1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Flores-Velázquez LM, Ruiz-Campillo MT, Herrera-Torres G, Martínez-Moreno Á, Martínez-Moreno FJ, Zafra R, Buffoni L, Rufino-Moya PJ, Molina-Hernández V, Pérez J. Fasciolosis: pathogenesis, host-parasite interactions, and implication in vaccine development. Front Vet Sci 2023; 10:1270064. [PMID: 38149297 PMCID: PMC10750376 DOI: 10.3389/fvets.2023.1270064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023] Open
Abstract
Fasciola hepatica is distributed worldwide, causing substantial economic losses in the animal husbandry industry. Human fasciolosis is an emerging zoonosis in Andean America, Asia, and Africa. The control of the disease, both in humans and animals, is based on using anthelmintic drugs, which has resulted in increased resistance to the most effective anthelmintics, such as triclabendazole, in many countries. This, together with the concerns about drug residues in food and the environment, has increased the interest in preventive measures such as a vaccine to help control the disease in endemic areas. Despite important efforts over the past two decades and the work carried out with numerous vaccine candidates, none of them has demonstrated consistent and reproducible protection in target species. This is at least in part due to the high immunomodulation capacity of the parasite, making ineffective the host response in susceptible species such as ruminants. It is widely accepted that a deeper knowledge of the host-parasite interactions is needed for a more rational design of vaccine candidates. In recent years, the use of emerging technologies has notably increased the amount of data about these interactions. In the present study, current knowledge of host-parasite interactions and their implication in Fasciola hepatica vaccine development is reviewed.
Collapse
Affiliation(s)
- Luis Miguel Flores-Velázquez
- Unidad de Anatomía, Histología y Patología Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias Naturales, Universidad San Sebastián, Campus Puerto Montt, Puerto Montt, Chile
| | - María Teresa Ruiz-Campillo
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Guillem Herrera-Torres
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Zafra
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Leandro Buffoni
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Pablo José Rufino-Moya
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
3
|
Zawistowska-Deniziak A, Powązka K, Pękacz M, Basałaj K, Klockiewicz M, Wiśniewski M, Młocicki D. Immunoproteomic Analysis of Dirofilaria repens Microfilariae and Adult Parasite Stages. Pathogens 2021; 10:pathogens10020174. [PMID: 33562513 PMCID: PMC7914743 DOI: 10.3390/pathogens10020174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dirofilariarepens is a parasitic nematode causing a vector-borne zoonotic infection (dirofilariosis), considered an emerging problem in human and veterinary medicine. Currently, diagnosis is based on the detection of the adult parasite and microfilariae in the host tissues. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable and affordable serological diagnostic method is needed. Better characteristic of the parasite biology and its interaction with host immune system should help to achieve this goal. This study analyzes adult and microfilariae proteomes, and the use of one-dimensional electrophoresis (1-DE) and two-dimensional electrophoresis (2-DE) proteomics, immunoproteomics, and LC-MS/MS mass spectrometry allowed us to identify 316 potentially immunogenic proteins (75 belong to adult stage, 183 to microfilariae, and 58 are common for both). Classified by their ontology, the proteins showed important similarities and differences between both parasite stages. The most frequently identified proteins are structural, metabolic, and heat shock proteins. Additionally, real-time PCR analysis of some immunogenic targets revealed significant differences between microfilariae and adult life stages. We indicated molecules involved in parasite-host interactions and discussed their importance in parasite biology, which may help to reveal potential diagnostic antigens or select drug and vaccine targets.
Collapse
Affiliation(s)
- Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Correspondence: ; Tel.: +48-22-697-89-66
| | - Katarzyna Powązka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators. Acta Trop 2020; 210:105548. [PMID: 32505597 DOI: 10.1016/j.actatropica.2020.105548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023]
Abstract
Through the years, helminths have co-existed with many species. This process has allowed parasites to live within them for long periods and, in some cases, to generate offspring. In particular, this ability has allowed Fasciola hepatica to survive the diverse immunological responses faced within its wide range of hosts. The vast repertoire of molecules that are constantly secreted in large quantities by the parasite, acts directly on several cells of the immune system affecting their antiparasitic capacities. Interestingly, these molecules can direct the host immune response to an anti-inflammatory and regulatory phenotype that assures the survival of the parasite with less harm to the host. Based on these observations, some of the products of F. hepatica, as well as those of other helminths, have been studied, either as a total extract, extracellular vesicles or as purified molecules, to establish and characterize their anti-inflammatory mechanisms. Until now, the results obtained encourage further research directed to discover new helminth-derived alternatives to replace current therapies, which can be useful for people suffering from inflammatory diseases like autoimmunity or allergy processes that affect their life quality. In this review, some of the most studied molecules derived from F. hepatica and their modulating capacities are discussed.
Collapse
Affiliation(s)
- Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, s/n, 11340 Ciudad de México, México.
| |
Collapse
|
5
|
Norbury LJ, Basałaj K, Bąska P, Zawistowska-Deniziak A, Kalinowska A, Wilkowski P, Wesołowska A, Wędrychowicz H. Generation of a single-chain variable fragment phage display antibody library from naïve mice panned against Fasciola hepatica antigens. Exp Parasitol 2019; 205:107737. [PMID: 31401060 DOI: 10.1016/j.exppara.2019.107737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Monoclonal antibodies have a wide range of applications in basic and applied research as well as in the medical and pharmaceutical industries. Phage display antibody libraries offer an alternative to hybridoma technology for the generation of monoclonal antibodies and can be applied to high-throughput screening and facilitate the generation of novel antibodies. Despite their utility in several fields of research there has been limited application of antibody libraries in the study of trematode parasites. Fasciola hepatica causes considerable loss to the agriculture sector and is also a human pathogen. The parasite's excretory/secretory material contains numerous molecules that facilitate its invasion and survival within the mammalian host, including cathepsin B and L proteases. F. hepatica cathepsin B2 is expressed during the initial weeks of infection and has suspected roles in immune evasion and as a digestive enzyme in the parasite's gut; it is considered a good target for vaccination or therapeutic inhibitors. In this study, we produced a single-chain variable fragment (scFv) phage display library from naïve mice. The library was used to identify several scFv that can bind to antigens from adult F. hepatica homogenate, and a scFv that can bind to F. hepatica cathepsin B2. The results highlight the potential applicability of such a library to facilitate the study of F. hepatica and other parasites. This is the first report of the application of a naïve phage display antibody library to the study of F. hepatica.
Collapse
Affiliation(s)
- Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Przemysław Wilkowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
6
|
Di Maggio LS, Tirloni L, Pinto AFM, Diedrich JK, Yates JR, Carmona C, Berasain P, da Silva Vaz I. A proteomic comparison of excretion/secretion products in Fasciola hepatica newly excysted juveniles (NEJ) derived from Lymnaea viatrix or Pseudosuccinea columella. Exp Parasitol 2019; 201:11-20. [PMID: 31022392 DOI: 10.1016/j.exppara.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
The characteristics of parasitic infections are often tied to host behavior. Although most studies have investigated definitive hosts, intermediate hosts can also play a role in shaping the distribution and accumulation of parasites. This is particularly relevant in larval stages, where intermediate host's behavior could potentially interfere in the molecules secreted by the parasite into the next host during infection. To investigate this hypothesis, we used a proteomic approach to analyze excretion/secretion products (ESP) from Fasciola hepatica newly excysted juveniles (NEJ) derived from two intermediate host species, Lymnaea viatrix and Pseudosuccinea columella. The two analyzed proteomes showed differences in identity, abundance, and functional classification of the proteins. This observation could be due to differences in the biological cycle of the parasite in the host, environmental aspects, and/or host-dependent factors. Categories such as protein modification machinery, protease inhibitors, signal transduction, and cysteine-rich proteins showed different abundance between samples. More specifically, differences in abundance of individual proteins such as peptidyl-prolyl cis-trans isomerase, thioredoxin, cathepsin B, cathepsin L, and Kunitz-type inhibitors were identified. Based on the differences identified between NEJ ESP samples, we can conclude that the intermediate host is a factor influencing the proteomic profile of ESP in F. hepatica.
Collapse
Affiliation(s)
- Lucía Sánchez Di Maggio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; College of Veterinary Medicine, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Patricia Berasain
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Construction of a novel phage display antibody library against Fasciola hepatica, and generation of a single-chain variable fragment specific for F. hepatica cathepsin L1. Exp Parasitol 2019; 198:87-94. [DOI: 10.1016/j.exppara.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/02/2018] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
|
8
|
Ma C, Liang K, Tang L, He S, Liu X, He M, Li Y. Identification and characteristics of a cathepsin L-like cysteine protease from Clonorchis sinensis. Parasitol Res 2019; 118:829-835. [PMID: 30689051 DOI: 10.1007/s00436-019-06223-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/17/2019] [Indexed: 11/27/2022]
Abstract
Cathepsin L-like protease is an important member of the papain-like cysteine protease and plays numerous indispensable roles in the biology of parasitic organisms. In a previous study, we identified a gene encoding a cathepsin L-like protease of Clonorchis sinensis (CsCPL) that was detected in the cercaria, metacercaria, and adult worm stages by immunolocalization, suggesting that this cysteine protease may be important and involved in the development of C. sinensis. In this study, the mature domain of CsCPL (CsCPL-m) was cloned and expressed in the form of inclusion bodies in Escherichia coli. After refolding, the recombinant CsCPL-m displayed optimal protease activity towards Z-Phe-Arg-AMC substrates but not towards Z-Arg-Arg-AMC, and the activity of the protease was inhibited completely by the cysteine protease-specific inhibitors E-64 and IAA, which further demonstrated that CsCPL belongs to the cathepsin L-like cysteine protease family. Recombinant CsCPL-m exhibited considerable activity at temperatures ranging from 28 to 42 °C, with the highest activity observed at 42 °C. Furthermore, recombinant CsCPL-m exhibited activity across a broad range of pH values (pH 4.0-8.0), with an optimal pH of 5.5. The Km and Vmax of the recombinant CsCPL-m towards Z-Phe-Arg-AMC were determined to be 5.71 × 10-6 M and 0.6 μM/min, respectively, at 37 °C and pH 5.5. The recombinant CsCPL-m could degrade BSA and gelatine, but could not degrade human hemoglobin and human immunoglobulin G. These results implied that CsCPL might participate in the catabolism of host proteins for nutrition during the parasitic life cycle of C. sinensis; thus, CsCPL could be used as a potential vaccine antigen and drug target against C. sinensis infection.
Collapse
Affiliation(s)
- Changling Ma
- Department of Pathogen Biology & Immunology, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Liang
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoquan Liu
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Mian He
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yanwen Li
- Department of Parasitology, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
9
|
Wesołowska A, Basałaj K, Norbury LJ, Sielicka A, Wędrychowicz H, Zawistowska-Deniziak A. Sex and vaccination: Insights from female rats vaccinated with juvenile-specific proteases from Fasciola hepatica. Vet Parasitol 2018; 255:91-96. [PMID: 29773143 DOI: 10.1016/j.vetpar.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 11/19/2022]
Abstract
Most animal research is less evidence-based for females, with the majority of studies conducted on males. Since immune responses vary between males and females, sexual dimorphism in immunity contributes, among other things, to sex-based differences post-vaccination. However, the issue of sex effects in animal vaccine research is rarely considered in vaccine study design. Previously, we have evaluated the efficacy of cathepsin L3 (FhCL3-1 and FhCL3-2) and B3 proteases (FhCB3) from juvenile Fasciola hepatica as vaccines against fasciolosis in male rats. Their administration resulted in reductions in liver fluke recovery in the range of 47-63% when compared with an infection control group. Here, we investigated if the protective effect of vaccination with these proteins can also be observed for female rats. The data indicates females were not protected from F. hepatica infection when vaccinated with juvenile cathepsins. Only in the FhCL3-2 vaccinated group was a low, non-significant, reduction in worm burden observed (21%). Although liver fluke mean body lengths and wet weights were reduced in vaccinated animals when compared with the infection controls, these effects were adjuvant- not vaccine-induced, while for males changes in these parameters were related primarily to vaccination. Specific humoral responses throughout the study were evident; however, trends in antibody responses in females replicated trends observed previously for male humoral responses. Formerly, elevated levels of FhCL3-1 and FhCL3-2 specific IgG1 and IgG2a were suggested to be correlated with protection. Here, despite increased and clear responses of these antibodies, protection was not observed. Hence, in the present study the roles of IgG1 and IgG2 in liver fluke reduction are questionable. Results demonstrated in our study show that observations obtained in one sex are not always applicable to the other sex. Hopefully, the findings of the study will stimulate discussion of the issue of sex impacts on post-vaccination outcomes and will encourage researchers to consider sex in their future vaccine studies.
Collapse
Affiliation(s)
- Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Alicja Sielicka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| |
Collapse
|
10
|
Wesołowska A, Basałaj K, Norbury LJ, Sielicka A, Wędrychowicz H, Zawistowska-Deniziak A. Vaccination against Fasciola hepatica using cathepsin L3 and B3 proteases delivered alone or in combination. Vet Parasitol 2017; 250:15-21. [PMID: 29329618 DOI: 10.1016/j.vetpar.2017.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
Abstract
No licensed vaccine is currently available for prevention of Fasciola hepatica infections. However, considering the alarming increase in drug resistance, there is an urgent need for a safe and fully effective vaccine against fasciolosis. Here, we tested if cathepsins L (FhCL3-1, FhCL3-2) and B (FhCB3) secreted by juvenile liver flukes are viable vaccine targets when delivered alone or in combination in a rat model. Since control over the early immune response is crucial for parasite's establishment in its host, it was hypothesised that targeting fluke juvenile stages may prove beneficial. Moreover, it was assumed that selected antigens will act in a cumulative manner to interfere with liver fluke migration and thereby will reduce F. hepatica infection. Recombinant FhCL3-1 and FhCL3-2 delivered alone reduced liver fluke burdens by 47 % and 63 %, respectively. A trivalent vaccine containing rFhCL3-1/CL3-2/CB3 did not increase the protective vaccine efficacy compared to the rFhCL3-2 vaccinated group (53 %), although, reductions in liver fluke wet weight (statistically significant) and liver damage score were most pronounced. Further, the highest IgG1 and IgG2a levels were seen in rFhCL3-2 vaccinated rats, the group for which the highest reduction in worm burden was demonstrated. Moreover, IgG1 and IgG2a levels in vaccinated rats were significantly elevated compared to those reported for control groups up to 4 week post-infection. While the mechanism of protection remains unknown, it appears that it depends on vaccine-induced antibodies directed against cathepsins. The obtained results imply that F. hepatica juvenile-specific cathepsins are promising vaccine candidates that induce responses that successfully target early migratory liver fluke stages. Now, the challenge is to evaluate these juvenile-specific cathepsins for use in livestock.
Collapse
Affiliation(s)
- Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences,Twarda 51/55, 00-818, Warsaw, Poland
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences,Twarda 51/55, 00-818, Warsaw, Poland
| | - Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences,Twarda 51/55, 00-818, Warsaw, Poland; School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Alicja Sielicka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences,Twarda 51/55, 00-818, Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences,Twarda 51/55, 00-818, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences,Twarda 51/55, 00-818, Warsaw, Poland.
| |
Collapse
|
11
|
Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology 2017; 144:1695-1707. [PMID: 28697819 DOI: 10.1017/s0031182017001093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cystatins are small, phylogenetically conserved proteins that are tight-binding inhibitors of cysteine proteinases. The liver fluke Fasciola hepatica uses a diverse set of cysteine proteinases of the papain superfamily for host invasion, immune evasion and nutrition, but little is known about the regulation of these enzymes. The aim of this work is to characterize the cystatin repertoire of F. hepatica. For this purpose, we first surveyed the available sequence databases, identifying three different F. hepatica single-domain cystatins. In agreement with the in silico predictions, at least three small proteins with cysteine proteinase binding activity were identified. Phylogenetic analyses showed that the three cystatins (named FhStf-1, -2 and -3) are members of the I25A subfamily (stefins). Whereas FhStf-1 grouped with classical stefins, FhStf-2 and 3 fell in a divergent stefin subgroup unusually featuring signal peptides. Recombinant rFhStf-1, -2 and -3 had potent inhibitory activity against F. hepatica cathepsin L cysteine proteinases but differed in their capacity to inhibit mammalian cathepsin B, L and C. FhStf-1 was localized in the F. hepatica reproductive organs (testes and ovary), and at the surface lamella of the adult gut, where it may regulate cysteine proteinases related with reproduction and digestion, respectively. FhStf-1 was also detected among F. hepatica excretion-secretion (E/S) products of adult flukes. This suggests that it is secreted by non-classical secretory pathway and that it may interact with host lysosomal cysteine proteinases.
Collapse
|
12
|
Długosz E, Wiśniewski M. Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies. Acta Parasitol 2016; 61:191-4. [PMID: 26751891 DOI: 10.1515/ap-2016-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/28/2015] [Indexed: 11/15/2022]
Abstract
The impact of sugar moieties of Toxocara canis glycoprotein antigens on their recognition by infected mouse antibodies was investigated in this study. Native TES and recombinant Toxocara mucins generated in Pichia pastoris yeast as well as their deglycosylated forms were used in ELISA. TES and recombinant mucins were equally recognized by T. canis infected mouse IgG1 antibodies. IgM immunoglobulins predominantly recognized TES antigens. Among mucins recognition of Tc-MUC-4 was the most significant. Deglycosylation of antigens resulted in significant loss of IgM and IgG1 reactivity to TES, mucins, Tc-MUC-3 and Tc-MUC-4. The presence of sugar moieties had no influence on IgE binding to native or recombinant T. canis antigens. Our results suggest that glycans are involved in epitope formation what should be taken into consideration in production of recombinant helminth antigens for diagnostic purposes.
Collapse
|
13
|
Januszkiewicz K, Norbury LJ, Wilkowski P, Zawistowska-Deniziak A, Wesołowska A, Wedrychowicz H. Variations in cercarial production and the level of in vitro activation of metacercariae of two different isolates of Fasciola hepatica. Acta Parasitol 2015. [PMID: 26204191 DOI: 10.1515/ap-2015-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fasciola hepatica infections cause large economic losses and are a serious veterinary medicine problem in many regions of the world. Recent studies examining fascioliasis in the bison population from Bialowieza National Park have shown that the prevalence of infection with this parasite is up to 100%. Liver flukes isolated from bison from Bialowieza National Park in Poland were compared with a fluke strain originally obtained from the Central Veterinary Laboratory, Weybridge, UK, to determine variations in cercarial production and establish the ability of their metacercariae to activate in vitro. Some small differences in cercarial production between the two isolates are shown, while significant differences in the ability of their metacercariae to activate in vitro were observed.
Collapse
|
14
|
Meemon K, Sobhon P. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies. Parasitol Res 2015; 114:2807-13. [PMID: 26099239 DOI: 10.1007/s00436-015-4589-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is one of the most neglected tropical zoonotic diseases. One sustainable control strategy against these infections is the employment of vaccines that target proteins essential for parasites' invasion and nutrition acquiring processes. Cathepsin proteases are the most abundantly expressed proteins in Fasciola spp. that have been tested successfully as vaccines against fasciolosis in experimental as well as large animals because of their important roles in digestion of nutrients, invasion, and migration. Specifically, juvenile-specific cathepsin proteases are the more effective vaccines because they could block the invasion and migration of juvenile parasites whose immune evasion mechanism has not yet been fully developed. Moreover, because of high sequence similarity and identity of cathepsins from juveniles with those of adults, the vaccines can attack both the juvenile and adult stages. In this article, the characteristics and vaccine potentials of juvenile-specific cathepsins, i.e., cathepsins L and B, of Fasciola spp. were reviewed.
Collapse
Affiliation(s)
- Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand,
| | | |
Collapse
|
15
|
Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes. Parasitol Res 2015; 114:3365-71. [PMID: 26044883 PMCID: PMC4537704 DOI: 10.1007/s00436-015-4561-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
The effect of Toxocara larval antigens on cytokine secretion by mouse splenocytes was studied in vitro. Recombinant mucins were produced in Pichia pastoris yeast, and Toxocara excretory-secretory (TES) antigens were collected from in vitro culture of L2 larvae. Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5 were expressed as glycoproteins and were specifically recognized by Toxocara canis-infected dog serum antibodies. Mouse splenocytes stimulated with recombinant mucins produced IL-5, IL-6, and TGF-β. Cell stimulation with whole TES products was more effective and resulted in secretion of IL-4, IL-5, IL-6, IL-10, and TGF-β and downregulation of TNF-α production. IFN-γ and IL-17 secretion was noted only after ConA treatment. Cells originating from infected animals produced significantly smaller amounts of these two cytokines compared to control cells, which suggests that Th1 and Th17 response in infected mice is strongly inhibited. However, splenocyte stimulation with both TES and ConA upregulated the production of IFN-γ and IL-17. This shows that TES antigens have strong immunomodulatory properties and are able to induce a broad range of effects on murine immune cells.
Collapse
|
16
|
Kang JM, Lee J, Ju HL, Ju JW, Kim JH, Pak JH, Kim TS, Hong Y, Sohn WM, Na BK. Characterization of a gut-associated asparaginyl endopeptidase of Clonorchis sinensis. Exp Parasitol 2015; 153:81-90. [DOI: 10.1016/j.exppara.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022]
|
17
|
Chen W, Wang X, Lv X, Tian Y, Xu Y, Mao Q, Shang M, Li X, Huang Y, Yu X. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis. Parasitol Res 2014; 113:3409-18. [PMID: 24985496 DOI: 10.1007/s00436-014-4006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023]
Abstract
Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P < 0.01) and EPG (P < 0.01) in CsCB2 and CsCB3 groups were significantly lower than in control group. In conclusion, we profiled secreted cathepsin B cysteine proteases family for the first time and demonstrated that all CsCB family were C. sinensis excretory/secretory products that may regulate host immune responses.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|