1
|
Kruth PS, Lane T, Barta JR. Organellar genome dynamics of exogenous stages of Eimeria tenella. Parasit Vectors 2024; 17:428. [PMID: 39396981 PMCID: PMC11476305 DOI: 10.1186/s13071-024-06498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Coccidia are a group of intracellular protozoal parasites within the phylum Apicomplexa. Eimeria tenella, one of the species that cause intestinal coccidiosis in poultry, can cause significant mortality and morbidity. Diploid oocysts of Eimeria species are shed in the feces of an infected host and must sporulate to achieve infectivity. This process results in eight haploid infectious units, called sporozoites, held within a single oocyst. Each Eimeria spp. parasite possesses a single apicoplast and a single mitochondrion, both of which carry multiple copies of their respective organellar genomes. Reports of copy numbers of organellar genomes have varied widely. METHODS We report the application of quantitative polymerase chain reaction (qPCR), supported by next-generation sequencing, for the quantification of the extranuclear genomes relative to the nuclear genome over the course of sporulation and following its completion. RESULTS At 64 elapsed hours, 93.0% of oocysts were fully sporulated; no increase in percent sporulation was observed after this time. Apicoplast relative genome copy number showed several significant shifts up to 72 elapsed hours, after which no significant shifts were observed. Oocysts were shed with approximately 60% the amount of apicoplast DNA present at 72 h, after which point no significant shifts in apicoplast genome relative abundance occurred. Mitogenome relative copy number showed only two significant shifts, from 16 to 24 elapsed hours and from 24 to 32 elapsed hours. Oocysts were shed with approximately 28% the amount of mitochondrial DNA that was present at the time sporulation was deemed morphologically complete, at 64 elapsed hours. CONCLUSIONS The characterization of the dynamics of genome abundance in exogenous stages sheds new light on the basic biology of Eimeria spp. and supports the use of extranuclear targets for molecular modes of parasite quantification and identification with improved sensitivity and accuracy.
Collapse
|
2
|
Shen X, Zhai J, Li Y, Gan Y, Liang X, Yu H, Zhang L, Irwin DM, Shen Y, Chen W. Identification of Haemoproteus infection in an imported grey crowned crane (Balearica regulorum) in China. Parasitol Res 2024; 123:349. [PMID: 39392533 PMCID: PMC11469997 DOI: 10.1007/s00436-024-08373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Blood parasites from the order Haemosporida infect many vertebrates and cause malaria-like diseases. In this study, a haemosporidian infection was detected in a sick grey crowned crane imported into China using a combination of morphological and molecular approaches. Blood samples were collected from the jugular vein and processed for morphological identification of infective parasites using stained blood smears and microscopy. No merogony occurs in the blood cells, and sporadic pigment granules were observed. Nested-PCR assays were employed for a molecular examination, which indicated that the cytb gene of this parasite had 94.1-94.9% identity to Haemoproteus antigonis. Subsequently, its mitochondrial genome structure was determined by high-throughput sequencing using the DNBSEQ-T7 platform. The determined structure was confirmed by the Sanger sequencing using amplicons. The mitochondrial genome obtained for this parasite exhibited a low CG content (32.0%) and possessed three protein-coding genes, encoding 1068 amino acids, which constituted 53.7% of the genome. Phylogenetic analysis indicated that this parasite clustered with Haemoproteus sp. is detected in grey crowned cranes from Africa. This parasite was likely acquired during importation of this animal; thus, strict quarantine of imported ornamental animals is required to prevent the entry of new pathogens.
Collapse
Affiliation(s)
- Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yiliang Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingde Gan
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Haiqiong Yu
- Guangzhou Customs District Technology Center, Guangzhou, 510623, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, 510623, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China.
| |
Collapse
|
3
|
Bonacolta AM, Krause-Massaguer J, Smit NJ, Sikkel PC, Del Campo J. A new and widespread group of fish apicomplexan parasites. Curr Biol 2024; 34:2748-2755.e3. [PMID: 38821048 DOI: 10.1016/j.cub.2024.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexans are obligate intracellular parasites that have evolved from a free-living, phototrophic ancestor. They have been reported from marine environmental samples in high numbers,1 with several clades of apicomplexan-related lineages (ARLs) having been described from environmental sequencing data (16S rRNA gene metabarcoding).2 The most notable of these are the corallicolids (previously ARL-V), which possess chlorophyll-biosynthesis genes in their relic chloroplast (apicoplast) and are geographically widespread and abundant symbionts of anthozoans.3 Corallicolids are related to the Eimeriorina, a suborder of apicomplexan coccidians that include other notable members such as Toxoplasma gondii.4Ophioblennius macclurei, the redlip blenny, along with other tropical reef fishes, is known to be infected by Haemogregarina-like and Haemohormidium-like parasites5 supposedly belonging to the Adeleorina; however, phylogenetics shows that these parasites are instead related to the Eimeriorina.6,7 Hybrid genomic sequencing of apicomplexan-infected O. macclurei blood recovered the entire rRNA operon of this apicomplexan parasite along with the complete mitochondrion and apicoplast genomes. Phylogenetic analyses using this new genomic information consistently place these fish-infecting apicomplexans, hereby informally named ichthyocolids, sister to the corallicolids within Coccidia. The apicoplast genome did not contain chlorophyll biosynthesis genes, providing evidence for another independent loss of this pathway within Apicomplexa. Based on the 16S rRNA gene found in the apicoplast, this group corresponds to the previously described ARL-VI. Screening of fish microbiome studies using the plastid 16S rRNA gene shows these parasites to be geographically and taxonomically widespread in fish species across the globe with implications for commercial fisheries and oceanic food webs.
Collapse
Affiliation(s)
- Anthony M Bonacolta
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Joana Krause-Massaguer
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Nico J Smit
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Paul C Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Javier Del Campo
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Hiltunen Thorén M, Onuț-Brännström I, Alfjorden A, Pecková H, Swords F, Hooper C, Holzer AS, Bass D, Burki F. Comparative genomics of Ascetosporea gives new insight into the evolutionary basis for animal parasitism in Rhizaria. BMC Biol 2024; 22:103. [PMID: 38702750 PMCID: PMC11069148 DOI: 10.1186/s12915-024-01898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Present Address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius V. 20 A, Stockholm, SE-114 18, Sweden.
- Present Address: The Royal Swedish Academy of Sciences, Stockholm, SE-114 18, Sweden.
| | - Ioana Onuț-Brännström
- Present Address: Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
- Present Address: Natural History Museum, Oslo University, Oslo, 0562, Norway
| | - Anders Alfjorden
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Fiona Swords
- Marine Institute, Rinville, Oranmore, H91R673, Ireland
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Natural History Museum (NHM), Science, London, SW7 5BD, UK
| | - Fabien Burki
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Tetzlaff S, Hillebrand A, Drakoulis N, Gluhic Z, Maschmann S, Lyko P, Wicke S, Schmitz-Linneweber C. Small RNAs from mitochondrial genome recombination sites are incorporated into T. gondii mitoribosomes. eLife 2024; 13:e95407. [PMID: 38363119 PMCID: PMC10948144 DOI: 10.7554/elife.95407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The mitochondrial genomes of apicomplexans comprise merely three protein-coding genes, alongside a set of thirty to forty genes encoding small RNAs (sRNAs), many of which exhibit homologies to rRNA from E. coli. The expression status and integration of these short RNAs into ribosomes remains unclear and direct evidence for active ribosomes within apicomplexan mitochondria is still lacking. In this study, we conducted small RNA sequencing on the apicomplexan Toxoplasma gondii to investigate the occurrence and function of mitochondrial sRNAs. To enhance the analysis of sRNA sequencing outcomes, we also re-sequenced the T. gondii mitochondrial genome using an improved organelle enrichment protocol and Nanopore sequencing. It has been established previously that the T. gondii genome comprises 21 sequence blocks that undergo recombination among themselves but that their order is not entirely random. The enhanced coverage of the mitochondrial genome allowed us to characterize block combinations at increased resolution. Employing this refined genome for sRNA mapping, we find that many small RNAs originated from the junction sites between protein-coding blocks and rRNA sequence blocks. Surprisingly, such block border sRNAs were incorporated into polysomes together with canonical rRNA fragments and mRNAs. In conclusion, apicomplexan ribosomes are active within polysomes and are indeed assembled through the integration of sRNAs, including previously undetected sRNAs with merged mRNA-rRNA sequences. Our findings lead to the hypothesis that T. gondii's block-based genome organization enables the dual utilization of mitochondrial sequences as both messenger RNAs and ribosomal RNAs, potentially establishing a link between the regulation of rRNA and mRNA expression.
Collapse
Affiliation(s)
| | | | | | - Zala Gluhic
- Molecular Genetics, Humboldt University BerlinBerlinGermany
| | | | - Peter Lyko
- Biodiversity and Evolution, Humboldt University BerlinBerlinGermany
| | - Susann Wicke
- Biodiversity and Evolution, Humboldt University BerlinBerlinGermany
| | | |
Collapse
|
6
|
Harl J, Fauchois A, Puech MP, Gey D, Ariey F, Izac B, Weissenböck H, Chakarov N, Iezhova T, Valkiūnas G, Duval L. Novel phylogenetic clade of avian Haemoproteus parasites (Haemosporida, Haemoproteidae) from Accipitridae raptors, with description of a new Haemoproteus species. Parasite 2024; 31:5. [PMID: 38334685 PMCID: PMC10854483 DOI: 10.1051/parasite/2023066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Avian haemosporidian parasites (order Haemosporida, phylum Apicomplexa) are blood and tissue parasites transmitted by blood-sucking dipteran insects. Three genera (Plasmodium, Haemoproteus and Leucocytozoon) have been most often found in birds, with over 270 species described and named in avian hosts based mainly on the morphological characters of blood stages. A broad diversity of Haemoproteus parasites remains to be identified and characterized morphologically and molecularly, especially those infecting birds of prey, an underrepresented bird group in haemosporidian parasite studies. The aim of this study was to investigate and identify Haemoproteus parasites from a large sample comprising accipitriform raptors of 16 species combining morphological and new molecular protocols targeting the cytb genes of this parasite group. This study provides morphological descriptions and molecular characterizations of two Haemoproteus species, H. multivacuolatus n. sp. and H. nisi Peirce and Marquiss, 1983. Haemoproteus parasites of this group were so far found in accipitriform raptors only and might be classified into a separate subgenus or even genus. Cytb sequences of these parasites diverge by more than 15% from those of all others known avian haemosporidian genera and form a unique phylogenetic clade. This study underlines the importance of developing new diagnostic tools to detect molecularly highly divergent parasites that might be undetectable by commonly used conventional tools.
Collapse
Affiliation(s)
- Josef Harl
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna Veterinaerplatz 1 1210 Vienna Austria
| | - Anaïs Fauchois
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d’Histoire Naturelle, CNRS, CP 52 57 rue Cuvier 75231 Cedex 05 Paris France
| | - Marie-Pierre Puech
- Hôpital de la faune sauvage des Garrigues et Cévennes – Goupil Connexion 34190 Brissac France
| | - Delphine Gey
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d’Histoire Naturelle, CNRS, CP 52 57 rue Cuvier 75231 Cedex 05 Paris France
| | - Frédéric Ariey
- Université de Paris, INSERM 1016, Institut Cochin, Service de Parasitologie-Mycologie Hôpital Cochin Paris France
| | - Brigitte Izac
- Université de Paris, INSERM 1016, Institut Cochin, Service de Parasitologie-Mycologie Hôpital Cochin Paris France
| | - Herbert Weissenböck
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna Veterinaerplatz 1 1210 Vienna Austria
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University Konsequenz 45 33615 Bielefeld Germany
| | | | | | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d’Histoire Naturelle, CNRS, CP 52 57 rue Cuvier 75231 Cedex 05 Paris France
| |
Collapse
|
7
|
Abstract
Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with Toxoplasma having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.
Collapse
Affiliation(s)
- Ian M Lamb
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Ijeoma C Okoye
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
8
|
Githaka NW, Bishop RP, Šlapeta J, Emery D, Nguu EK, Kanduma EG. Molecular survey of Babesia parasites in Kenya: first detailed report on occurrence of Babesia bovis in cattle. Parasit Vectors 2022; 15:161. [PMID: 35526030 PMCID: PMC9077973 DOI: 10.1186/s13071-022-05279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among protozoan parasites in the genus Babesia, Babesia bigemina is endemic and widespread in the East African region while the status of the more pathogenic Babesia bovis remains unclear despite the presence of the tick vector, Rhipicephalus microplus, which transmits both species. Recent studies have confirmed the occurrence of R. microplus in coastal Kenya, and although B. bovis DNA has previously been detected in cattle blood in Kenya, no surveillance has been done to establish its prevalence. This study therefore investigated the occurrence of B. bovis in cattle in Kwale County, Kenya, where R. microplus is present in large numbers. METHODS A species-specific multiplex TaqMan real-time PCR assay targeting two Babesia bovis genes, 18S ribosomal RNA and mitochondrially-encoded cytochrome b and B. bigemina cytochrome b gene was used to screen 506 cattle blood DNA samples collected from Kwale County for presence of Babesia parasite DNA. A sub-set of 29 B. bovis real-time PCR-positive samples were further amplified using a B. bovis-specific spherical body protein-4 (SBP-4) nested PCR and the resulting products sequenced to confirm the presence of B. bovis. RESULTS A total of 131 animals (25.8%) were found to have bovine babesiosis based on real-time PCR. Twenty-four SBP4 nucleotide sequences obtained matched to B. bovis with a similarity of 97-100%. Of 131 infected animals, 87 (17.2%) were positive for B. bovis while 70 (13.8%) had B. bigemina and 26 (5.1%) were observed to be co-infected with both Babesia species. A total of 61 animals (12.1%) were found to be infected with B. bovis parasites only, while 44 animals (8.7%) had B. bigemina only. Babesia bovis and B. bigemina infections were detected in the three Kwale sub-counties. CONCLUSION These findings reveal high prevalence of pathogenic B. bovis in a Kenyan area cutting across a busy transboundary livestock trade route with neighbouring Tanzania. The Babesia multiplex real-time PCR assay used in this study is specific and can detect and differentiate the two Babesia species and should be used for routine B. bovis surveillance to monitor the spread and establishment of the pathogen in other African countries where B. bigemina is endemic. Moreover, these findings highlight the threat of fatal babesiosis caused by B. bovis, whose endemic status is yet to be established. GRAPHICAL ABTRACT.
Collapse
Affiliation(s)
| | | | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David Emery
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Edward K Nguu
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Esther G Kanduma
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya.
| |
Collapse
|
9
|
Hollin T, Abel S, Falla A, Pasaje CFA, Bhatia A, Hur M, Kirkwood JS, Saraf A, Prudhomme J, De Souza A, Florens L, Niles JC, Le Roch KG. Functional genomics of RAP proteins and their role in mitoribosome regulation in Plasmodium falciparum. Nat Commun 2022; 13:1275. [PMID: 35277503 PMCID: PMC8917122 DOI: 10.1038/s41467-022-28981-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
The RAP (RNA-binding domain abundant in Apicomplexans) protein family has been identified in various organisms. Despite expansion of this protein family in apicomplexan parasites, their main biological functions remain unknown. In this study, we use inducible knockdown studies in the human malaria parasite, Plasmodium falciparum, to show that two RAP proteins, PF3D7_0105200 (PfRAP01) and PF3D7_1470600 (PfRAP21), are essential for parasite survival and localize to the mitochondrion. Using transcriptomics, metabolomics, and proteomics profiling experiments, we further demonstrate that these RAP proteins are involved in mitochondrial RNA metabolism. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (eCLIP-seq), we validate that PfRAP01 and PfRAP21 are true RNA-binding proteins and interact specifically with mitochondrial rRNAs. Finally, mitochondrial enrichment experiments followed by deep sequencing of small RNAs demonstrate that PfRAP21 controls mitochondrial rRNA expression. Collectively, our results establish the role of these RAP proteins in mitoribosome activity and contribute to further understanding this protein family in malaria parasites.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Alejandra Falla
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anil Bhatia
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Amancio De Souza
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
10
|
Usey MM, Huet D. Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion. J Eukaryot Microbiol 2022; 69:e12906. [PMID: 35315174 PMCID: PMC9490983 DOI: 10.1111/jeu.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a member of the apicomplexan phylum, a group of single-celled eukaryotic parasites that cause significant human morbidity and mortality around the world. T. gondii harbors two organelles of endosymbiotic origin: a non-photosynthetic plastid, known as the apicoplast, and a single mitochondrion derived from the ancient engulfment of an α-proteobacterium. Due to excitement surrounding the novelty of the apicoplast, the T. gondii mitochondrion was, to a certain extent, overlooked for about two decades. However, recent work has illustrated that the mitochondrion is an essential hub of apicomplexan-specific biology. Development of novel techniques, such as cryo-electron microscopy, complexome profiling, and next-generation sequencing have led to a renaissance in mitochondrial studies. This review will cover what is currently known about key features of the T. gondii mitochondrion, ranging from its genome to protein import machinery and biochemical pathways. Particular focus will be given to mitochondrial features that diverge significantly from the mammalian host, along with discussion of this important organelle as a drug target.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA,Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Diego Huet
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA,Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
11
|
Tian Z, Gao S, Ren Q, Du J, Guan G, Liu G, Luo J, Yin H. Mitochondrial genome of Theileria uilenbergi endemic in sheep and goats in China. Parasitol Res 2021; 120:3429-3436. [PMID: 34467423 DOI: 10.1007/s00436-021-07304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
Mitochondrial genomes provide new insights that help elucidating biological features, genetic evolution, and classification of protozoans. Theileria uilenbergi (T. uilenbergi), transmitted by Haemaphysalis qinghaiensis and H. longicornis, is considered as highly pathogenic to sheep and goats in China. This study reports and outlines features of its mitochondrial genome. The T. uilenbergi mitochondrial genome is a linear monomeric molecule of 6.0 kb length, which encodes three protein-coding genes named cytochrome c oxidase I (cox1), cytochrome b (cob), and cytochrome c oxidase III (cox3), as well as six large subunit (LSU) rRNA gene fragments, and ends in terminal inverted repeats (TIRs). The array structure and organization of the mitochondrial genome of T. uilenbergi is identical to that of T. parva. Phylogenetic analysis based on the amino acid sequences of cox1, cob, and cox3 genes suggests that T. uilenbergi is distantly related to the group of transforming Theileria species such as T. parva. This study contributes to a comprehensive understanding of the phylogeny and evolution of the mitochondrial genome of piroplasms and provides useful information of diagnostic marker for T. uilenbergi.
Collapse
Affiliation(s)
- Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China.
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
12
|
Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii. Int J Mol Sci 2021; 22:ijms22157830. [PMID: 34360597 PMCID: PMC8345934 DOI: 10.3390/ijms22157830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.
Collapse
|
13
|
Igloi GL. The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms. J Mol Evol 2021; 89:484-493. [PMID: 34254168 PMCID: PMC8318970 DOI: 10.1007/s00239-021-10019-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
During the endosymbiotic evolution of mitochondria, the genes for aminoacyl-tRNA synthetases were transferred to the ancestral nucleus. A further reduction of mitochondrial function resulted in mitochondrion-related organisms (MRO) with a loss of the organelle genome. The fate of the now redundant ancestral mitochondrial aminoacyl-tRNA synthetase genes is uncertain. The derived protein sequence for arginyl-tRNA synthetase from thirty mitosomal organisms have been classified as originating from the ancestral nuclear or mitochondrial gene and compared to the identity element at position 20 of the cognate tRNA that distinguishes the two enzyme forms. The evolutionary choice between loss and retention of the ancestral mitochondrial gene for arginyl-tRNA synthetase reflects the coevolution of arginyl-tRNA synthetase and tRNA identity elements.
Collapse
Affiliation(s)
- Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Mathur V, Wakeman KC, Keeling PJ. Parallel functional reduction in the mitochondria of apicomplexan parasites. Curr Biol 2021; 31:2920-2928.e4. [PMID: 33974849 DOI: 10.1016/j.cub.2021.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Gregarines are an early-diverging lineage of apicomplexan parasites that hold many clues into the origin and evolution of the group, a remarkable transition from free-living phototrophic algae into obligate parasites of animals.1 Using single-cell transcriptomics targeting understudied lineages to complement available sequencing data, we characterized the mitochondrial metabolic repertoire across the tree of apicomplexans. In contrast to the large suite of proteins involved in aerobic respiration in well-studied parasites like Toxoplasma or Plasmodium,2 we find that gregarine trophozoites have significantly reduced energy metabolism: most lack respiratory complexes III and IV, and some lack the electron transport chains (ETCs) and tricarboxylic acid (TCA) cycle entirely. Phylogenomic analyses show that these reductions took place several times in parallel, resulting in a functional range from fully aerobic organelles to extremely reduced "mitosomes" restricted to Fe-S cluster biosynthesis. The mitochondrial genome has also been lost repeatedly: in species with severe functional reduction simply by gene loss but in one species with a complete ETC by relocating cox1 to the nuclear genome. Severe functional reduction of mitochondria is generally associated with structural reduction, resulting in small, nondescript mitochondrial-related organelles (MROs).3 By contrast, gregarines retain distinctive mitochondria with tubular cristae, even the most functionally reduced cases that also lack genes associated with cristae formation. Overall, the parallel, severe reduction of gregarine mitochondria expands the diversity of organisms that contain MROs and further emphasizes the role of parallel transitions in apicomplexan evolution.
Collapse
Affiliation(s)
- Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
15
|
Namasivayam S, Baptista RP, Xiao W, Hall EM, Doggett JS, Troell K, Kissinger JC. A novel fragmented mitochondrial genome in the protist pathogen Toxoplasma gondii and related tissue coccidia. Genome Res 2021; 31:852-865. [PMID: 33906963 PMCID: PMC8092004 DOI: 10.1101/gr.266403.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
Mitochondrial genome content and structure vary widely across the eukaryotic tree of life, with protists displaying extreme examples. Apicomplexan and dinoflagellate protists have evolved highly reduced mitochondrial genome sequences, mtDNA, consisting of only three cytochrome genes and fragmented rRNA genes. Here, we report the independent evolution of fragmented cytochrome genes in Toxoplasma and related tissue coccidia and evolution of a novel genome architecture consisting minimally of 21 sequence blocks (SBs) totaling 5.9 kb that exist as nonrandom concatemers. Single-molecule Nanopore reads consisting entirely of SBs ranging from 0.1 to 23.6 kb reveal both whole and fragmented cytochrome genes. Full-length cytochrome transcripts including a divergent coxIII are detected. The topology of the mitochondrial genome remains an enigma. Analysis of a cob point mutation reveals that homoplasmy of SBs is maintained. Tissue coccidia are important pathogens of man and animals, and the mitochondrion represents an important therapeutic target. The mtDNA sequence has been elucidated, but a definitive genome architecture remains elusive.
Collapse
Affiliation(s)
- Sivaranjani Namasivayam
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Wenyuan Xiao
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Erica M Hall
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Joseph S Doggett
- Division of Infectious Diseases, Oregon Health Sciences University, Portland, Oregon 97239, USA.,Division of Infectious Diseases, Veterans Affairs Portland Health Care System, Portland, Oregon 97239, USA
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden
| | - Jessica C Kissinger
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
16
|
Hrazdilová K, Červená B, Blanvillain C, Foronda P, Modrý D. Quest for the type species of the genus Hepatozoon – phylogenetic position of hemogregarines of rats and consequences for taxonomy. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1903616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kristýna Hrazdilová
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1 Brno 612 42, Czech Republic
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 1655/76, 32300, Plzeň, Czech Republic
| | - Barbora Červená
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, Brno, 612 42, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | | | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna. Avda. Astrofísico F. Sánchez, s/n, 38203 La Laguna, Canary Islands, Spain
- Departament Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Avda. Astrofísico F. Sánchez, s/n, 38203 La Laguna, Canary Islands, Spain
| | - David Modrý
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1 Brno 612 42, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
17
|
Salomaki ED, Terpis KX, Rueckert S, Kotyk M, Varadínová ZK, Čepička I, Lane CE, Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol 2021; 19:77. [PMID: 33863338 PMCID: PMC8051059 DOI: 10.1186/s12915-021-01007-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.
Collapse
Affiliation(s)
- Eric D Salomaki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
18
|
Cucini C, Leo C, Iannotti N, Boschi S, Brunetti C, Pons J, Fanciulli PP, Frati F, Carapelli A, Nardi F. EZmito: a simple and fast tool for multiple mitogenome analyses. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1101-1109. [PMID: 33796755 PMCID: PMC7995877 DOI: 10.1080/23802359.2021.1899865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complete mitochondrial genome data are frequently applied to address phylogenetic/phylogeographic issues at different taxonomic levels in ecology and evolution. While sample preparation/sequencing is becoming more and more straightforward thanks to dropping costs for next-generation sequencing (NGS), data preparation and visualization remains a manually intensive step that may lead to errors if improperly conducted. We have elaborated, and here introduce, EZmito, a simple and intuitive, freely accessible Web Server aimed at automating some of these tasks. EZmito is divided into three main tools: EZpipe that assembles DNA matrices for phylo-mitogenomic analyses; EZskew that calculates genome, strand, and codon nucleotide compositional skews and EZcodon which computes Relative Synonymous Codon Usage statistics as well as amino acid usage frequency over multiple mitogenomes. Output is produced in tabular format as well as publication-quality graphics.
Collapse
Affiliation(s)
- Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Chiara Leo
- Department of Life Sciences, Imperial College London, London, UK
| | - Nicola Iannotti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sara Boschi
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Joan Pons
- Department de Biodiversitat Animal i Microbiana, Institut Mediterrani d'Estudis Avancats, Esporles, Spain
| | | | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
19
|
Hollin T, Jaroszewski L, Stajich JE, Godzik A, Le Roch KG. Identification and phylogenetic analysis of RNA binding domain abundant in apicomplexans or RAP proteins. Microb Genom 2021; 7. [PMID: 33656416 PMCID: PMC8190603 DOI: 10.1099/mgen.0.000541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA binding domain abundant in apicomplexans (RAP) is a protein domain identified in a diverse group of proteins, called RAP proteins, many of which have been shown to be involved in RNA binding. To understand the expansion and potential function of the RAP proteins, we conducted a hidden Markov model based screen among the proteomes of 54 eukaryotes, 17 bacteria and 12 archaea. We demonstrated that the domain is present in closely and distantly related organisms with particular expansions in Alveolata and Chlorophyta, and are not unique to Apicomplexa as previously believed. All RAP proteins identified can be decomposed into two parts. In the N-terminal region, the presence of variable helical repeats seems to participate in the specific targeting of diverse RNAs, while the RAP domain is mostly identified in the C-terminal region and is highly conserved across the different phylogenetic groups studied. Several conserved residues defining the signature motif could be crucial to ensure the function(s) of the RAP proteins. Modelling of RAP domains in apicomplexan parasites confirmed an ⍺/β structure of a restriction endonuclease-like fold. The phylogenetic trees generated from multiple alignment of RAP domains and full-length proteins from various distantly related eukaryotes indicated a complex evolutionary history of this family. We further discuss these results to assess the potential function of this protein family in apicomplexan parasites.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Lukasz Jaroszewski
- Department of Biomedical Sciences, University of California Riverside School of Medicine, 900 University Avenue, Riverside, CA 92521, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Adam Godzik
- Department of Biomedical Sciences, University of California Riverside School of Medicine, 900 University Avenue, Riverside, CA 92521, USA
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
- *Correspondence: Karine G. Le Roch,
| |
Collapse
|
20
|
Mwamuye MM, Obara I, Elati K, Odongo D, Bakheit MA, Jongejan F, Nijhof AM. Unique Mitochondrial Single Nucleotide Polymorphisms Demonstrate Resolution Potential to Discriminate Theileria parva Vaccine and Buffalo-Derived Strains. Life (Basel) 2020; 10:life10120334. [PMID: 33302571 PMCID: PMC7764068 DOI: 10.3390/life10120334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Distinct pathogenic and epidemiological features underlie different Theileria parva strains resulting in different clinical manifestations of East Coast Fever and Corridor Disease in susceptible cattle. Unclear delineation of these strains limits the control of these diseases in endemic areas. Hence, an accurate characterization of strains can improve the treatment and prevention approaches as well as investigate their origin. Here, we describe a set of single nucleotide polymorphisms (SNPs) based on 13 near-complete mitogenomes of T. parva strains originating from East and Southern Africa, including the live vaccine stock strains. We identified 11 SNPs that are non-preferentially distributed within the coding and non-coding regions, all of which are synonymous except for two within the cytochrome b gene of buffalo-derived strains. Our analysis ascertains haplotype-specific mutations that segregate the different vaccine and the buffalo-derived strains except T. parva-Muguga and Serengeti-transformed strains suggesting a shared lineage between the latter two vaccine strains. Phylogenetic analyses including the mitogenomes of other Theileria species: T. annulata, T. taurotragi, and T. lestoquardi, with the latter two sequenced in this study for the first time, were congruent with nuclear-encoded genes. Importantly, we describe seven T. parva haplotypes characterized by synonymous SNPs and parsimony-informative characters with the other three transforming species mitogenomes. We anticipate that tracking T. parva mitochondrial haplotypes from this study will provide insight into the parasite’s epidemiological dynamics and underpin current control efforts.
Collapse
Affiliation(s)
- Micky M. Mwamuye
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
- Correspondence: (M.M.M.); (A.M.N.); Tel.: +49-30-838-62326 (A.M.N.)
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
| | - Khawla Elati
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
| | - David Odongo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya;
| | - Mohammed A. Bakheit
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 321-11115 Khartoum, Sudan;
| | - Frans Jongejan
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa;
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
- Correspondence: (M.M.M.); (A.M.N.); Tel.: +49-30-838-62326 (A.M.N.)
| |
Collapse
|
21
|
Pacheco MA, Ceríaco LMP, Matta NE, Vargas-Ramírez M, Bauer AM, Escalante AA. A phylogenetic study of Haemocystidium parasites and other Haemosporida using complete mitochondrial genome sequences. INFECTION GENETICS AND EVOLUTION 2020; 85:104576. [PMID: 33002605 DOI: 10.1016/j.meegid.2020.104576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
Haemosporida are diverse vector-borne parasites associated with terrestrial vertebrates. Driven by the interest in species causing malaria (genus Plasmodium), the diversity of avian and mammalian haemosporidian species has been extensively studied, relying mostly on mitochondrial genes, particularly cytochrome b. However, parasites from reptiles have been neglected in biodiversity surveys. Reptilian haemosporidian parasites include Haemocystidium, a genus that shares morphological features with Plasmodium and Haemoproteus. Here, the first complete Haemocystidium mitochondrial DNA (mtDNA) genomes are studied. In particular, three mtDNA genomes from Haemocystidium spp. sampled in Africa, Oceania, and South America, are described. The Haemocystidium mtDNA genomes showed a high A + T content and a gene organization, including an extreme fragmentation of the rRNAs, found in other Haemosporida. These Haemocystidium mtDNA genomes were incorporated in phylogenetic and molecular clock analyses together with a representative sample of haemosporidian parasites from birds, mammals, and reptiles. The recovered phylogeny supported Haemocystidium as a monophyletic group apart from Plasmodium and other Haemosporida. Both the phylogenetic and molecular clock analyses yielded results consistent with a scenario in which haemosporidian parasites radiated with modern birds. Haemocystidium, like mammalian parasite clades, seems to originate from host switches by avian Haemosporida that allowed for the colonization of new vertebrate hosts. This hypothesis can be tested by investigating additional parasite species from all vertebrate hosts, particularly from reptiles. The mtDNA genomes reported here provide baseline data that can be used to scale up studies in haemosporidian parasites of reptiles using barcode approaches.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Luis M P Ceríaco
- Museu de História Natural e da Ciência da Universidade do Porto, Praça de Gomes Teixeira, 4099-002 Porto, Portugal; Departamento de Zoologia e Antropología (Museu Bocage), Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, 58, 1269-102 Lisboa, Portugal
| | - Nubia E Matta
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia
| | - Mario Vargas-Ramírez
- Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085-1699, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA.
| |
Collapse
|
22
|
Huang X, Huang D, Liang Y, Zhang L, Yang G, Liu B, Peng Y, Deng W, Dong L. A new protocol for absolute quantification of haemosporidian parasites in raptors and comparison with current assays. Parasit Vectors 2020; 13:354. [PMID: 32680557 PMCID: PMC7368712 DOI: 10.1186/s13071-020-04195-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate quantification of infection intensity is essential to estimate infection patterns of avian haemosporidian parasites in order to understand the evolution of host-parasite associations. Traditional microscopy is cost-effective but requires high-quality blood smears and considerable experience, while the widely used semi-quantitative qPCR methods are mostly employed with ideal, laboratory-based golden samples and standard curves, which may limit the comparison of parasitemia from different laboratories. METHODS Here we present a digital droplet PCR (ddPCR) protocol for absolute quantification of avian haemosporidians in raptors. Novel primers were designed that target a conserved fragment of a rRNA region of the mitochondrial genome of the parasites. Sensitivity and repeatability were evaluated compared to qPCR and other assays. RESULTS This ddPCR assay enables accurate quantification of haemosporidian parasites belonging to Plasmodium, Haemoproteus and Leucocytozoon with minimum infection quantities of 10-5 (i.e. one parasite copy in 105 host genomes) without the use of standard curves. Quantities assessed by ddPCR were more accurate than qPCR using the same primers through reduction of non-specific amplification in low-intensity samples. The ddPCR technique was more consistent among technical duplicates and reactions, especially when infection intensities were low, and this technique demonstrated equal sensitivity with high correspondence (R2 = 0.97) compared to the widely used qPCR assay. Both ddPCR and qPCR identified more positive samples than the standard nested PCR protocol for the cytb gene used for barcoding avian haemosporidians. CONCLUSIONS We developed a novel ddPCR assay enabling accurate quantification of avian haemosporidians without golden samples or standard curves. This assay can be used as a robust method for investigating infection patterns in different host-parasite assemblages and can facilitate the comparison of results from different laboratories.
Collapse
Affiliation(s)
- Xi Huang
- College of Life Sciences, Beijing Normal University, Beijing, China.,MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Di Huang
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuge Liang
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Linlin Zhang
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guocheng Yang
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Boye Liu
- Shaanxi Institute of Zoology, Xi'an, China
| | - Yangyang Peng
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wenhong Deng
- College of Life Sciences, Beijing Normal University, Beijing, China. .,MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, Beijing Normal University, Beijing, China.
| | - Lu Dong
- College of Life Sciences, Beijing Normal University, Beijing, China. .,MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, Beijing Normal University, Beijing, China.
| |
Collapse
|
23
|
Ling L, Mulaka M, Munro J, Dass S, Mather MW, Riscoe MK, Llinás M, Zhou J, Ke H. Genetic ablation of the mitoribosome in the malaria parasite Plasmodium falciparum sensitizes it to antimalarials that target mitochondrial functions. J Biol Chem 2020; 295:7235-7248. [PMID: 32273345 PMCID: PMC7247301 DOI: 10.1074/jbc.ra120.012646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Indexed: 02/05/2023] Open
Abstract
The mitochondrion of malaria parasites contains several clinically validated drug targets. Within Plasmodium spp., the causative agents of malaria, the mitochondrial DNA (mtDNA) is only 6 kb long, being the smallest mitochondrial genome among all eukaryotes. The mtDNA encodes only three proteins of the mitochondrial electron transport chain and ∼27 small, fragmented rRNA genes having lengths of 22-195 nucleotides. The rRNA fragments are thought to form a mitochondrial ribosome (mitoribosome), together with ribosomal proteins imported from the cytosol. The mitoribosome of Plasmodium falciparum is essential for maintenance of the mitochondrial membrane potential and parasite viability. However, the role of the mitoribosome in sustaining the metabolic status of the parasite mitochondrion remains unclear. The small ribosomal subunit in P. falciparum has 14 annotated mitoribosomal proteins, and employing a CRISPR/Cas9-based conditional knockdown tool, here we verified the location and tested the essentiality of three candidates (PfmtRPS12, PfmtRPS17, and PfmtRPS18). Using immuno-EM, we provide evidence that the P. falciparum mitoribosome is closely associated with the mitochondrial inner membrane. Upon knockdown of the mitoribosome, parasites became hypersensitive to inhibitors targeting mitochondrial Complex III (bc1), dihydroorotate dehydrogenase (DHOD), and the F1F0-ATP synthase complex. Furthermore, the mitoribosome knockdown blocked the pyrimidine biosynthesis pathway and reduced the cellular pool of pyrimidine nucleotides. These results suggest that disruption of the P. falciparum mitoribosome compromises the metabolic capacity of the mitochondrion, rendering the parasite hypersensitive to a panel of inhibitors that target mitochondrial functions.
Collapse
Affiliation(s)
- Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maruthi Mulaka
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael K Riscoe
- Portland Veterans Affairs Medical Center, Portland, Oregon 97239
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
| |
Collapse
|
24
|
Cinar HN, Gopinath G, Murphy HR, Almeria S, Durigan M, Choi D, Jang A, Kim E, Kim R, Choi S, Lee J, Shin Y, Lee J, Qvarnstrom Y, Benedict TK, Bishop HS, da Silva A. Molecular typing of Cyclospora cayetanensis in produce and clinical samples using targeted enrichment of complete mitochondrial genomes and next-generation sequencing. Parasit Vectors 2020; 13:122. [PMID: 32143704 PMCID: PMC7060604 DOI: 10.1186/s13071-020-3997-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/26/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Outbreaks of cyclosporiasis, a diarrheal illness caused by Cyclospora cayetanensis, have been a public health issue in the USA since the mid 1990's. In 2018, 2299 domestically acquired cases of cyclosporiasis were reported in the USA as a result of multiple large outbreaks linked to different fresh produce commodities. Outbreak investigations are hindered by the absence of standardized molecular epidemiological tools for C. cayetanensis. For other apicomplexan coccidian parasites, multicopy organellar DNA such as mitochondrial genomes have been used for detection and molecular typing. METHODS We developed a workflow to obtain complete mitochondrial genome sequences from cilantro samples and clinical samples for typing of C. cayetanensis isolates. The 6.3 kb long C. cayetanensis mitochondrial genome was amplified by PCR in four overlapping amplicons from genomic DNA extracted from cilantro, seeded with oocysts, and from stool samples positive for C. cayetanensis by diagnostic methods. DNA sequence libraries of pooled amplicons were prepared and sequenced via next-generation sequencing (NGS). Sequence reads were assembled using a custom bioinformatics pipeline. RESULTS This approach allowed us to sequence complete mitochondrial genomes from the samples studied. Sequence alterations, such as single nucleotide polymorphism (SNP) profiles and insertion and deletions (InDels), in mitochondrial genomes of 24 stool samples from patients with cyclosporiasis diagnosed in 2014, exhibited discriminatory power. The cluster dendrogram that was created based on distance matrices of the complete mitochondrial genome sequences, indicated distinct strain-level diversity among the 2014 C. cayetanensis outbreak isolates analyzed in this study. CONCLUSIONS Our results suggest that genomic analyses of mitochondrial genome sequences may help to link outbreak cases to the source.
Collapse
Affiliation(s)
- Hediye Nese Cinar
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Helen R. Murphy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Sonia Almeria
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Mauricio Durigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Dajung Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - AhYoung Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Eunje Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - RaeYoung Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Seonju Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jeongu Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yurim Shin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jieon Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Theresa K. Benedict
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Henry S. Bishop
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandre da Silva
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| |
Collapse
|
25
|
Dos Santos EH, Yamamoto L, Domingues W, di Santi SM, Kanunfre KA, Okay TS. A new Real Time PCR with species-specific primers from Plasmodium malariae/P. brasilianum mitochondrial cytochrome b gene. Parasitol Int 2020; 76:102069. [PMID: 32032726 DOI: 10.1016/j.parint.2020.102069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Plasmodium malariae mainly causes asymptomatic submicroscopic parasitemia in the endemic Amazon and non-endemic Atlantic Forest, where the number of cases and transmission of malaria through blood transfusion has increased. This study developed a P. malariae/P. brasilianum Real Time PCR (rtPCR) targeting the cytochrome b oxidase (cytb), a highly repetitive gene (20-150 copies/parasite) that should detect more cases than the 18S rRNA (4-8 copies/parasite) gene-based amplification systems. Cytb from human and non-human Plasmodium species (including P. brasilianum) aligned to the only 20 African P. malariae cytb sequences identified polymorphic regions within which we designed P. malariae species-specific primers. Non-human Plasmodium species, related parasites, anemia-causing microorganisms, normal human DNA and 47 blood bank donors samples that were truly negative to malaria accessed rtPCR specificity. Truly positive samples (n = 101) with species identification by semi-nested, nested or TaqMan PCR, and four samples from the Atlantic Forest that were suspected of malaria but three of them had negative genus TaqMan and 18S rRNA nested PCR. The cloned amplification product used in standard curves determined qPCR detection limit (0.5-1 parasite equivalent/μL). The 10 positive P. malariae samples among truly positives yielded positive rtPCR results and more importantly, rtPCR detected the four samples suspected of malaria from the Atlantic Forest. The rtPCR specificity was 100%, reproducibility 11.1% and repeatability 6.7%. In conclusion, the proposed rtPCR is fast, apparently more sensitive than all 18S rRNA amplification systems for detecting extremely low parasitemia. The rtPCR is also specific to P. malariae/P. brasilianum species. This new molecular tool could be applied to the detection of P. malariae/brasilianum infections with submicroscopic parasitemias in the context of epidemiological studies and blood bank safety programs.
Collapse
Affiliation(s)
| | - Lidia Yamamoto
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wilson Domingues
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Maria di Santi
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil; Núcleo de Estudos em Malária, Superintendência de Controle de Endemias (SUCEN), São Paulo, SP, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kelly Aparecida Kanunfre
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil; LIM 48, Laboratório de Investigação Médica, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thelma Suely Okay
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Pediatria, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Léveillé AN, El Skhawy N, Barta JR. Multilocus sequencing of Hepatozoon cf. griseisciuri infections in Ontario eastern gray squirrels (Sciurus carolinensis) uncovers two genotypically distinct sympatric parasite species. Parasitol Res 2020; 119:713-724. [PMID: 31912276 DOI: 10.1007/s00436-019-06583-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Intra-leukocytic gamonts consistent with the description of Hepatozoon griseisciuri Clark, 1958 are reported for the first time in Canadian eastern gray squirrels (Sciurus carolinensis Gmelin, 1788). Polymerase chain reaction (PCR) amplification and direct Sanger sequencing identified a pair of distinct genotypes at both a nuclear and mitochondrial locus; two 18S ribosomal RNA gene sequences (rDNA; genotype A and genotype B: 1816 base pairs (bp); 98.8% pairwise identity) and 2 distinct complete mitochondrial genome sequences (genotype A: 6311 bp; genotype B: 6114 bp; 89.1% pairwise identity) were obtained from 3 H. griseisciuri-infected squirrels sampled in Guelph, Ontario. The genetic content of both circular-mapping mitochondrial genomes was conventional for apicomplexan protists; each encoded for 3 protein-coding genes (cytochrome c oxidase subunit I (COI); cytochrome c oxidase subunit III (COIII); and cytochrome B (CytB)), 14 fragmented large subunit rDNA, 10 fragmented small subunit rDNA, and 8 unassigned rDNA. These genotypes, based on sequences obtained from a pair of loci from two parasite genomes, confirm the presence of at least two Hepatozoon species infecting Ontario eastern gray squirrels, one of which is likely to be conspecific with H. griseisciuri.
Collapse
Affiliation(s)
- Alexandre N Léveillé
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Nahla El Skhawy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.,Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - John R Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
27
|
Mitochondrial aminoacyl-tRNA synthetases. Enzymes 2020. [PMID: 33837704 DOI: 10.1016/bs.enz.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In all eukaryotic cells, protein synthesis occurs not only in the cytosol, but also in the mitochondria. Translation of mitochondrial genes requires a set of aminoacyl-tRNA synthetases, many of which are often specialized for organellar function. These enzymes have evolved unique mechanisms for tRNA recognition and for ensuring fidelity of translation. Mutations of human mitochondrial synthetases are associated with a wide range of pathogenic phenotypes, both highlighting the importance of their role in maintaining the cellular "powerhouse" and suggesting additional cellular roles.
Collapse
|
28
|
Sharaf A, Füssy Z, Tomčala A, Richtová J, Oborník M. Isolation of plastids and mitochondria from Chromera velia. PLANTA 2019; 250:1731-1741. [PMID: 31422509 DOI: 10.1007/s00425-019-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
29
|
Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci Rep 2019; 9:4850. [PMID: 30890720 PMCID: PMC6425028 DOI: 10.1038/s41598-019-41238-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial genomes exhibit diverse features among eukaryotes in the aspect of gene content, genome structure, and the mobile genetic elements such as introns and plasmids. Although the number of published mitochondrial genomes is increasing at tremendous speed, those of several lineages remain unexplored. Here, we sequenced the complete mitochondrial genome of a unicellular heterotrophic eukaryote, Marophrys sp. SRT127 belonging to the Centroheliozoa, as the first report on this lineage. The circular-mapped mitochondrial genome, which is 113,062 bp in length, encodes 69 genes typically found in mitochondrial genomes. In addition, the Marophrys mitochondrial genome contains 19 group I introns. Of these, 11 introns have genes for homing endonuclease (HE) and phylogenetic analyses of HEs have shown that at least five Marophrys HEs are related to those in green algal plastid genomes, suggesting intron transfer between the Marophrys mitochondrion and green algal plastids. We also discovered a putative mitochondrial plasmid in linear form. Two genes encoded in the circular-mapped mitochondrial genome were found to share significant similarities to those in the linear plasmid, suggesting that the plasmid was integrated into the mitochondrial genome. These findings expand our knowledge on the diversity and evolution of the mobile genetic elements in mitochondrial genomes.
Collapse
|
30
|
Pacheco MA, Matta NE, Valkiunas G, Parker PG, Mello B, Stanley CE, Lentino M, Garcia-Amado MA, Cranfield M, Kosakovsky Pond SL, Escalante AA. Mode and Rate of Evolution of Haemosporidian Mitochondrial Genomes: Timing the Radiation of Avian Parasites. Mol Biol Evol 2019; 35:383-403. [PMID: 29126122 PMCID: PMC5850713 DOI: 10.1093/molbev/msx285] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Haemosporidians are a diverse group of vector-borne parasitic protozoa that includes the agents of human malaria; however, most of the described species are found in birds and reptiles. Although our understanding of these parasites’ diversity has expanded by analyses of their mitochondrial genes, there is limited information on these genes’ evolutionary rates. Here, 114 mitochondrial genomes (mtDNA) were studied from species belonging to four genera: Leucocytozoon, Haemoproteus, Hepatocystis, and Plasmodium. Contrary to previous assertions, the mtDNA is phylogenetically informative. The inferred phylogeny showed that, like the genus Plasmodium, the Leucocytozoon and Haemoproteus genera are not monophyletic groups. Although sensitive to the assumptions of the molecular dating method used, the estimated times indicate that the diversification of the avian haemosporidian subgenera/genera took place after the Cretaceous–Paleogene boundary following the radiation of modern birds. Furthermore, parasite clade differences in mtDNA substitution rates and strength of negative selection were detected. These differences may affect the biological interpretation of mtDNA gene lineages used as a proxy to species in ecological and parasitological investigations. Given that the mitochondria are critically important in the parasite life cycle stages that take place in the vector and that the transmission of parasites belonging to particular clades has been linked to specific insect families/subfamilies, this study suggests that differences in vectors have affected the mode of evolution of haemosporidian mtDNA genes. The observed patterns also suggest that the radiation of haemosporidian parasites may be the result of community-level evolutionary processes between their vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | - Nubia E Matta
- Departamento de Biología, Grupo de Investigación Caracterización Genética e Inmunología, Sede Bogotá-Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Patricia G Parker
- Department of Biology, Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO
| | - Beatriz Mello
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | - Craig E Stanley
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | | | - Maria Alexandra Garcia-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Miranda, Venezuela
| | - Michael Cranfield
- Gorilla Doctors, the Wildlife Health Center School of Veterinary Medicine, University of California, Davis, CA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA
| |
Collapse
|
31
|
Léveillé AN, Bland SK, Carlton K, Larouche CB, Kenney DG, Brouwer ER, Lillie BN, Barta JR. Klossiella equi Infecting Kidneys of Ontario Horses: Life Cycle Features and Multilocus Sequence-Based Genotyping Confirm the Genus Klossiella Belongs in the Adeleorina (Apicomplexa: Coccidia). J Parasitol 2019. [DOI: 10.1645/18-80] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Alexandre N. Léveillé
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Susan Karlyn Bland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen Carlton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cédric B. Larouche
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Daniel G. Kenney
- Health Sciences Centre, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Emily R. Brouwer
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brandon N. Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John R. Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
32
|
Assessing the Efficiency of Molecular Markers for the Species Identification of Gregarines Isolated from the Mealworm and Super Worm Midgut. Microorganisms 2018; 6:microorganisms6040119. [PMID: 30486465 PMCID: PMC6313518 DOI: 10.3390/microorganisms6040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
Protozoa, of the taxon Gregarinasina, are a heterogeneous group of Apicomplexa that includes ~1600 species. They are parasites of a large variety of both marine and terrestrial invertebrates, mainly annelids, arthropods and mollusks. Unlike coccidians and heamosporidians, gregarines have not proven to have a negative effect on human welfare; thus, they have been poorly investigated. This study focuses on the molecular identification and phylogeny of the gregarine species found in the midgut of two insect species that are considered as an alternative source of animal proteins for the human diet: the mealworm Tenebrio molitor, and the super-worm Zophobas atratus (Coleoptera: Tenebrionidae). Gregarine specimens were isolated from the gut of both larval and adult stages of T. molitor specimens, as well as from Z. atratus larvae. The morphological analyses were restricted to the identification of the different parasite morpho-types, likely corresponding either to different life-cycle stages or to alternative gregarine species. The samples were also used for the DNA extraction necessary for their genetic characterization. Finally, the efficiency of different molecular markers (i.e., 18S rDNA gene alone or combined with the Internal Transcribed Spacer 1) was assessed when applied either to gregarine species identification and to phylogenetic inference.
Collapse
|
33
|
Mallo N, Fellows J, Johnson C, Sheiner L. Protein Import into the Endosymbiotic Organelles of Apicomplexan Parasites. Genes (Basel) 2018; 9:E412. [PMID: 30110980 PMCID: PMC6115763 DOI: 10.3390/genes9080412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
: The organelles of endosymbiotic origin, plastids, and mitochondria, evolved through the serial acquisition of endosymbionts by a host cell. These events were accompanied by gene transfer from the symbionts to the host, resulting in most of the organellar proteins being encoded in the cell nuclear genome and trafficked into the organelle via a series of translocation complexes. Much of what is known about organelle protein translocation mechanisms is based on studies performed in common model organisms; e.g., yeast and humans or Arabidopsis. However, studies performed in divergent organisms are gradually accumulating. These studies provide insights into universally conserved traits, while discovering traits that are specific to organisms or clades. Apicomplexan parasites feature two organelles of endosymbiotic origin: a secondary plastid named the apicoplast and a mitochondrion. In the context of the diseases caused by apicomplexan parasites, the essential roles and divergent features of both organelles make them prime targets for drug discovery. This potential and the amenability of the apicomplexan Toxoplasma gondii to genetic manipulation motivated research about the mechanisms controlling both organelles' biogenesis. Here we provide an overview of what is known about apicomplexan organelle protein import. We focus on work done mainly in T. gondii and provide a comparison to model organisms.
Collapse
Affiliation(s)
- Natalia Mallo
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| | - Justin Fellows
- Genetics and Biochemistry Branch, National Institute for Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carla Johnson
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| | - Lilach Sheiner
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
34
|
Ke H, Dass S, Morrisey JM, Mather MW, Vaidya AB. The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in Plasmodium falciparum. J Biol Chem 2018; 293:8128-8137. [PMID: 29626096 DOI: 10.1074/jbc.ra118.002552] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
The phylum Apicomplexa contains a group of protozoa causing diseases in humans and livestock. Plasmodium spp., the causative agent of malaria, contains a mitochondrion that is very divergent from that of their hosts. The malarial mitochondrion is a clinically validated target for the antimalarial drug atovaquone, which specifically blocks the electron transfer activity of the bc1 complex of the mitochondrial electron transport chain (mtETC). Most mtETC proteins are nuclear-encoded and imported from the cytosol, but three key protein subunits are encoded in the Plasmodium mitochondrial genome: cyt b, COXI, and COXIII. They are translated inside the mitochondrion by mitochondrial ribosomes (mitoribosomes). Here, we characterize the function of one large mitoribosomal protein in Plasmodium falciparum, PfmRPL13. We found that PfmRPL13 localizes to the parasite mitochondrion and is refractory to genetic knockout. Ablation of PfmRPL13 using a conditional knockdown system (TetR-DOZI-aptamer) caused a series of adverse events in the parasite, including mtETC deficiency, loss of mitochondrial membrane potential (Δψm), and death. The PfmRPL13 knockdown parasite also became hypersensitive to proguanil, a drug proposed to target an alternative process for maintaining Δψm Surprisingly, transmission EM revealed that PfmRPL13 disruption also resulted in an unusually elongated and branched mitochondrion. The growth arrest of the knockdown parasite could be rescued with a second copy of PfmRPL13, but not by supplementation with decylubiquinone or addition of a yeast dihydroorotate dehydrogenase gene. In summary, we provide first and direct evidence that mitoribosomes are essential for malaria parasites to maintain the structural and functional integrity of the mitochondrion.
Collapse
Affiliation(s)
- Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Joanne M Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
35
|
+Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next? CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Feng X, Norose K, Li K, Hikosaka K. Utility of the cytochrome c oxidase subunit I gene for the diagnosis of toxoplasmosis using PCR. J Microbiol Methods 2017; 141:82-86. [PMID: 28803790 DOI: 10.1016/j.mimet.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/23/2017] [Accepted: 08/06/2017] [Indexed: 11/26/2022]
Abstract
Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which belongs to the phylum Apicomplexa. Since this parasite causes severe clinical symptoms in immunocompromised patients, early diagnosis of toxoplasmosis is essential. PCR is currently used for early diagnosis, but there is no consensus regarding the most effective method for amplifying Toxoplasma DNA. In this study, we considered the utility of the cytochrome c subunit I (cox1) gene, which is encoded in the mitochondrial DNA of this parasite, as a novel target of PCR for the diagnosis of toxoplasmosis. To do this, we compared its copy number per haploid nuclear genome and the detection sensitivity of cox1-PCR with the previously reported target genes B1 and 18S rRNA and the AF146527 repeat element. We found that the copy number of cox1 was high and that the PCR using cox1 primers was more efficient at amplifying Toxoplasma DNA than the other PCR targets examined. In addition, PCR using clinical samples indicated that the cox1 gene would be useful for the diagnosis of toxoplasmosis. These findings suggest that use of cox1-PCR would facilitate the diagnosis of toxoplasmosis in clinical laboratories.
Collapse
Affiliation(s)
- Xue Feng
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kexin Li
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
37
|
Hamaji T, Kawai-Toyooka H, Toyoda A, Minakuchi Y, Suzuki M, Fujiyama A, Nozaki H, Smith DR. Multiple Independent Changes in Mitochondrial Genome Conformation in Chlamydomonadalean Algae. Genome Biol Evol 2017; 9:993-999. [PMID: 31972029 PMCID: PMC5398295 DOI: 10.1093/gbe/evx060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and Eudorina sp. NIES-3984, which occupy phylogenetically intermediate positions between species with opposing mtDNA mapping structures. Sequencing and gel electrophoresis data indicate that Y. unicocca has a linear monomeric mitochondrial genome with long (3 kb) palindromic telomeres. Conversely, the mtDNA of Eudorina sp., despite having an identical gene order to that of Y. unicocca, assembled as a circular-mapping molecule. Restriction digests of Eudorina sp. mtDNA supported its circular map, but also revealed a linear monomeric form with a matching architecture and gene order to the Y. unicocca mtDNA. Based on these data, we suggest that there have been at least three separate shifts in mtDNA conformation in the Reinhardtinia, and that the common ancestor of this clade had a linear monomeric mitochondrial genome with palindromic telomeres.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Wang T, Guan G, Korhonen PK, Koehler AV, Young ND, Hall RS, Yin H, Gasser RB. Mitochondrial genomes of two Babesia taxa from sheep in China as a foundation for population genetic and epidemiological investigations. INFECTION GENETICS AND EVOLUTION 2016; 47:51-55. [PMID: 27845269 DOI: 10.1016/j.meegid.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022]
Abstract
Here, we sequenced, assembled and annotated the mitochondrial (mt) genomes of two operational taxonomic units of Babesia from sheep from China using a deep sequencing-coupled approach. Then, we defined and compared the gene order of these mt genomes (~5.8 to 6.2kb in size), assessed sequence differences in mt genes among Babesia taxa and evaluated genetic relationships among these taxa and related apicomplexans (Theileria) for which mt genomic data sets were available. We also identified mt genetic regions that might be useful as markers for future population genetic and molecular epidemiological studies of Babesia from small ruminants. We propose that the sequencing-bioinformatic approach used here should be applicable to a wide range of protists of veterinary importance.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China; Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China.
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
39
|
Schreeg ME, Marr HS, Tarigo JL, Cohn LA, Bird DM, Scholl EH, Levy MG, Wiegmann BM, Birkenheuer AJ. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny. PLoS One 2016; 11:e0165702. [PMID: 27832128 PMCID: PMC5104439 DOI: 10.1371/journal.pone.0165702] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the phylogenetic relationships within the group.
Collapse
Affiliation(s)
- Megan E. Schreeg
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Henry S. Marr
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Jaime L. Tarigo
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Leah A. Cohn
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, United States of America
| | - David M. Bird
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Elizabeth H. Scholl
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Michael G. Levy
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Brian M. Wiegmann
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Adam J. Birkenheuer
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| |
Collapse
|
40
|
Nishimura Y, Tanifuji G, Kamikawa R, Yabuki A, Hashimoto T, Inagaki Y. Mitochondrial Genome of Palpitomonas bilix: Derived Genome Structure and Ancestral System for Cytochrome c Maturation. Genome Biol Evol 2016; 8:3090-3098. [PMID: 27604877 PMCID: PMC5174734 DOI: 10.1093/gbe/evw217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We here reported the mitochondrial (mt) genome of one of the heterotrophic microeukaryotes related to cryptophytes, Palpitomonas bilix. The P. bilix mt genome was found to be a linear molecule composed of “single copy region” (∼16 kb) and repeat regions (∼30 kb) arranged in an inverse manner at both ends of the genome. Linear mt genomes with large inverted repeats are known for three distantly related eukaryotes (including P. bilix), suggesting that this particular mt genome structure has emerged at least three times in the eukaryotic tree of life. The P. bilix mt genome contains 47 protein-coding genes including ccmA, ccmB, ccmC, and ccmF, which encode protein subunits involved in the system for cytochrome c maturation inherited from a bacterium (System I). We present data indicating that the phylogenetic relatives of P. bilix, namely, cryptophytes, goniomonads, and kathablepharids, utilize an alternative system for cytochrome c maturation, which has most likely emerged during the evolution of eukaryotes (System III). To explain the distribution of Systems I and III in P. bilix and its phylogenetic relatives, two scenarios are possible: (i) System I was replaced by System III on the branch leading to the common ancestor of cryptophytes, goniomonads, and kathablepharids, and (ii) the two systems co-existed in their common ancestor, and lost differentially among the four descendants.
Collapse
Affiliation(s)
- Yuki Nishimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Present address: Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, Japan Collection of Microorganisms Microbe Division, Tsukuba, Japan
| | - Goro Tanifuji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Present address: Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ryoma Kamikawa
- Graduate School of Global Environmental Studies and Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
41
|
Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats. Proc Natl Acad Sci U S A 2016; 113:9834-9. [PMID: 27528689 DOI: 10.1073/pnas.1610643113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better understand the evolutionary history of Haemosporidia, which notably include the Plasmodium parasites, malaria's agents. We use next-generation sequencing to obtain the complete mitochondrial genome of Nycteria parasites from African Nycteris grandis (Nycteridae) and Rhinolophus alcyone (Rhinolophidae) and Asian Megaderma spasma (Megadermatidae). We report four complete mitochondrial genomes, including two rearranged mitochondrial genomes within Haemosporidia. Our results open outlooks into potentially undiscovered Haemosporidian diversity.
Collapse
|
42
|
Nilsson E, Taubert H, Hellgren O, Huang X, Palinauskas V, Markovets MY, Valkiūnas G, Bensch S. Multiple cryptic species of sympatric generalists within the avian blood parasite Haemoproteus majoris. J Evol Biol 2016; 29:1812-26. [DOI: 10.1111/jeb.12911] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- E. Nilsson
- Department of Biology; Lund University; Lund Sweden
| | - H. Taubert
- Department of Biology; Lund University; Lund Sweden
| | - O. Hellgren
- Department of Biology; Lund University; Lund Sweden
| | - X. Huang
- Department of Biology; Lund University; Lund Sweden
| | | | - M. Y. Markovets
- Biological Station Rybachy of the Zoological Institute; Russian Academy of Sciences; Rybachy Kaliningrad Region Russia
| | | | - S. Bensch
- Department of Biology; Lund University; Lund Sweden
| |
Collapse
|
43
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
44
|
Dietrich A, Wallet C, Iqbal RK, Gualberto JM, Lotfi F. Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie 2015; 117:48-62. [DOI: 10.1016/j.biochi.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
|
45
|
The Complete Mitochondrial Genome of the Foodborne Parasitic Pathogen Cyclospora cayetanensis. PLoS One 2015; 10:e0128645. [PMID: 26042787 PMCID: PMC4455993 DOI: 10.1371/journal.pone.0128645] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes.
Collapse
|
46
|
Mileshina D, Niazi AK, Wyszko E, Szymanski M, Val R, Valentin C, Barciszewski J, Dietrich A. Mitochondrial targeting of catalytic RNAs. Methods Mol Biol 2015; 1265:227-54. [PMID: 25634279 DOI: 10.1007/978-1-4939-2288-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetic transformation of mitochondria in multicellular eukaryotes has remained inaccessible, hindering fundamental investigations and applications to gene therapy or biotechnology. In this context, we have developed a strategy to target nuclear transgene-encoded RNAs into mitochondria in plants. We describe here mitochondrial targeting of trans-cleaving ribozymes destined to knockdown organelle RNAs for regulation studies and inverse genetics and biotechnological purposes. The design and functional assessment of chimeric RNAs combining the ribozyme and the mitochondrial shuttle are detailed, followed by all procedures to prepare constructs for in vivo expression, generate stable plant transformants, and establish target RNA knockdown in mitochondria.
Collapse
Affiliation(s)
- Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA) have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.
Collapse
|
48
|
Colponemids represent multiple ancient alveolate lineages. Curr Biol 2013; 23:2546-52. [PMID: 24316202 DOI: 10.1016/j.cub.2013.10.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022]
Abstract
The alveolates comprise three well-studied protist lineages of significant environmental, medical, and economical importance: apicomplexans (e.g., Plasmodium), dinoflagellates (e.g., Symbiodinium), and ciliates (e.g., Tetrahymena). These major lineages have evolved distinct and unusual characteristics, the origins of which have proved to be difficult evolutionary puzzles. Mitochondrial genomes are a prime example: all three groups depart from canonical form and content, but in different ways. Reconstructing such ancient transitions is difficult without deep-branching lineages that retain ancestral characteristics. Here we describe two such lineages and how they illuminate the ancestral state of alveolate mitochondrial genomes. We established five clonal cultures of colponemids, predatory alveolates without cultured representatives and molecular data. Colponemids represent at least two independent lineages at the phylum level in multilocus phylogenetic analysis; one sister to apicomplexans and dinoflagellates, and the other at a deeper position. A genome survey from one strain showed that ancestral state of the mitochondrial genomes in the three major alveolate lineages consisted of an unusual linear chromosome with telomeres and a substantially larger gene set than known alveolates. Colponemid sequences also identified several environmental lineages as colponemids, altogether suggesting an untapped potential for understanding the origin and evolution of apicomplexans, dinoflagellates, and ciliates.
Collapse
|
49
|
Abstract
SUMMARY From hundreds of independent transitions from a free-living existence to a parasitic mode of life, separate parasite lineages have converged over evolutionary time to share traits and exploit their hosts in similar ways. Here, we first summarize the evidence that, at a phenotypic level, eukaryotic parasite lineages have all converged toward only six general parasitic strategies: parasitoid, parasitic castrator, directly transmitted parasite, trophically transmitted parasite, vector-transmitted parasite or micropredator. We argue that these strategies represent adaptive peaks, with the similarities among unrelated taxa within any strategy extending to all basic aspects of host exploitation and transmission among hosts and transcending phylogenetic boundaries. Then, we extend our examination of convergent patterns by looking at the evolution of parasite genomes. Despite the limited taxonomic coverage of sequenced parasite genomes currently available, we find some evidence of parallel evolution among unrelated parasite taxa with respect to genome reduction or compaction, and gene losses or gains. Matching such changes in parasite genomes with the broad phenotypic traits that define the convergence of parasites toward only six strategies of host exploitation is not possible at present. Nevertheless, as more parasite genomes become available, we may be able to detect clear trends in the evolution of parasitic genome architectures representing true convergent adaptive peaks, the genomic equivalents of the phenotypic strategies used by all parasites.
Collapse
|
50
|
Whole genome mapping and re-organization of the nuclear and mitochondrial genomes of Babesia microti isolates. PLoS One 2013; 8:e72657. [PMID: 24023759 PMCID: PMC3762879 DOI: 10.1371/journal.pone.0072657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Babesia microti is the primary causative agent of human babesiosis, an emerging pathogen that causes a malaria-like illness with possible fatal outcome in immunocompromised patients. The genome sequence of the B. microti R1 strain was reported in 2012 and revealed a distinct evolutionary path for this pathogen relative to that of other apicomplexa. Lacking from the first genome assembly and initial molecular analyses was information about the terminal ends of each chromosome, and both the exact number of chromosomes in the nuclear genome and the organization of the mitochondrial genome remained ambiguous. We have now performed various molecular analyses to characterize the nuclear and mitochondrial genomes of the B. microti R1 and Gray strains and generated high-resolution Whole Genome maps. These analyses show that the genome of B. microti consists of four nuclear chromosomes and a linear mitochondrial genome present in four different structural types. Furthermore, Whole Genome mapping allowed resolution of the chromosomal ends, identification of areas of misassembly in the R1 genome, and genomic differences between the R1 and Gray strains, which occur primarily in the telomeric regions. These studies set the stage for a better understanding of the evolution and diversity of this important human pathogen.
Collapse
|