1
|
Hu Y, Zhan RJ, Lu SL, Zhang YY, Zhou MY, Huang H, Wang DD, Zhang T, Huang ZX, Zhou YF, Lv ZY. Global distribution of zoonotic digenetic trematodes: a scoping review. Infect Dis Poverty 2024; 13:46. [PMID: 38877531 PMCID: PMC11177464 DOI: 10.1186/s40249-024-01208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Rong-Jian Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Lin Lu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yi-Yang Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Min-Yu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Ding-Ding Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Tao Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zi-Xin Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yun-Fei Zhou
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan, China
| | - Zhi-Yue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
2
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
3
|
Zhong H, Jin Y. Multifunctional Roles of MicroRNAs in Schistosomiasis. Front Microbiol 2022; 13:925386. [PMID: 35756064 PMCID: PMC9218868 DOI: 10.3389/fmicb.2022.925386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is caused by helminths of the genus Schistosoma. The dioecious schistosomes mate and lay eggs after undergoing a complex life cycle. Schistosome eggs are mostly responsible for the transmission of schistosomiasis and chronic fibrotic disease induced by egg antigens is the main cause of the high mortality rate. Currently, chemotherapy with praziquantel (PZQ) is the only effective treatment against schistosomiasis, although the potential of drug resistance remains a concern. Hence, there is an urgent demand for new and effective strategies to combat schistosomiasis, which is the second most prevalent parasitic disease after malaria. MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal regulatory roles in many organisms, including the development and sexual maturation of schistosomes. Thus, miRNAs are potential targets for treatment of schistosomiasis. Moreover, miRNAs can serve as multifunctional “nano-tools” for cross-species delivery in order to regulate host-parasite interactions. In this review, the multifunctional roles of miRNAs in the growth and development of schistosomes are discussed. The various regulatory functions of host-derived and worm-derived miRNAs on the progression of schistosomiasis are also thoroughly addressed, especially the promotional and inhibitory effects on schistosome-induced liver fibrosis. Additionally, the potential of miRNAs as biomarkers for the diagnosis and treatment of schistosomiasis is considered.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Expression of microRNA-223 and microRNA-146b in serum and liver tissue of mice infected with Schistosoma mansoni. Parasitol Res 2022; 121:1963-1972. [PMID: 35576078 PMCID: PMC9192441 DOI: 10.1007/s00436-022-07542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) play regulatory roles in several diseases. In schistosomiasis, the main pathological changes are caused by the granulomatous reaction induced by egg deposition. We aimed to study the changes in host miRNA-223 and miRNA-146b expression in relation to egg deposition and development of hepatic pathology in murine schistosomiasis mansoni. Blood and liver tissue samples were collected from non-infected mice (group I), S. mansoni–infected mice at the 4th, 8th, and 12th weeks post-infection (p.i.) (groups II–IV), and 4 weeks after praziquantel treatment (group V). The collected samples were processed for RNA extraction, reverse transcription, and real-time PCR analysis of miRNA-223 and miRNA-146b. miRNAs’ relative expression was estimated by the ΔΔCt method. Liver tissue samples were examined for egg count estimation and histopathological evaluation. Results revealed that miRNA-223 was significantly downregulated in liver tissues 8 and 12 weeks p.i., whereas miRNA-146b expression increased gradually with the progression of infection with a significantly higher level at week 12 p.i. compared to week 4 p.i. Serum expression levels nearly followed the same pattern as the tissue levels. The dysregulated expression of miRNAs correlated with liver egg counts and was more obvious with the demonstration of chronic granulomas, fibrous transformation, and distorted hepatic architecture 12 weeks p.i. Restoration of normal expression levels was observed 4 weeks after treatment. Collectively, these findings provide new insights for in-depth understanding of host-parasite interaction in schistosomiasis and pave a new way for monitoring the progress of hepatic pathology before and after treatment.
Collapse
|
5
|
Zhou X, Hong Y, Shang Z, Abuzeid AMI, Lin J, Li G. The Potential Role of MicroRNA‐124‐3p in Growth, Development, and Reproduction of Schistosoma japonicum. Front Cell Infect Microbiol 2022; 12:862496. [PMID: 35493736 PMCID: PMC9043613 DOI: 10.3389/fcimb.2022.862496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
The microRNA‐124‐3p plays an important role in regulating development and neurogenesis. Previous microRNA sequencing analyses of Schistosoma japonicum revealed sja-miR-124-3p differential expression patterns in schistosomes from different hosts and at different developmental stages. This study explores the regulatory role of sja-miR-124-3p in S. japonicum development and reproduction. Quantitative reverse-transcription PCR (qRT-PCR) showed that the expression level of sja-miR-124-3p in S. japonicum from resistant hosts, such as Microtus fortis, and unsuitable hosts, such as rats and water buffalo, was significantly higher than that in mice and yellow cattle at the same developmental stage. Overexpressing sja-miR-124-3p in infected mice led to a hepatic egg reduction rate of 36.97%, smaller egg granulomas in the livers, increased liver weight, subsided hepatocyte necrosis, and diminished inflammatory cell infiltration. The width of female worms increased but decreased in males. The vitelline cells were irregular, swollen, or fused. The teguments and ventral sucker of males and females were swollen and broken, but the morphological changes were particularly notable in males. qRT-PCR and dual-luciferase reporter assay system were used to confirm the in-silico-predicted target genes, S. japonicum DEAD-box ATP-dependent RNA helicase 1 (sjDDX1) and DNA polymerase II subunit 2 (sjPOLE2). Our results showed that RNA interference (RNAi)-mediated sjDDX1 silencing in mice provided a 24.55% worm reduction rate and an 18.36% egg reduction rate, but the difference was not significant (p > 0.05). Thus, our findings suggest that sja-miR-124-3p has an important role in growth, development, and reproduction in S. japonicum. All these results will greatly contribute toward providing important clues for searching vaccine candidates and new drug targets against schistosomiasis.
Collapse
Affiliation(s)
- Xue Zhou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| | - Zheng Shang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Asmaa M. I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Parasitology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| |
Collapse
|
6
|
Sui G, Jia L, Song N, Min D, Chen S, Wu Y, Yang G. Aberrant expression of HDL-bound microRNA induced by a high-fat diet in a pig model: implications in the pathogenesis of dyslipidaemia. BMC Cardiovasc Disord 2021; 21:280. [PMID: 34090327 PMCID: PMC8180175 DOI: 10.1186/s12872-021-02084-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A high-fat diet can affect lipid metabolism and trigger cardiovascular diseases. A growing body of studies has revealed the HDL-bound miRNA profiles in familial hypercholesterolaemia; in sharp contrast, relevant studies on high-fat diet-induced dyslipidaemia are lacking. In the current study, HDL-bound miRNAs altered by a high-fat diet were explored to offer some clues for elucidating their effects on the pathogenesis of dyslipidaemia. METHODS Six pigs were randomly divided into two groups of three pigs each, namely, the high-fat diet and the balanced diet groups, which were fed a high-fat diet and balanced diet separately for six months. HDL was separated from plasma, which was followed by dissociation of the miRNA bound to HDL. miRNA sequencing of the isolated miRNA was performed to identify the differential expression profiles between the two groups, which was validated by real-time PCR. TargetScan, miRDB, and miRWalk were used for the prediction of genes targeted by the differential miRNAs. RESULTS Compared with the balanced diet group, the high-fat diet group had significantly higher levels of TG, TC, LDL-C and HDL-C at six months. miRNA sequencing revealed 6 upregulated and 14 downregulated HDL-bound miRNAs in the high-fat diet group compared to the balanced diet group, which was validated by real-time PCR. GO enrichment analysis showed that dysregulated miRNAs in the high-fat diet group were associated with the positive regulation of lipid metabolic processes, positive regulation of lipid biosynthetic processes, and positive regulation of Ras protein signal transduction. Insulin resistance and the Ras signalling pathway were enriched in the KEGG pathway enrichment analysis. CONCLUSIONS Twenty HDL-bound miRNAs are significantly dysregulated in high-fat diet-induced dyslipidaemia. This study presents an analysis of a new set of HDL-bound miRNAs that are altered by a high-fat diet and offers some valuable clues for novel mechanistic insights into high-fat diet-induced dyslipidaemia. Further functional verification study using a larger sample size will be required.
Collapse
Affiliation(s)
- Guoyuan Sui
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China.
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Dongyu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Si Chen
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Yao Wu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Guanlin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Guo X, Zheng Y. Profiling of miRNAs in Mouse Peritoneal Macrophages Responding to Echinococcus multilocularis Infection. Front Cell Infect Microbiol 2020; 10:132. [PMID: 32309217 PMCID: PMC7145947 DOI: 10.3389/fcimb.2020.00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/12/2020] [Indexed: 01/02/2023] Open
Abstract
Alveolar echinococcosis (AE) is a zoonotic helminthic disease caused by infection with the larval of Echinococcus multilocularis in human and animals. Here, we compared miRNA profiles of the peritoneal macrophages of E. multilocularis-infected and un-infected female BALB/c mice using high-throughput sequencing. A total of 87 known miRNAs were differentially expressed (fold change ≥ 2, p < 0.05) in peritoneal macrophages in mice 30- and 90-day post infection compared with ones in un-infected mice. An increase of mmu-miR-155-5p expression was observed in peritoneal macrophages in E. multilocularis-infected mice. Compared with the control group, the production of nitric oxide (NO) was increased in peritoneal macrophages transfected with mmu-miR-155-5p mimics at 12 h after transfection (p < 0.001). Two key genes (CD14 and NF-κB) in the LPS/TLR4 signaling pathway were also markedly altered in mmu-miR-155-5p mimics transfected cells (p < 0.05). Moreover, mmu-miR-155-5p mimics suppressed IL6 mRNA expression and promoted IL12a and IL12b mRNA expression. Luciferase assays showed that mmu-miR-155-5p was able to bind to the 3′ UTR of the IKBKE gene and decreased luciferase activity. Finally, we found the expression of IKBKE was significantly downregulated in both macrophages transfected with mmu-miR-155-5p and macrophages isolated from E. multilocularis-infected mice. These results demonstrate an immunoregulatory effect of mmu-miR-155 on macrophages, suggesting a role in regulation of host immune responses against E. multilocularis infection.
Collapse
Affiliation(s)
- Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
8
|
Abstract
Parasitic infections are responsible for significant morbidity and mortality throughout the world. Management strategies rely primarily on antiparasitic drugs that have side effects and risk of drug resistance. Therefore, novel strategies are needed for treatment of parasitic infections. Host-directed therapy (HDT) is a viable alternative, which targets host pathways responsible for parasite invasion/survival/pathogenicity. Recent innovative combinations of genomics, proteomics and computational biology approaches have led to discovery of several host pathways that could be promising targets for HDT for treating parasitic infections. Herein, we review major advances in HDT for parasitic disease with regard to core regulatory pathways and their interactions.
Collapse
|
9
|
microRNA and Other Small RNA Sequence Profiling across Six Tissues of Chinese Forest Musk Deer ( Moschus berezovskii). BIOMED RESEARCH INTERNATIONAL 2019; 2019:4370704. [PMID: 31214615 PMCID: PMC6535825 DOI: 10.1155/2019/4370704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/21/2019] [Indexed: 11/17/2022]
Abstract
The Chinese forest musk deer (Moschus berezovskii) is an economically important species distributed throughout southwest China and northern Vietnam. Occurrence and development of disease are aggravated by inbreeding and genetic diversity declines in captive musk deer populations. Deep transcriptomics investigation may provide a promising way to improve genetic health of captive and wild FMD population. MicroRNAs (miRNAs), which regulate gene expression by targeting and suppressing of mRNAs, play an important role in physiology and organism development control. In this study, RNA-seq technology was adopted to characterize the miRNA transcriptome signature among six tissues (heart, liver, spleen, lung, kidney, and muscle) in Chinese forest musk deer at two years of age. Deep sequencing generated a total of 103,261,451 (~87.87%) good quality small RNA reads; of them 6,622,520 were unique across all six tissues. A total of 2890 miRNAs were identified, among them 1129 were found to be expressed in all tissues. Moreover, coexpression of 20 miRNAs (>2000RPM) in all six tissues and top five highly expressed miRNAs in each tissue implied the crucial and particular function of them in FMD physiological processes. Our findings of forest musk deer miRNAs supplement the database of transcriptome information for this species and conduce to our understanding of forest musk deer biology.
Collapse
|
10
|
Taenia crassiceps-Excreted/Secreted Products Induce a Defined MicroRNA Profile that Modulates Inflammatory Properties of Macrophages. J Immunol Res 2019; 2019:2946713. [PMID: 31218234 PMCID: PMC6536978 DOI: 10.1155/2019/2946713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.
Collapse
|
11
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine 2018; 37:334-343. [PMID: 30482723 PMCID: PMC6286190 DOI: 10.1016/j.ebiom.2018.10.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Chronic infection with Schistosoma japonicum or S. mansoni results in hepatic fibrosis of the human host. Staging fibrosis is crucial for the prognosis and to determine the rapid need of treatment in patients with schistosomiasis. METHODS To establish whether there is a correlation between circulating microRNA (miRNA) level and fibrosis progression in schistosomiasis, ten miRNAs were selected to assess their potential in grading schistosomiasis liver fibrosis. This was done firstly in two mouse strains (C57BL/6 and BALB/c) to determine the temporal expression profiles in serum over the course of S. japonicum infection, and then within a cohort of 163 schistosomiasis japonica patients with different grades of liver fibrosis. FINDING Four miRNAs (miR-150-5p, let-7a-5p, let-7d-5p and miR-146a-5p) were able to distinguish patients with mild versus severe fibrosis. The level of serum miR-150-5p showed the most promising potential for grading hepatic fibrosis in schistosomiasis. The diagnostic performance of miR-150-5p in discriminating mild from severe fibrosis is comparable with that of the ELF test and serum HA level. In addition, the serum levels of the four miRNAs rebounded in infected C57BL/6 mice, after 6 months post treatment, following the regression of liver fibrosis, thereby providing further support for the utility of these miRNAs in grading schistosomal hepatic fibrosis. INTERPRETATION Circulating miRNAs can be a supplementary tool for assessing hepatic fibrosis in human schistosomiasis. FUND: National Health and Medical Research Council (NHMRC) of Australia (APP1102926, APP1037304 and APP1098244).
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Remigio M Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Allen G Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; icddr b, Dhaka, Bangladesh
| | - David U Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
12
|
MicroRNA-96 Promotes Schistosomiasis Hepatic Fibrosis in Mice by Suppressing Smad7. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:73-82. [PMID: 30406154 PMCID: PMC6214875 DOI: 10.1016/j.omtm.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023]
Abstract
Infection with Schistosoma causes aberrant expression of host microRNAs (miRNAs), and normalizing the levels of dysregulated miRNAs can attenuate pathology. Here, we show that the host miRNA, miR-96, is markedly upregulated during the progression of hepatic schistosomiasis. We demonstrate that elevation of miR-96 induces hepatic fibrosis in infected mice by suppressing the expression of its target gene, Smad7. We show that infection with Schistosoma induces the expression of transforming growth factor β1 (TGF-β1), which in turn upregulates the expression of miR-96 through SMAD2/3-DROSHA-mediated post-transcriptional regulation. Furthermore, inhibition of miR-96 with recombinant adeno-associated virus 8 (rAAV8)-mediated delivery of Tough Decoy RNAs in mice attenuated hepatic fibrosis and prevented lethality following schistosome infection. Taken together, our data highlight the potential for rAAV8-mediated inhibition of miR-96 as a therapeutic strategy to treat hepatic schistosomiasis.
Collapse
|
13
|
Czimmerer Z, Horvath A, Daniel B, Nagy G, Cuaranta-Monroy I, Kiss M, Kolostyak Z, Poliska S, Steiner L, Giannakis N, Varga T, Nagy L. Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:14-28. [DOI: 10.1016/j.bbagrm.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022]
|
14
|
Hong Y, Fu Z, Cao X, Lin J. Changes in microRNA expression in response to Schistosoma japonicum infection. Parasite Immunol 2017; 39. [PMID: 28160510 DOI: 10.1111/pim.12416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/30/2017] [Indexed: 11/29/2022]
Abstract
Schistosomiasis japonicum is one of the most serious zoonotic diseases in the world. There is increasing evidence to show that host miRNAs are modulated following Schistosoma japonicum infection, and some of these miRNAs may play important regulatory roles in response to schistosome infection. Several host miRNAs have been identified and shown to be potential diagnostic biomarkers or novel therapeutic targets for schistosomiasis. These studies have paved the way to a better understanding of the mechanisms of schistosome-host interaction and may facilitate the development of novel approaches to the control of the disease.
Collapse
Affiliation(s)
- Y Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Z Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - X Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China.,Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, China
| | - J Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
15
|
Arora N, Tripathi S, Singh AK, Mondal P, Mishra A, Prasad A. Micromanagement of Immune System: Role of miRNAs in Helminthic Infections. Front Microbiol 2017; 8:586. [PMID: 28450853 PMCID: PMC5390025 DOI: 10.3389/fmicb.2017.00586] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023] Open
Abstract
Helminthic infections fall under neglected tropical diseases, although they inflict severe morbidity to human and causes major economic burden on health care system in many developing countries. There is increased effort to understand their immunopathology in recent days due to their immuno-modulatory capabilities. Immune response is primarily controlled at the transcriptional level, however, microRNA-mediated RNA interference is emerging as important regulatory machinery that works at the translation level. In the past decade, microRNA (miRNA/miR) research has advanced with significant momentum. The result is ever increasing list of curated sequences from a broad panel of organisms including helminths. Several miRNAs had been discovered from trematodes, nematodes and cestodes like let-7, miR155, miR-199, miR-134, miR-223, miR-146, and fhe-mir-125a etc., with potential role in immune modulation. These miRs had been associated with TGF-β, MAPK, Toll-like receptor, PI3K/AKT signaling pathways and insulin growth factor regulation. Thus, controlling the immune cells development, survival, proliferation and death. Apart from micromanagement of immune system, they also express certain unique miRNA also like cis-miR-001, cis-miR-2, cis-miR-6, cis-miR-10, cis-miR-18, cis-miR-19, trs-mir-0001, fhe-miR-01, fhe-miR-07, fhe-miR-08, egr-miR-4988, egr-miR-4989 etc. The specific role played by most of these species specific unique miRs are yet to be discovered. However, these newly discovered miRNAs might serve as novel targets for therapeutic intervention or biomarkers for parasitic infections.
Collapse
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Aloukick K Singh
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| |
Collapse
|
16
|
Liu W. Epigenetics in Schistosomes: What We Know and What We Need Know. Front Cell Infect Microbiol 2016; 6:149. [PMID: 27891322 PMCID: PMC5104962 DOI: 10.3389/fcimb.2016.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science Shanghai, China
| |
Collapse
|
17
|
He X, Tang R, Sun Y, Wang YG, Zhen KY, Zhang DM, Pan WQ. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine 2016; 13:339-347. [PMID: 27780686 PMCID: PMC5264274 DOI: 10.1016/j.ebiom.2016.10.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis is a chronic disease caused by the parasite of the Schistosoma genus and is characterized by egg-induced hepatic granulomas and fibrosis. Macrophages play a central role in schistosomiasis with several studies highlighting their differentiation into M2 cells involved in the survival of infected mice through limitation of immunopathology. However, little is known regarding the mechanisms of regulating macrophage differentiation. Here, we showed that the early stage of infection by Schistosoma japonicum induced expression of type 1 T-helper-cell (Th1) cytokine, interferon-γ (IFN-γ), leading to increase in M1 cells. However, the presence of liver-trapped eggs induced the expression of Th2 cytokines including interleukin-4 (IL-4), IL-10, and IL-13 that upregulated the transcription of miR-146b by activating signal transducer and activator of transcription 3/6 (STAT3/6) that bind to the promoter of the pre-miR-146b gene. We found that the miR-146a/b was significantly upregulated in macrophages during the progression of hepatic schistosomiasis. The elevated miR-146a/b inhibited the IFN-γ-induced differentiation of macrophages to M1 cells through targeting STAT1. Our data indicate the protective roles of miR-146a/b in hepatic schistosomiasis through regulating the differentiation of macrophages into M2 cells. miR-146 was selectively upregulated in macrophages during hepatic schistosomiasis. miR-146 blocked the differentiation of macrophages into M1 cells by targeting STAT1 in hepatic schistosomiasis. Th2 cytokines induced the expression of miR-146b by activating STAT3/6 that bind to the promoter of the pre-miR-146b gene. Th2 cytokines inhibited the activation of M1 macrophages by induction of miR-146b.
Macrophages play a central role in schistosomiasis by differentiating into various activation states. Previous studies have highlighted the importance of differentiation of macrophages into M2 cells for host survival. In this study, we revealed that the presence of liver-trapped parasite eggs induced expression of Th2 cytokines that promoted transcription of miR-146b by activating STAT3/6 that bind to the promoter of the pre-miR-146b gene, and the elevated miR-146b inhibited the IFN-γ-induced differentiation of macrophages into M1 cells by suppressing STAT1. These findings indicate the protective roles of miR-146a/b in hepatic schistosomiasis through regulating the differentiation of macrophages into M2 cells.
Collapse
Affiliation(s)
- Xing He
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Rui Tang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China; Department of Pathogen Biology, Xuzhou Medical University, Xuzhou 221000, China
| | - Yue Sun
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China; Department of Pathogen Biology, Xuzhou Medical University, Xuzhou 221000, China
| | - Yan-Ge Wang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Kui-Yang Zhen
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Dong-Mei Zhang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China.
| | - Wei-Qing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Cai P, Gobert GN, McManus DP. MicroRNAs in Parasitic Helminthiases: Current Status and Future Perspectives. Trends Parasitol 2016; 32:71-86. [DOI: 10.1016/j.pt.2015.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
|
19
|
Abstract
Schistosomiasis is a major neglected tropical disease that afflicts more than 240 million people, including many children and young adults, in the tropics and subtropics. The disease is characterized by chronic infections with significant residual morbidity and is of considerable public health importance, with substantial socioeconomic impacts on impoverished communities. Morbidity reduction and eventual elimination through integrated intervention measures are the focuses of current schistosomiasis control programs. Precise diagnosis of schistosome infections, in both mammalian and snail intermediate hosts, will play a pivotal role in achieving these goals. Nevertheless, despite extensive efforts over several decades, the search for sensitive and specific diagnostics for schistosomiasis is ongoing. Here we review the area, paying attention to earlier approaches but emphasizing recent developments in the search for new diagnostics for schistosomiasis with practical applications in the research laboratory, the clinic, and the field. Careful and rigorous validation of these assays and their cost-effectiveness will be needed, however, prior to their adoption in support of policy decisions for national public health programs aimed at the control and elimination of schistosomiasis.
Collapse
|
20
|
Zhu L, Dao J, Du X, Li H, Lu K, Liu J, Cheng G. Altered levels of circulating miRNAs are associated Schistosoma japonicum infection in mice. Parasit Vectors 2015; 8:196. [PMID: 25885182 PMCID: PMC4391475 DOI: 10.1186/s13071-015-0806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background Dioecious flatworms of the genus Schistosoma causes schistosomiasis, which is a major public health problem in developing countries. Acquiring detailed knowledge of schistosome-host interactions may aid in the development of novel strategies for schistosomiasis control. MicroRNAs (miRNAs) are involved in processes such as development, cell proliferation, metabolism, and signal transduction. Circulating miRNAs not only serve as a novel class of biomarkers of many diseases but also regulate target gene expression in recipient cells, which are similar to hormones. Methods In the present study, we used miRNA microarrays to determine the profile of circulating miRNAs associated with S. japonicum infection of mice. The biological functions of the altered levels of miRNAs and their target genes were predicted using bioinformatics. Expression levels of selected miRNAs and their target genes were further analyzed by quantitative RT-PCR. Results Our study identified 294 and 189 miRNAs in infected mice that were expressed in two independent experiments at levels ≥ 2-fold higher or ≤ 0.5-fold lower, respectively, compared with uninfected mice. Thirty-six of the same miRNAs were detected in these analyses. Moreover, pathway analyses indicated that most of these miRNAs are putatively involved in signaling pathways associated with pathogenesis, such as Wnt and MAPK signaling. Further, we show an inverse correlation between the circulating levels of these miRNAs and their target genes, suggesting that changes in miRNA expression may cause aberrant expression of genes such as Creb1 and Caspase-3 in mice infected with S. japonicum. Conclusions Our study shows significant differences in the levels of circulating miRNAs between S. japonicum infected mice and uninfected mice. In particular, the altered levels of miR-706 and miR-134-5p were associated with altered levels of expression of the Caspase-3 and Creb1 genes, respectively, suggesting that circulating miRNAs may serve as important mediators of the pathology of hepatic schistosomiasis. Additionally, our results are expected to provide new insights for further understanding the mechanisms of schistosome-host interaction that may facilitate in the development of novel interventions for alleviating the symptom of S. japonicum infection as well as for preventing and treating schistosomiasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0806-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lihui Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| | - Jinwei Dao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| | - Xiaoli Du
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, China.
| |
Collapse
|
21
|
Zhu L, Liu J, Cheng G. Role of microRNAs in schistosomes and schistosomiasis. Front Cell Infect Microbiol 2014; 4:165. [PMID: 25426450 PMCID: PMC4227527 DOI: 10.3389/fcimb.2014.00165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/23/2014] [Indexed: 01/20/2023] Open
Abstract
Schistosomes, a class of parasitic trematode worms, cause schistosomiasis. Accumulating evidence suggests that microRNAs (miRNAs)-small, non-coding RNAs that are known to play critical regulatory roles in many organisms-may be involved in schistosome development and sexual maturation, as well as the pathogenesis of schistosomiasis. Schistosoma miRNAs, such as Bantam and miR-10, may be involved in the pathological processes of schistosomiasis, and recent studies suggest that schistosome-specific miRNAs (e.g., Bantam, miR-3479-3p) in the bloodstream of a final host could be used as biomarkers for schistosomiasis diagnosis. Furthermore, aberrant miRNAs, such as miR-223 and miR-454, can be produced by a host in response to schistosome infection, and these miRNAs may contribute to the pathogenesis of schistosomiasis-associated liver injury. Here, we summarize recent progress evaluating the relationship between schistosome miRNAs and schistosomiasis and discuss how these miRNAs can mediate the pathogenesis of schistosomiasis and be used as biomarkers for schistosomiasis diagnosis.
Collapse
Affiliation(s)
- Lihui Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture Shanghai, China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture Shanghai, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture Shanghai, China
| |
Collapse
|
22
|
Abstract
Schistosomiasis is one of the most prevalent, insidious and serious of the tropical parasitic diseases. Although the effective anthelmintic drug, praziquantel, is widely available and cheap, it does not protect against re-infection, drug-resistant schistosome may evolve and mass drug administration programmes based around praziquantel are probably unsustainable long term. Whereas protective anti-schistosome vaccines are not yet available, the zoonotic nature of Schistosoma japonicum provides a novel approach for developing a transmission-blocking veterinary vaccine in domestic animals, especially bovines, which are major reservoir hosts, being responsible for up to 90% of environmental egg contamination in China and the Philippines. However, a greater knowledge of schistosome immunology is required to understand the processes associated with anti-schistosome protective immunity and to reinforce the rationale for vaccine development against schistosomiasis japonica. Importantly as well, improved diagnostic tests, with high specificity and sensitivity, which are simple, rapid and able to diagnose light S. japonicum infections, are required to determine the extent of transmission interruption and the complete elimination of schistosomiasis following control efforts. This article discusses aspects of the host immune response in schistosomiasis, the current status of vaccine development against S. japonicum and reviews approaches for diagnosing and detecting schistosome infections in mammalian hosts.
Collapse
|
23
|
Olveda DU, Olveda RM, McManus DP, Cai P, Chau TNP, Lam AK, Li Y, Harn DA, Vinluan ML, Ross AGP. The chronic enteropathogenic disease schistosomiasis. Int J Infect Dis 2014; 28:193-203. [PMID: 25250908 DOI: 10.1016/j.ijid.2014.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/26/2014] [Accepted: 07/16/2014] [Indexed: 02/08/2023] Open
Abstract
Schistosomiasis is a chronic enteropathogenic disease caused by blood flukes of the genus Schistosoma. The disease afflicts approximately 240 million individuals globally, causing approximately 70 million disability-adjusted life years lost. Chronic infections with morbidity and mortality occur as a result of granuloma formation in the intestine, liver, or in the case of Schistosoma haematobium, the bladder. Various methods are utilized to diagnose and evaluate liver fibrosis due to schistosomiasis. Liver biopsy is still considered the gold standard, but it is invasive. Diagnostic imaging has proven to be an invaluable method in assessing hepatic morbidity in the hospital setting, but has practical limitations in the field. The potential of non-invasive biological markers, serum antibodies, cytokines, and circulating host microRNAs to diagnose hepatic fibrosis is presently undergoing evaluation. This review provides an update on the recent advances made with respect to gastrointestinal disease associated with chronic schistosomiasis.
Collapse
Affiliation(s)
- David U Olveda
- Department of Medical Sciences, Griffith Health Institute, Gold Coast, Australia
| | - Remigio M Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila, The Philippines
| | - Donald P McManus
- Department of Molecular Parasitology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Molecular Parasitology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thao N P Chau
- Department of Public Health, Flinders University, Adelaide, Australia
| | - Alfred K Lam
- Department of Medical Sciences, Griffith Health Institute, Gold Coast, Australia
| | - Yuesheng Li
- Department of Molecular Parasitology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Donald A Harn
- Department of Infectious Diseases, University of Georgia, Georgia, USA
| | - Marilyn L Vinluan
- Department of Health, Research Institute for Tropical Medicine, Manila, The Philippines
| | - Allen G P Ross
- Department of Medical Sciences, Griffith Health Institute, Gold Coast, Australia.
| |
Collapse
|
24
|
Sha Z, Gong G, Wang S, Lu Y, Wang L, Wang Q, Chen S. Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:59-69. [PMID: 24296438 DOI: 10.1016/j.dci.2013.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNA) play key regulatory roles in diverse biological processes. Cynoglossus semilaevis is an important commercial mariculture fish species in China. To identify miRNAs and investigate immune-related miRNAs of C. semilaevis, we performed high-throughput sequencing on three small RNA libraries prepared from C. semilaevis immune tissues (liver, head kidney, spleen, and intestine). One library was prepared under normal conditions (control, CG); two were prepared during Vibrio anguillarum infection, where vibriosis symptoms were obvious and non-obvious (HOSG and NOSG, respectively). We obtained 11,216,875, 12,313,404, and 11,398,695 clean reads per library, respectively. Bioinformatic analysis identified 452 miRNAs, including 24 putative novel miRNAs. We analyzed differentially expressed miRNAs between two libraries using pairwise comparison. For NOSG-CG, there was significant differential expression of 175 (38.72%) miRNAs. There was significant differential expression of 215 (47.57%) miRNAs between HOSG and CG. Compared with CG, The HOSG-NOSG comparison revealed significantly different expression of 122 (26.99%) miRNAs respectively. Real-time quantitative PCR (RT-qPCR) experiments were performed for 10 miRNAs of the three samples, and agreement was found between the sequencing and RT-qPCR data. For miRNAs that were significantly differentially expressed, functional annotation of target genes by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that a set of miRNAs that were expressed highly abundantly and significantly differentially were might involved in immune system development and immune response. To our understanding, this is the first report of comprehensive identification of C. semilaevis miRNAs being differentially regulated in immune tissues (liver, head kidney, spleen, and intestine) in normal conditions relating to V. anguillarum infection. Many miRNAs were differentially regulated upon pathogen exposure. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in C. semilaevis host-pathogen interactions.
Collapse
Affiliation(s)
- Zhenxia Sha
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| | - Guangye Gong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Shaolin Wang
- Department of Psychiatry & Neurobiology Science, University of Virginia, VA 22911, USA
| | - Yang Lu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lei Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Qilong Wang
- Tengzhou Fisheries Service Center, Tengzhou 277500, PR China
| | - Songlin Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| |
Collapse
|
25
|
Zhu D, He X, Duan Y, Chen J, Wang J, Sun X, Qian H, Feng J, Sun W, Xu F, Zhang L. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum. Parasit Vectors 2014; 7:148. [PMID: 24685242 PMCID: PMC3974749 DOI: 10.1186/1756-3305-7-148] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Background In the process of hepatic fibrosis, hepatic stellate cells (HSCs) can be activated by many inflammatory cytokines. The transforming growth factor-β1 (TGF-β1) is one of the main profibrogenic mediators. Recently, some studies have also shown that microRNAs (miRNAs) play essential roles in the progress of liver fibrosis by being involved in the differentiation, fat metabolism and ECM production of HSCs. Methods The expression of miR-454 in LX-2 cells treated with TGF-β1 and in the fibrotic livers with Schistosoma japonicum infection was detected by qRT-PCR. The role of miR-454 on LX-2 cells was then analyzed by Western blot, flow cytometry and luciferase assay. Results The results showed that the expression of miR-454 was down-regulated in the TGF-β1-treated LX-2 cells and miR-454 could inhibit the activation of HSCs by directly targeting Smad4. However, we found that miR-454 had no effect on cell cycle and cell proliferation in TGF-β1-treated LX-2. Besides these, miR-454 was found to be regulated in the process of Schistosoma japonicum infection. Conclusions All the results suggested that miR-454 could provide a novel therapeutic approach for treating liver fibrosis, especially the liver fibrosis induced by Schistosoma japonicum.
Collapse
Affiliation(s)
| | | | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection. PLoS One 2013; 8:e67037. [PMID: 23825609 PMCID: PMC3692539 DOI: 10.1371/journal.pone.0067037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Schistosomiasis japonica remains a significant public health problem in China and Southeast Asian countries. The most typical and serious outcome of the chronic oriental schistosomiasis is the progressive granuloma and fibrosis in the host liver, which has been a major medical challenge. However, the molecular mechanism underling the hepatic pathogenesis is still not clear. METHODOLOGY AND PRINCIPAL FINDINGS Using microarrays, we quantified the temporal gene expression profiles in the liver of Schistosoma japonicum-infected BALB/c mice at 15, 30, and 45 day post infection (dpi) with that from uninfected mice as controls. Gene expression alternation associated with liver damage was observed in the initial phase of infection (dpi 15), which became more magnificent with the onset of egg-laying. Up-regulated genes were dominantly associated with inflammatory infiltration, whereas down-regulated genes primarily led to the hepatic functional disorders. Simultaneously, microRNA profiles from the same samples were decoded by Solexa sequencing. More than 130 miRNAs were differentially expressed in murine liver during S. japonicum infection. MiRNAs significantly dysregulated in the mid-phase of infection (dpi 30), such as mmu-miR-146b and mmu-miR-155, may relate to the regulation of hepatic inflammatory responses, whereas miRNAs exhibiting a peak expression in the late phase of infection (dpi 45), such as mmu-miR-223, mmu-miR-146a/b, mmu-miR-155, mmu-miR-34c, mmu-miR-199, and mmu-miR-134, may represent a molecular signature of the development of schistosomal hepatopathy. Further, a dynamic miRNA-gene co-expression network in the progression of infection was constructed. CONCLUSIONS AND SIGNIFICANCE This study presents a global view of dynamic expression of both mRNA and miRNA transcripts in murine liver during S. japonicum infection, and highlights that miRNAs may play a variety of regulatory roles in balancing the immune responses during the development of hepatic pathology. The data provide robust information for further researches on the pathogenesis and molecular events of hepatopathy induced by schistosome eggs.
Collapse
|
27
|
Han H, Peng J, Hong Y, Zhang M, Han Y, Fu Z, Shi Y, Xu J, Tao J, Lin J. Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S.japonicum infection. Parasit Vectors 2013; 6:120. [PMID: 23617945 PMCID: PMC3640946 DOI: 10.1186/1756-3305-6-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/18/2013] [Indexed: 01/07/2023] Open
Abstract
Background When compared to the murine permissive host of Schistosoma japonicum, Wistar rats are less susceptible to Schistosoma japonicum infection, and are considered to provide a less suitable microenvironment for parasite growth and development. MicroRNAs (miRNAs), are a class of endogenous, non-coding small RNAs, that impose an additional, highly significant, level of gene regulation within eukaryotes. Methods To investigate the regulatory mechanisms provided by miRNA in the schistosome-infected rat model, we utilized a miRNA microarray to compare the progression of miRNA expression within different host tissues both before and 10 days after cercarial infection, in order to identify potential miRNAs with roles in responding to a schistosome infection. Results Among the analysed miRNAs, 16 within the liver, 61 within the spleen and 10 within the lung, were differentially expressed in infected Wistar rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways are triggered after infection with S. japonicum in Wistar rats. These include the signal transduction mechanisms associated with the Wnt and MAPK signaling pathways, cellular differentiation, with a particular emphasis on adipocyte and erythroid differentiation. Conclusions The results presented here include the identification of specific differentially expressed miRNAs within the liver, lungs and spleen of Wistar rats. These results highlighted the function of host miRNA regulation during an active schistosome infection. Our study provides a better understanding of the regulatory role of miRNA in schistosome infection, and host–parasite interactions in a non-permissive host environment.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|