis. However, the dosing regimens may make this difficult to use as part of a mass disease control program in endemic areas. It is now widely recognized that treatments that are able to kill or permanently sterilize adult filarial worms should help achieve the elimination of this disease. We summarize in detail the historic drug development in onchocerciasis, including prospective future candidate drugs.
Collapse
|
2
|
Single-Nucleotide Polymorphism Associates' β-Tubulin Isotype-1 Gene in Onchocerca volvulus Populations in Ivermectin-Treated Communities in Taraba State, Nigeria. Acta Parasitol 2022; 67:267-274. [PMID: 34279775 DOI: 10.1007/s11686-021-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The occurrence of Single-Nucleotide Polymorphisms (SNPs) associated with repeated ivermectin treatment and sub-optimal responses reported by previous findings is of great concern in Onchocerciasis endemic areas. This study investigated SNPs' occurrence after 15 years of ivermectin intervention in Onchocerciasis endemic communities in two Local Government Areas of Taraba State, Nigeria. METHODS Microfilariae samples were collected by skin snip from individuals treated with ivermectin for 10-15 years of annual distribution and preserved in RNAlater® in a 1.5 ml micro-centrifuge tube. Genomic DNA was extracted from microfilariae and residual skin, amplification in two regions within the β-tubulin gene, sequenced and analyzed for SNPs using Bioinformatics tools. RESULTS Three distinct SNP positions: 1183 (T/G), 1188 (T/C) and 1308 (C/T) on the β-tubulin gene on the targeted 1083-1568 bp fragment, associate's with the ivermectin-treated population. Furthermore, SNPs positions detected in this study are 1730 (A/G) and 1794 (T/G) in the β-tub gene in the 1557-1857 (bp) region. The 1794 (T/G) SNP position (Phe243Val) in the exon within the β-tubulin gene region were observed in this study. CONCLUSION The present study indicates that SNPs are observed in Onchocerca volvulus, thus strengthening the warning that genetic changes could occur in some parasite populations in some ivermectin-treated areas.
Collapse
|
3
|
Treatment of Pregnant Women with Ivermectin during Mass Drug Distribution: Time to Investigate Its Safety and Potential Benefits. Pathogens 2021; 10:pathogens10121588. [PMID: 34959543 PMCID: PMC8703637 DOI: 10.3390/pathogens10121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023] Open
Abstract
To date, pregnant women are excluded from programmes delivering community-directed treatment of ivermectin (CDTI) for onchocerciasis and preventive chemotherapy of other helminthiases because of concerns over ivermectin safety during pregnancy. This systematic exclusion sustains an infection reservoir at the community level and deprives a vulnerable population from known benefits—there are indications that treating O. volvulus infected women may improve pregnancy outcomes and reduce the risk that their children develop onchocerciasis-associated morbidities. Furthermore, teratogenic effects are seen in non-clinical experiments at doses that far exceed those used in CDTI. Lastly, early, undetected and undeclared pregnancies are being systematically exposed to ivermectin in practice. Treatment of this population requires appropriate supporting evidence, for which we propose a three-pronged approach. First, to develop a roadmap defining the key steps needed to obtain regulatory clearance for the safe and effective use of ivermectin in all pregnant women who need it. Second, to conduct a randomised placebo-controlled double-blind clinical trial to evaluate the safety and benefits of ivermectin treatment in O. volvulus infected pregnant women. Such a trial should evaluate the possible effects of ivermectin in reducing adverse pregnancy outcomes and neonatal mortality, as well as in reducing the incidence of onchocerciasis-associated epilepsy. Third, to establish a pregnancy registry for women who inadvertently received ivermectin during pregnancy. This situation is not unique to ivermectin. Access to valuable therapies is often limited, delayed, or denied to pregnant women due to a lack of evidence. Concerns over protecting vulnerable people may result in harming them. We need to find acceptable ways to build robust evidence towards providing essential interventions during pregnancy.
Collapse
|
4
|
Sankari T, Subramanian S, Hoti SL, Pani SP, Jambulingam P, Das PK. Heterogeneous response of Wuchereria bancrofti-infected persons to diethylcarbamazine (DEC) and its implications for the Global Programme to Eliminate Lymphatic Filariasis (GPELF). Parasitol Res 2020; 120:311-319. [PMID: 33146778 DOI: 10.1007/s00436-020-06950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
DEC or ivermectin (IVM) in combination with albendazole (ALB) has been the recommended strategy of the Global Programme to Eliminate Lymphatic Filariasis (GPELF) since 2000. Despite effective population coverage (> 65%) with several rounds of MDA with DEC or combination of DEC plus ALB, microfilariae persist in few individuals and they continue to be the source of infection for transmitting LF. We report an individual's variability in response to DEC by defining the response as complete absence of microfilaria (mf) (post-treatment mf count = 0) and non-response as presence of mf (post-treatment mf count ≥ 1). We analyzed follow-up data on individual's response to treatment from two randomized clinical trials in which 46 microfilaremic individuals were treated with single-dose DEC (6 mg/kg body weight). They were classified into low, medium, and high mf density categories based on their pre-treatment mf counts. Of the 46 individuals, 65.2% have not responded throughout the 12-month post-treatment period. Application of a logistic regression model with fixed (age, gender, mf density, post-treatment time, and their interactions) and random (individual's response over time) effects indicated that treatment response is independent of age, gender, and time. The overall treatment response increases in low and decreases in high mf density categories. Furthermore, the estimates for the random coefficients model showed that there is a greater variability in response between individuals over post-treatment time. The results substantiate that individual variation in response to DEC exists which indicate the importance of studying the parasite as well as host genetic factors associated with DEC action.
Collapse
Affiliation(s)
- Thirumal Sankari
- ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry, 605006, India
| | - Swaminathan Subramanian
- ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry, 605006, India.
| | - Subhash L Hoti
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, National Highway No. 4, Belagavi, Karnataka, 590010, India
| | - Subhada P Pani
- Faculty of Medicine, Quest International University Perak, Ipoh, Malaysia
| | | | - Pradeep K Das
- ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry, 605006, India
| |
Collapse
|
5
|
Orr AR, Quagraine JE, Suwondo P, George S, Harrison LM, Dornas FP, Evans B, Caccone A, Humphries D, Wilson MD, Cappello M. Genetic Markers of Benzimidazole Resistance among Human Hookworms ( Necator americanus) in Kintampo North Municipality, Ghana. Am J Trop Med Hyg 2019; 100:351-356. [PMID: 30734697 DOI: 10.4269/ajtmh.18-0727] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Hookworm infection causes anemia, malnutrition, and growth delay, especially in children living in sub-Saharan Africa. The World Health Organization recommends periodic mass drug administration (MDA) of anthelminthics to school-age children (SAC) as a means of reducing morbidity. Recently, questions have been raised about the effectiveness of MDA as a global control strategy for hookworms and other soil-transmitted helminths (STHs). Genomic DNA was extracted from Necator americanus hookworm eggs isolated from SAC enrolled in a cross-sectional study of STH epidemiology and deworming response in Kintampo North Municipality, Ghana. A polymerase chain reaction (PCR) assay was then used to identify single-nucleotide polymorphisms (SNPs) associated with benzimidazole resistance within the N. americanus β-tubulin gene. Both F167Y and F200Y resistance-associated SNPs were detected in hookworm samples from infected study subjects. Furthermore, the ratios of resistant to wild-type SNP at these two loci were increased in posttreatment samples from subjects who were not cured by albendazole, suggesting that deworming drug exposure may enrich resistance-associated mutations. A previously unreported association between F200Y and a third resistance-associated SNP, E198A, was identified by sequencing of F200Y amplicons. These data confirm that markers of benzimidazole resistance are circulating among hookworms in central Ghana, with unknown potential to impact the effectiveness and sustainability of chemotherapeutic approaches to disease transmission and control.
Collapse
Affiliation(s)
- Ambrose R Orr
- Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Josephine E Quagraine
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Peter Suwondo
- Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Santosh George
- Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Lisa M Harrison
- Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Fabio Pio Dornas
- Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Benjamin Evans
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Debbie Humphries
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael Cappello
- Yale Partnerships for Global Health, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Gebrezgabiher G, Mekonnen Z, Yewhalaw D, Hailu A. Reaching the last mile: main challenges relating to and recommendations to accelerate onchocerciasis elimination in Africa. Infect Dis Poverty 2019; 8:60. [PMID: 31269966 PMCID: PMC6609392 DOI: 10.1186/s40249-019-0567-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Onchocerciasis (river blindness), caused by the filarial worm species Onchocerca volvulus, is a serious vector-borne neglected tropical disease (NTD) of public health and socioeconomic concern. It is transmitted through the bite of black flies of the genus Simulium, and manifested in dermal and ocular lesions. Ninety-nine percent of the total global risk and burden of onchocerciasis is in Africa. This scoping review examines the key challenges related to the elimination of onchocerciasis by 2020-2025 in Africa, and proposes recommendations to overcome the challenges and accelerate disease elimination. To find relevant articles published in peer-reviewed journals, a search of PubMed and Google Scholar databases was carried out. MAIN TEXT Rigorous regional interventions carried out to control and eliminate onchocerciasis in the past four decades in Africa have been effective in bringing the disease burden under control; it is currently not a public health problem in most endemic areas. Notably, transmission of the parasite is interrupted in some hyperendemic localities. Recently, there has been a policy shift from control to complete disease elimination by 2020 in selected countries and by 2025 in the majority of endemic African countries. The WHO has published guidelines for stopping mass drug administration (MDA) and verifying the interruption of transmission and elimination of human onchocerciasis. Therefore, countries have revised their plans, established a goal of disease elimination in line with an evidence based decision to stop MDA and verify elimination, and incorporated it into their NTDs national master plans. Nevertheless, challenges remain pertaining to the elimination of onchocerciasis in Africa. The challenge we review in this paper are: incomplete elimination mapping of all transmission zones, co-endemicity of onchocerciasis and loiasis, possible emergence of ivermectin resistance, uncoordinated cross-border elimination efforts, conflict and civil unrest, suboptimal program implementation, and technical and financial challenges. This paper also proposes recommendations to overcome the challenges and accelerate disease elimination. These are: a need for complete disease elimination mapping, a need for collaborative elimination activities between national programs, a need for a different drug distribution approach in conflict-affected areas, a need for routine monitoring and evaluation of MDA programs, a need for implementing alternative treatment strategies (ATSs) in areas with elimination anticipated beyond 2025, and a need for strong partnerships and continued funding. CONCLUSIONS National programs need to regularly monitor and evaluate the performance and progress of their interventions, while envisaging the complete elimination of onchocerciasis from their territory. Factors hindering the targeted goal of interruption of parasite transmission need to be identified and remedial actions should be taken. If possible and appropriate, ATSs need to be implemented to accelerate disease elimination by 2025.
Collapse
Affiliation(s)
- Gebremedhin Gebrezgabiher
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- College of Veterinary Medicine, Samara University, Samara, Ethiopia
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Ballesteros C, Pulaski CN, Bourguinat C, Keller K, Prichard RK, Geary TG. Clinical validation of molecular markers of macrocyclic lactone resistance in Dirofilaria immitis. Int J Parasitol Drugs Drug Resist 2018; 8:596-606. [PMID: 30031685 PMCID: PMC6288007 DOI: 10.1016/j.ijpddr.2018.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Prophylaxis with macrocyclic lactone (ML) endectocides is the primary strategy for heartworm control. Recent evidence has confirmed that ML-resistant Dirofilaria immitis isolates have evolved. Comparison of genomes of ML-resistant isolates show they are genetically distinct from wild-type populations. Previously, we identified single nucleotide polymorphisms (SNPs) that are correlated with phenotypic ML resistance. Since reliable in vitro assays are not available to detect ML resistance in L3 or microfilarial stages, the failure to reduce microfilaraemia in infected dogs treated with an ML has been proposed as a surrogate clinical assay for this purpose. The goal of our study was to validate the genotype-phenotype correlation between SNPs associated with ML resistance and failure to reduce microfilaraemia following ML treatment and to identify a minimal number of SNPs that could be used to confirm ML resistance. In this study, 29 participating veterinary clinics received a total of 148 kits containing supplies for blood collection, dosing and prepaid shipping. Patients recruited after a diagnosis of heartworm infection were treated with a single standard dose of Advantage Multi® and a blood sample taken pre- and approximately 2-4 weeks post-treatment. Each sample was processed by performing a modified Knott's Test followed by isolation of microfilariae, genomic DNA extraction and MiSeq sequencing of regions encompassing 10 SNP sites highly correlated with ML resistance. We observed significant correlation of SNP loci frequencies with the ML microfilaricidal response phenotype. Although all predictive SNP combination models performed well, a 2-SNP model was superior to other models tested. The predictive ability of these markers for ML-resistant heartworms should be further evaluated in clinical and epidemiological contexts.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada.
| | - Cassan N Pulaski
- School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada
| | - Kathy Keller
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada.
| |
Collapse
|
8
|
Bah SY, Morang'a CM, Kengne-Ouafo JA, Amenga-Etego L, Awandare GA. Highlights on the Application of Genomics and Bioinformatics in the Fight Against Infectious Diseases: Challenges and Opportunities in Africa. Front Genet 2018; 9:575. [PMID: 30538723 PMCID: PMC6277583 DOI: 10.3389/fgene.2018.00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis and parasites such as Plasmodium falciparum. This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients’ health records to give advice on treatment options as well as potential drug and vaccine interactions. However, despite accounting for the highest burden of infectious diseases, Africa has the lowest research output on infectious disease genomics. Here we review the contributions of genomics and bioinformatics to the management of infectious diseases of serious public health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis. Furthermore, we discuss how genomics and bioinformatics can be applied to identify drug and vaccine targets. We conclude by identifying challenges to genomics research in Africa and highlighting how these can be overcome where possible.
Collapse
Affiliation(s)
- Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.,Vaccine and Immunity Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Collins Misita Morang'a
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
9
|
Colebunders R, Basáñez MG, Siling K, Post RJ, Rotsaert A, Mmbando B, Suykerbuyk P, Hopkins A. From river blindness control to elimination: bridge over troubled water. Infect Dis Poverty 2018; 7:21. [PMID: 29587844 PMCID: PMC5872540 DOI: 10.1186/s40249-018-0406-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An estimated 25 million people are currently infected with onchocerciasis (a parasitic infection caused by the filarial nematode Onchocerca volvulus and transmitted by Simulium vectors), and 99% of these are in sub-Saharan Africa. The African Programme for Onchocerciasis Control closed in December 2015 and the World Health Organization has established a new structure, the Expanded Special Project for the Elimination of Neglected Tropical Diseases for the coordination of technical support for activities focused on five neglected tropical diseases in Africa, including onchocerciasis elimination. AIMS In this paper we argue that despite the delineation of a reasonably well-defined elimination strategy, its implementation will present particular difficulties in practice. We aim to highlight these in an attempt to ensure that they are well understood and that effective plans can be laid to solve them by the countries concerned and their international partners. CONCLUSIONS A specific concern is the burden of disease caused by onchocerciasis-associated epilepsy in hyperendemic zones situated in countries experiencing difficulties in strengthening their onchocerciasis control programmes. These difficulties should be identified and programmes supported during the transition from morbidity control to interruption of transmission and elimination.
Collapse
Affiliation(s)
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Imperial College London, London, UK
| | - Katja Siling
- Institute of Tropical Medicine, Antwerp, Belgium
- London School of Hygiene & Tropical Medicine, London, UK
| | - Rory J. Post
- London School of Hygiene & Tropical Medicine, London, UK
- Liverpool John Moores University, Liverpool, UK
| | - Anke Rotsaert
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Bruno Mmbando
- National Institute for Medical Research, Tanga, Tanzania
| | | | - Adrian Hopkins
- Neglected and Disabling diseases of Poverty Consultant, Gravesend, Kent, UK
| |
Collapse
|
10
|
Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:343-355. [PMID: 27682347 PMCID: PMC5196487 DOI: 10.1016/j.ijpddr.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 11/24/2022]
Abstract
Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML) class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE) populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP) sites (1508 intronic and 126 exonic) in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes. In the Dirofilaria immitis genome, 126 ion channel genes were identified. Within 126 ion channel genes, 1762 polymorphic loci were identified. Fourteen exonic SNPs caused a change in predicted secondary structure. SNPs may effect gene expression, protein function or resistance selection. D. immitis populations have low genetic variability among ion channel genes.
Collapse
|
11
|
Steisslinger V, Korten S, Brattig NW, Erttmann KD. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis. Vaccine 2015; 33:5861-5867. [PMID: 26320419 DOI: 10.1016/j.vaccine.2015.07.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/30/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
River blindness, caused by the filarial parasite Onchocerca volvulus, is a major socio-economic and public health problem in Sub-Saharan Africa. In January 2015, The Onchocerciasis Vaccine for Africa (TOVA) Initiative has been launched with the aim of providing new tools to complement mass drug administration (MDA) of ivermectin, thereby promoting elimination of onchocerciasis in Africa. In this context we here present Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) as a possible DNA vaccine candidate. We report that in a laboratory model for filariasis, immunization with Ov-GAPDH led to a significant reduction of adult worm load and microfilaraemia in BALB/c mice after challenge infection with the filarial parasite Litomosoides sigmodontis. Mice were either vaccinated with Ov-GAPDH.DNA plasmid (Ov-pGAPDH.DNA) alone or in combination with recombinantly expressed Ov-GAPDH protein (Ov-rGAPDH). During the following challenge infection of immunized and control mice with L. sigmodontis, those formulations which included the DNA plasmid, led to a significant reduction of adult worm loads (up to 57% median reduction) and microfilaraemia (up to 94% reduction) in immunized animals. In a further experiment, immunization with a mixture of four overlapping, synthetic Ov-GAPDH peptides (Ov-GAPDHpept), with alum as adjuvant, did not significantly reduce worm loads. Our results indicate that DNA vaccination with Ov-GAPDH has protective potential against filarial challenge infection in the mouse model. This suggests a transfer of the approach into the cattle Onchocerca ochengi model, where it is possible to investigate the effects of this vaccination in the context of a natural host-parasite relationship.
Collapse
Affiliation(s)
- Vera Steisslinger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | - Simone Korten
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany; Department of Infection Medicine, Laboratory Lademannbogen Medical Service Center GmbH (Sonic Healthcare Group), Lademannbogen 61-63, D-22339 Hamburg, Germany
| | - Norbert W Brattig
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | - Klaus D Erttmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.
| |
Collapse
|
12
|
Macrocyclic lactones and their relationship to the SNPs related to benzimidazole resistance. Mol Biochem Parasitol 2015; 201:128-34. [PMID: 26253426 DOI: 10.1016/j.molbiopara.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Haemonchus contortus is an abomasal nematode of ruminants that is widely present across the world. Its ability to cause death of infected animals and rapidly develop anthelmintic resistance makes it a dangerous pathogen. Ivermectin (IVM) and moxidectin (MOX) are macrocyclic lactones (MLs). They have been successfully used to treat parasitic nematodes over the last three decades. A genetic association between IVM selection and single nucleotide polymorphisms (SNPs) on the β-tubulin isotype 1 gene was reported in H. contortus. These SNPs result in replacing phenylalanine (F, TTC) with tyrosine (Y, TAC) at position 167 or 200 on the β-tubulin protein. Recently we reported a direct interaction of IVM with α- and β-tubulin. It had been hypothesized that the SNPs (F167Y and F200Y) may change tubulin dynamics and directly affect IVM binding. The goal of the current study was to observe the effects of SNPs (F167Y and F200Y) on tubulin polymerization and IVM binding. It was also of interest to evaluate the differences between IVM and MOX on tubulin polymerization. We conclude that the SNPs cause no difference in the polymerization of wild and mutant tubulins. Furthermore, neither of the SNPs reduced IVM binding. Varying results were obtained in the degree of polymerization of parasitic and mammalian tubulin for IVM and MOX, i.e., the extent of polymerization was greater for IVM compared with MOX, for H. contortus tubulin, and vice versa for mammalian tubulin. Molecular modeling showed that IVM and MOX docked into the taxane binding pocket of both mammalian and parasitic wild type and mutant tubulins. However the binding was stronger for mammalian tubulin as compared to parasitic tubulin.
Collapse
|
13
|
Ashraf S, Beech RN, Hancock MA, Prichard RK. Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules. Int J Parasitol 2015; 45:647-54. [DOI: 10.1016/j.ijpara.2015.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
|
14
|
Wanji S, Kengne-Ouafo JA, Esum ME, Chounna PWN, Tendongfor N, Adzemye BF, Eyong JEE, Jato I, Datchoua-Poutcheu FR, Kah E, Enyong P, Taylor DW. Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment. Parasit Vectors 2015; 8:202. [PMID: 25886166 PMCID: PMC4393872 DOI: 10.1186/s13071-015-0817-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Community-Directed Treatment with Ivermectin (CDTI) is the main strategy adopted by the African Programme for Onchocerciasis control (APOC). Recent reports from onchocerciasis endemic areas of savannah zones have demonstrated the feasibility of disease elimination through CDTI. Such information is lacking in rain forest zones. In this study, we investigated the parasitological and entomological indices of onchocerciasis transmission in three drainage basins in the rain forest area of Cameroon [after over a decade of CDTI]. River basins differed in terms of river number and their flow rates; and were characterized by high pre-control prevalence rates (60-98%). METHODS Nodule palpation and skin snipping were carried out in the study communities to determine the nodule rates, microfilarial prevalences and intensity. Simulium flies were caught at capture points and dissected to determine the biting, parous, infection and infective rates and the transmission potential. RESULTS The highest mean microfilaria (mf) prevalence was recorded in the Meme (52.7%), followed by Mungo (41.0%) and Manyu drainage basin (33.0%). The same trend was seen with nodule prevalence between the drainage basins. Twenty-three (23/39) communities (among which 13 in the Meme) still had mf prevalence above 40%. All the communities surveyed had community microfilarial loads (CMFL) below 10 mf/skin snip (ss). The infection was more intense in the Mungo and Meme. The intensity of infection was still high in younger individuals and children less than 10 years of age. Transmission potentials as high as 1211.7 infective larvae/person/month were found in some of the study communities. Entomological indices followed the same trend as the parasitological indices in the three river basins with the Meme having the highest values. CONCLUSION When compared with pre-control data, results of the present study show that after over a decade of CDTI, the burden of onchocerciasis has reduced. However, transmission is still going on in this study site where loiasis and onchocerciasis are co-endemic and where ecological factors strongly favour the onchocerciasis transmission. The possible reasons for this persistent and differential transmission despite over a decade of control efforts using ivermectin are discussed.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Jonas A Kengne-Ouafo
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Mathias E Esum
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Patrick W N Chounna
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Nicholas Tendongfor
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Bridget F Adzemye
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Joan E E Eyong
- Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon. .,Department of Biological Sciences, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, North West Region, Bamenda, Cameroon.
| | - Isaac Jato
- Tropical Medicine Research station, P.O. Box 55, Kumba, Cameroon.
| | - Fabrice R Datchoua-Poutcheu
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Elvis Kah
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Department of Geography, University of Yaounde1, Yaounde, Cameroon.
| | - Peter Enyong
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Tropical Medicine Research station, P.O. Box 55, Kumba, Cameroon.
| | - David W Taylor
- Division of Pathway Medicine, School for Biomedical Studies, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
15
|
Buxton SK, Robertson AP, Martin RJ. Diethylcarbamazine increases activation of voltage-activated potassium (SLO-1) currents in Ascaris suum and potentiates effects of emodepside. PLoS Negl Trop Dis 2014; 8:e3276. [PMID: 25411836 PMCID: PMC4238981 DOI: 10.1371/journal.pntd.0003276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022] Open
Abstract
Diethylcarbamazine is a drug that is used for the treatment of filariasis in humans and animals; it also has effects on intestinal nematodes, but its mechanism of action remains unclear. Emodepside is a resistance-busting anthelmintic approved for treating intestinal parasitic nematodes in animals. The novel mode of action and resistance-breaking properties of emodepside has led to its use against intestinal nematodes of animals, and as a candidate drug for treating filarial parasites. We have previously demonstrated effects of emodepside on SLO-1 K+-like currents in Ascaris suum. Here, we demonstrate that diethylcarbamazine, which has been proposed to work through host mediated effects, has direct effects on a nematode parasite, Ascaris suum. It increases activation of SLO-1 K+ currents and potentiates effects of emodepside. Our results suggest consideration of the combination of emodepside and diethylcarbamazine for therapy, which is predicted to be synergistic. The mode of action of diethylcarbamazine may involve effects on parasite signaling pathways (including nitric oxide) as well as effects mediated by host inflammatory mediators. Filarial parasites and soil-transmitted nematodes (STNs) are Neglected Tropical Diseases (NTDs) that affect millions of people in the developing world. There is an urgent need for novel drugs and improved use of existing drugs, because of concerns about the development of resistance. The mode of action of one of these drugs, diethylcarbamazine, remains unclear, despite the fact that it has been used for a long time for treatment and prevention of filariae and STNs. The resistance-busting anthelmintic emodepside also has effects against filariae and STNs, with a mode of action that involves activation of nematode SLO-1 K+ channels. The effects of both diethylcarbamazine and emodepside may be increased by inflammatory mediators, which suggests that the effects of diethylcarbamazine and emodepside will be additive. We used our Ascaris suum preparation to test the activation of SLO-1 K+ channels by diethylcarbamazine and its potentiating effect on emodepside. Our results suggest potential for diethylcarbamazine and emodepside in combination therapy for parasitic nematodes.
Collapse
Affiliation(s)
- Samuel K. Buxton
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
Establishment of macrocyclic lactone resistant Dirofilaria immitis isolates in experimentally infected laboratory dogs. Parasit Vectors 2014; 7:494. [PMID: 25376278 PMCID: PMC4228187 DOI: 10.1186/s13071-014-0494-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Strains of Dirofilaria immitis suspected of lack of efficacy (LOE) to macrocyclic lactone (ML) preventive drugs have been increasingly reported in dogs by practicing veterinarians since 2005 in the Lower Mississippi Delta region. If proven, and not controlled in the early stages, the emergence of ML drug resistance threatens to become a widespread problem in the US that may limit the effectiveness of current preventive drug treatment methods. METHODS To validate practice reports, a statewide survey of Louisiana veterinarians was done to define the extent of the problem and identify focal 'hotspots' of reported ML LOEs using Geographic Information Systems (GIS) methods. The present study then utilized microfilariae (Mf) from two canine field cases from different state locations that fit criteria for a high index of suspicion of LOE against heartworms by ML drugs. Blood containing Mf from the canine field cases was used to infect and produce L3 in Aedes aegypti for experimental infection of two groups of dogs, each of which contained two laboratory dogs, one treated with prophylactic ivermectin (12 μg/kg) monthly for 6 months at twice the label dose (6 μg/kg), and one untreated control. RESULTS Both treated and untreated dogs from Group I and Group II developed patent D. immitis infections by 218 DPI and 189 DPI, respectively, as evidenced by a positive occult heartworm antigen test and microfilaremia by the Knott's test. Mf counts gradually increased post-patency in test and control dogs. Infective larvae raised from microfilariae from the treated Group I dog were used to successfully establish a second generation isolate, confirming heritability of resistance in the face of a monthly ivermectin challenge dose of 24 μg/kg, given monthly for 3 months. CONCLUSIONS These experimental infection studies provide in vivo evidence of the existence of ML drug resistance in dogs infected by D. immitis L3 from suspect field LOE cases in the Lower Mississippi Delta. Results encourage further work on mechanisms underlying the emergence of ML resistance in D. immitis and development of evidence-based resistance management strategies for heartworm preventives in order to extend the useful life of current drugs.
Collapse
|
17
|
Higazi TB, Geary TG, Mackenzie CD. Chemotherapy in the treatment, control, and elimination of human onchocerciasis. Res Rep Trop Med 2014; 5:77-93. [PMID: 32669893 PMCID: PMC7337210 DOI: 10.2147/rrtm.s36642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/05/2022] Open
Abstract
Onchocerciasis treatment is one of the most positive stories in tropical medicine although major challenges remain to reaching the ultimate goal of disease elimination. Such challenges are to be expected when the therapeutic goal is to kill and safely remove a large multistage, efficient, metazoan infectious agent such as Onchocerca volvulus that has an exceptionally complicated relationship with its host. Successful control of onchocerciasis has often been hampered by host reactions following chemotherapy, that can sometimes cause significant tissue pathology. Presence of other filariae, particularly Loa loa, in endemic onchocerciasis-treatment areas also poses severe problems due to adverse reactions caused by drug-induced death of the coincident microfilariae of this usually clinically benign species. Although ivermectin has been very successful, there is a need to enhance the progress toward elimination of onchocerciasis; new drugs and their efficient use are keys to this. The permanent absence of Onchocerca microfilaridermia, defined as the lack of resurgence of skin microfilarial loads after treatment, is the ultimate characteristic of a useful new chemotherapeutic agent. Several drugs are under investigation to achieve this, including the reassessment of currently available and previously tested agents, such as the antibiotic, doxycycline, which targets the adult parasites through its anti-Wolbachia endosymbiont activity. Flubendazole, a benzimidazole derivative approved for treatment of human gastrointestinal nematodes, is also being considered for repurposing as a macrofilaricide to aid in the achievement of eradication. The managerial challenges existing at the population level also need to be addressed; these include drug-distribution fatigue, the need to include noncompliant people, civil unrest in endemic areas, political cross-border issues, restrictions of age and pregnancy, and complications due to integration with other treatment programs. It is likely that a panel of chemotherapeutic options, new and old, supported by strong and effective distribution systems will be the best way to address challenges of treatment and elimination of this infection. Future research should also address management of treatment and control, and consider how new treatment paradigms can be incorporated to meet time lines set for global elimination by 2025.
Collapse
Affiliation(s)
- Tarig B Higazi
- Department of Biological Sciences, Ohio University Zanesville, Zanesville, OH, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Charles D Mackenzie
- Center for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes. PLoS Negl Trop Dis 2014; 8:e3145. [PMID: 25188325 PMCID: PMC4154664 DOI: 10.1371/journal.pntd.0003145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5–10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis. Lymphatic filariasis and onchocerciasis are neglected tropical diseases caused by filarial nematodes. The limitations of existing drugs to treat these infections highlight the need for new drugs. In the present study, we investigated myristoylation, a lipid modification of a subset of proteins that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in protozoan parasites. We performed kinetic analyses on Caenorhabditis elegans and Brugia malayi NMTs. NMT inhibitors were active against B. malayi microfilariae and adult worms, and C. elegans in culture. RNA interference and gene deletion in C. elegans further demonstrated that NMT is essential for nematode viability. Our genetic and chemical studies indicate the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of new therapies against nematode infection including filarial diseases.
Collapse
|
19
|
Nana-Djeunga HC, Bourguinat C, Pion SD, Bopda J, Kengne-Ouafo JA, Njiokou F, Prichard RK, Wanji S, Kamgno J, Boussinesq M. Reproductive status of Onchocerca volvulus after ivermectin treatment in an ivermectin-naïve and a frequently treated population from Cameroon. PLoS Negl Trop Dis 2014; 8:e2824. [PMID: 24762816 PMCID: PMC3998936 DOI: 10.1371/journal.pntd.0002824] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND For two decades, onchocerciasis control has been based on mass treatment with ivermectin (IVM), repeated annually or six-monthly. This drug kills Onchocerca volvulus microfilariae (mf) present in the skin and the eyes (microfilaricidal effect) and prevents for 3-4 months the release of new mf by adult female worms (embryostatic effect). In some Ghanaian communities, the long-term use of IVM was associated with a more rapid than expected skin repopulation by mf after treatment. Here, we assessed whether the embryostatic effect of IVM on O. volvulus has been altered following frequent treatment in Cameroonian patients. METHODOLOGY Onchocercal nodules were surgically removed just before (D0) and 80 days (D80) after a standard dose of IVM in two cohorts with different treatment histories: a group who had received repeated doses of IVM over 13 years, and a control group with no history of large-scale treatments. Excised nodules were digested with collagenase to isolate adult worms. Embryograms were prepared with females for the evaluation of their reproductive capacities. PRINCIPAL FINDINGS Oocyte production was not affected by IVM. The mean number of intermediate embryos (morulae and coiled mf) decreased similarly in the two groups between D0 and D80. In contrast, an accumulation of stretched mf, either viable or degenerating, was observed at D80. However, it was observed that the increase in number of degenerating mf between D0 and D80 was much lower in the frequently treated group than in the control one (Incidence Rate Ratio: 0.25; 95% CI: 0.10-0.63; p = 0.003), which may indicate a reduced sequestration of mf in the worms from the frequently treated group. CONCLUSION/SIGNIFICANCE IVM still had an embryostatic effect on O. volvulus, but the effect was reduced in the frequently treated cohort compared with the control population.
Collapse
Affiliation(s)
- Hugues C. Nana-Djeunga
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaounde, Cameroon
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
| | - Sébastien D. Pion
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaounde, Cameroon
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- * E-mail:
| | - Jean Bopda
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaounde, Cameroon
| | - Jonas A. Kengne-Ouafo
- Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Flobert Njiokou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
| | - Samuel Wanji
- Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaounde, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon
| | - Michel Boussinesq
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
| |
Collapse
|