1
|
Beesley NJ, Cwiklinski K, Allen K, Hoyle RC, Spithill TW, La Course EJ, Williams DJL, Paterson S, Hodgkinson JE. A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance. PLoS Pathog 2023; 19:e1011081. [PMID: 36701396 PMCID: PMC9904461 DOI: 10.1371/journal.ppat.1011081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/07/2023] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field.
Collapse
Affiliation(s)
- Nicola J Beesley
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krystyna Cwiklinski
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Katherine Allen
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca C Hoyle
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Australia
| | | | - Diana J L Williams
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Steve Paterson
- Centre for Genomic Research, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane E Hodgkinson
- Veterinary Parasitology, Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
3
|
Fernandez-Baca MV, Hoban C, Ore RA, Ortiz P, Choi YJ, Murga-Moreno C, Mitreva M, Cabada MM. The Differences in the Susceptibility Patterns to Triclabendazole Sulfoxide in Field Isolates of Fasciola hepatica Are Associated with Geographic, Seasonal, and Morphometric Variations. Pathogens 2022; 11:pathogens11060625. [PMID: 35745479 PMCID: PMC9227168 DOI: 10.3390/pathogens11060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Triclabendazole (TCBZ) resistance is an emerging problem in fascioliasis that is not well understood. Studies including small numbers of parasites fail to capture the complexity of susceptibility variations between and within Fasciolahepatica populations. As the first step to studying the complex resistant phenotype−genotype associations, we characterized a large sample of adult F. hepatica with diverging TCBZ susceptibility. We collected parasites from naturally infected livestock slaughtered in the Cusco and Cajamarca regions of Peru. These parasites were exposed to TCBZ sulfoxide (TCBZ.SO) in vitro to determine their susceptibility. We used a motility score to determine the parasite’s viability. We titrated drug concentrations and times to detect 20% non-viable (susceptible conditions) or 80% non-viable (resistant conditions) parasites. We exposed 3348 fully motile parasites to susceptible (n = 1565) or resistant (n = 1783) conditions. Three hundred and forty-one (21.8%) were classified as susceptible and 462 (25.9%) were classified as resistant. More resistant parasites were found in Cusco than in Cajamarca (p < 0.001). Resistant parasites varied by slaughterhouse (p < 0.001), month of the year (p = 0.008), fluke length (p = 0.016), and year of collection (p < 0.001). The in vitro susceptibility to TCBZ.SO in wildtype F. hepatica was associated with geography, season, and morphometry.
Collapse
Affiliation(s)
- Martha V. Fernandez-Baca
- Sede Cusco, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Calle Jose Carlos Mariategui J-6, Wanchaq, Cusco 08002, Peru; (M.V.F.-B.); (R.A.O.)
| | - Cristian Hoban
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Avenida Atahualpa 1050, Cajamarca 06001, Peru; (C.H.); (P.O.); (C.M.-M.)
| | - Rodrigo A. Ore
- Sede Cusco, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Calle Jose Carlos Mariategui J-6, Wanchaq, Cusco 08002, Peru; (M.V.F.-B.); (R.A.O.)
| | - Pedro Ortiz
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Avenida Atahualpa 1050, Cajamarca 06001, Peru; (C.H.); (P.O.); (C.M.-M.)
| | - Young-Jun Choi
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 4523 Clayton Avenue, MSC 8051-0043-15, St. Louis, MO 63110, USA;
| | - César Murga-Moreno
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Avenida Atahualpa 1050, Cajamarca 06001, Peru; (C.H.); (P.O.); (C.M.-M.)
| | - Makedonka Mitreva
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 4523 Clayton Avenue, MSC 8051-0043-15, St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University, 4444 Forest Park Avenue, St. Louis, MO 63108, USA
- Correspondence: (M.M.); (M.M.C.)
| | - Miguel M. Cabada
- Sede Cusco, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Calle Jose Carlos Mariategui J-6, Wanchaq, Cusco 08002, Peru; (M.V.F.-B.); (R.A.O.)
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Correspondence: (M.M.); (M.M.C.)
| |
Collapse
|
4
|
Marcos L, Maco V, Terashima A. Triclabendazole for the treatment of human fascioliasis and the threat of treatment failures. Expert Rev Anti Infect Ther 2020; 19:817-823. [PMID: 33267701 DOI: 10.1080/14787210.2021.1858798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The only drug effective against the infection caused by Fasciola hepatica or F. gigantica is triclabendazole (TCBZ), recommended by the WHO and recently approved by the FDA. Here, we describe the evolution of TCBZ regimens and the emergence of TCBZ failure to Fasciola infection. AREAS COVERED The present review focuses on the evidence of TCBZ for the treatment of fascioliasis. For acute fascioliasis, there is a lack of studies to measure the presence of eggs of Fasciola in stool samples on the follow-up after initial TCBZ treatment. For chronic fascioliasis, WHO recommends a single oral dose of TCBZ 10 mg/kg whereas CDC recommends two doses of TCBZ 10 mg/kg 12 h apart. Incremental number of treatment failures have been documented worldwide. There are currently no therapeutic alternatives for the treatment of fascioliasis in humans. EXPERT OPINION Most cases of human fascioliasis are successfully treated with TCBZ, but some continue excreting eggs in the stools despite 1-2 standard of care regimens of TCBZ. A precise regimen is unclear for those patients who fail the initial treatment with TCBZ. Further clinical trials are needed to address the possible TCBZ emerging resistance.
Collapse
Affiliation(s)
- Luis Marcos
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Vicente Maco
- Laboratorio De Parasitologia, Instituto De Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Angelica Terashima
- Laboratorio De Parasitologia, Instituto De Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento De Enfermedades Infecciosas, Tropicales Y Dermatologicas, Hospital Cayetano Heredia, Lima, Peru
| |
Collapse
|
5
|
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int J Parasitol Drugs Drug Resist 2020; 12:39-59. [PMID: 32179499 PMCID: PMC7078123 DOI: 10.1016/j.ijpddr.2019.11.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Liver flukes include Fasciola hepatica, Fasciola gigantica, Clonorchis sinensis, Opisthorchis spp., Fascioloides magna, Gigantocotyle explanatum and Dicrocoelium spp. The two main species, F. hepatica and F. gigantica, are major parasites of livestock and infections result in huge economic losses. As with C. sinensis, Opisthorchis spp. and Dicrocoelium spp., they affect millions of people worldwide, causing severe health problems. Collectively, the group is referred to as the Food-Borne Trematodes and their true significance is now being more widely recognised. However, reports of resistance to triclabendazole (TCBZ), the most widely used anti-Fasciola drug, and to other current drugs are increasing. This is a worrying scenario. In this review, progress in understanding the mechanism(s) of resistance to TCBZ is discussed, focusing on tubulin mutations, altered drug uptake and changes in drug metabolism. There is much interest in the development of new drugs and drug combinations, the re-purposing of non-flukicidal drugs, and the development of new drug formulations and delivery systems; all this work will be reviewed. Sound farm management practices also need to be put in place, with effective treatment programmes, so that drugs can be used wisely and their efficacy conserved as much as is possible. This depends on reliable advice being given by veterinarians and other advisors. Accurate diagnosis and identification of drug-resistant fluke populations is central to effective control: to determine the actual extent of the problem and to determine how well or otherwise a treatment has worked; for research on establishing the mechanism of resistance (and identifying molecular markers of resistance); for informing treatment options; and for testing the efficacy of new drug candidates. Several diagnostic methods are available, but there are no recommended guidelines or standardised protocols in place and this is an issue that needs to be addressed.
Collapse
Affiliation(s)
- I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast, BT4 3SD, UK
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - P J Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
6
|
Ramadan HKA, Hassan WA, Elossily NA, Ahmad AA, Mohamed AA, Abd- Elkader AS, Abdelsalam EMN, Khojah HMJ. Evaluation of nitazoxanide treatment following triclabendazole failure in an outbreak of human fascioliasis in Upper Egypt. PLoS Negl Trop Dis 2019; 13:e0007779. [PMID: 31553716 PMCID: PMC6779272 DOI: 10.1371/journal.pntd.0007779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/07/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fascioliasis is a neglected zoonosis with major public health implications in humans. Although triclabendazole (TCBZ) is the drug of choice, there are records of TCBZ failure worldwide. TCBZ-resistant fascioliasis is treated with alternative approved drugs including nitazoxanide (NTZ), with varying levels of efficacy. Data on NTZ efficacy after TCBZ failure in Egypt is scarce. This study evaluated the efficacy of NTZ in cases of TCBZ failure during an outbreak of fascioliasis in Assiut governorate of Upper Egypt. Methodology/Principal findings This prospective study included 67 patients from the outpatient clinic in Manfalout locality of Assiut governorate with clinical manifestations of acute fascioliasis. These included high eosinophilia (> 6% eosinophils in peripheral blood), positive anti-Fasciola antibodies, and hepatic focal lesions (HFL) or ascites on abdominal ultrasound or computed tomography. All patients initially received TCBZ at recommended doses. Patients were followed up after 1 month to assess response. According to the responses, patients were categorized as non-responders and responders. The non-responders received a trial of NTZ and were re-assessed for response based on clinical manifestations, eosinophil count, and abdominal ultrasound. Patients not responding to NTZ received additional doses of TCBZ. One month after initial TCBZ treatment, 37 patients responded well to TCBZ, while 30 patients failed to respond with persistence of fever, abdominal pain, high eosinophilia, and HFL. Most non-responders were male (56.7%); females predominated among TCBZ responders (62.2%). The mean age of the non-responders was relatively lower, at 20.57 ± 14.47 years (p = 0.004). Following NTZ therapy, HFL disappeared in 9/30 (30%) patients and eosinophil counts normalized in only 2 (6.7%) patients, indicating an overall efficacy of 36.6%. The remaining cases received additional doses of TCBZ with complete clinical, pathological, and radiological resolution. Conclusions/Significance Nitazoxanide was partially effective in TCBZ failure in acute human fascioliasis in Upper Egypt. Further studies with larger samples are highly encouraged and further research is urgently needed to find new therapeutic alternatives to TCBZ. Fascioliasis is a neglected zoonosis with major public health implications in humans. Triclabendazole (TCBZ) is the drug of choice, but alternative approved drugs are necessary in cases of TCBZ failure. Nitazoxanide (NTZ) is an alternative used in such cases. However, the efficacy of NTZ in TCBZ-failure cases among patients in Egypt remains unclear. In this study, the efficacy of NTZ was evaluated in cases of TCBZ failure during an outbreak of human fascioliasis in Assiut governorate of Upper Egypt. This study enrolled 67 patients diagnosed with fascioliasis based on clinical, laboratory, and radiological findings. These patients were referred from the outpatient clinic in Manfalout locality of Assiut governorate in Egypt. All patients received TCBZ at recommended doses as initial treatment. Those failing to respond were treated with NTZ at standard doses; following therapy, lesions in the liver and high eosinophil counts were resolved in 30% and 6.7% patients, respectively, indicating an overall efficacy of 36.6%. Therefore, in this outbreak of human fascioliasis in Upper Egypt, NTZ was found to be partially effective in cases with TCBZ failure.
Collapse
Affiliation(s)
| | - Waleed Attia Hassan
- Department of Tropical medicine and Gastroenterology, Faculty of Medicine, Assiut University, Egypt
| | | | | | - Adnan Ahmed Mohamed
- Department of Tropical medicine and Gastroenterology, Faculty of Medicine, Assiut University, Egypt
| | | | | | - Hani M. J. Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
- * E-mail:
| |
Collapse
|
7
|
Recent developments in the epidemiology, diagnosis, and treatment of Fasciola infection. Curr Opin Infect Dis 2019; 31:409-414. [PMID: 30113327 DOI: 10.1097/qco.0000000000000482] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review aims at describing the latest research in Fasciola epidemiology, diagnosis, treatment, and control in endemic countries. RECENT FINDINGS The geographic distribution and range of reservoirs for Fasciola hepatica continues to expand. The impact of fascioliasis goes beyond human disease to affect food security and income in developed and developing countries. Promising serologic and molecular methods to diagnose fascioliasis have been described, but are not widely available. Triclabendazole remains the only highly active medication to treat human and livestock infected with juvenile and adult forms of Fasciola spp. Efforts to control fascioliasis may be hindered by the emergence of resistance to triclabendazole among livestock and subsequently in humans. SUMMARY Increased awareness and surveillance are likely to uncover the real distribution and burden of fascioliasis in human. Research into new drugs or adjuvants to tackle the emerging resistance to triclabendazole is imperative to treat and control Fasciola infection.
Collapse
|
8
|
Solana MV, Domínguez MF, Scarcella S, Radio S, Smircich P, Fernández S, Solana H, Tort JF. Different SNPs in Fasciola hepatica P-glycoprotein from diverse Latin American populations are not associated with Triclabendazole resistance. Mol Biochem Parasitol 2018; 224:57-60. [PMID: 30055185 DOI: 10.1016/j.molbiopara.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022]
Abstract
The use of Triclabendazole for controlling fasciolosis is compromised by increased drug resistance affecting livestock and humans. Although the mode of action of TCBZ is still unknown, putative candidates and markers of resistance have been advanced. A single nucleotide polymorphism (T687 G) in F. hepatica PGP was proposed as marker of resistance in a small scale study of European susceptible and resistant flukes, but the association was not found in Australian samples. The T687 G SNP was absent in more than 40 samples from 2 TCBZ-resistant and 3 susceptible isolates across Latin America here analyzed. While the American samples showed more variable SNPs than the previous ones, none of the SNPs detected showed a marked association with resistance. Analyzing the 42 kb of the FhPGP gene based on RNAseq data highlights that the variation has been underestimated, suggesting that more detailed efforts are needed in order to identify markers of resistance.
Collapse
Affiliation(s)
- María Victoria Solana
- Laboratorio de Biología Celular y Molecular, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | - María Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| | - Silvana Scarcella
- Laboratorio de Biología Celular y Molecular, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | - Santiago Radio
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| | - Silvina Fernández
- Laboratorio de Parasitología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | - Hugo Solana
- Laboratorio de Biología Celular y Molecular, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| |
Collapse
|
9
|
Hodgkinson JE, Cwiklinski K, Beesley N, Hartley C, Allen K, Williams DJL. Clonal amplification of Fasciola hepatica in Galba truncatula: within and between isolate variation of triclabendazole-susceptible and -resistant clones. Parasit Vectors 2018; 11:363. [PMID: 29941045 PMCID: PMC6020221 DOI: 10.1186/s13071-018-2952-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Fasciola hepatica is of worldwide significance, impacting on the health, welfare and productivity of livestock and regarded by WHO as a re-emerging zoonosis. Triclabendazole (TCBZ), the drug of choice for controlling acute fasciolosis in livestock, is also the drug used to treat human infections. However TCBZ-resistance is now considered a major threat to the effective control of F. hepatica. It has yet to be demonstrated whether F. hepatica undergoes a genetic clonal expansion in the snail intermediate host, Galba truncatula, and to what extent amplification of genotypes within the snail facilitates accumulation of drug resistant parasites. Little is known about genotypic and phenotypic variation within and between F. hepatica isolates. Results Six clonal isolates of F. hepatica (3× triclabendazole-resistant, TCBZ-R and 3× triclabendazole-susceptible, TCBZ-S) were generated. Snails infected with one miracidium started to shed cercariae 42–56 days post-infection and shed repeatedly up to a maximum of 11 times. A maximum of 884 cercariae were shed by one clonally-infected snail (FhLivS1) at a single time point, with > 3000 clonal metacercariae shed over its lifetime. Following experimental infection all 12 sheep were FEC positive at the time of TCBZ treatment. Sheep infected with one of three putative TCBZ-S clones and treated with TCBZ had no parasites in the liver at post-mortem, whilst sheep each infected with putative TCBZ-R isolates had 35–165 adult fluke at post-mortem, despite TCBZ treatment. All six untreated control animals had between 15–127 parasites. A single multi-locus genotype was reported for every fluke from each of the six clonal isolates. Adult F. hepatica showed considerable variation in weight, ranging from 20–280 mg, with variation in weight evident within and amongst clonal isolates. Conclusions A genetic clonal expansion occurs within G. truncatula, highlighting the potential for amplification of drug resistant genotypes of F. hepatica. Variation in the weight of parasites within and between clonal isolates and when comparing isolates that are either susceptible or resistant to TCBZ represent inherent variation in liver fluke and cannot be attributed to their resistance or susceptibility traits.
Collapse
Affiliation(s)
- Jane E Hodgkinson
- Veterinary Parasitology, Dept Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK.
| | - Krystyna Cwiklinski
- Veterinary Parasitology, Dept Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK.,School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Nicola Beesley
- Veterinary Parasitology, Dept Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Catherine Hartley
- Veterinary Parasitology, Dept Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Katherine Allen
- Veterinary Parasitology, Dept Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Diana J L Williams
- Veterinary Parasitology, Dept Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| |
Collapse
|
10
|
Willi LMV, Labarthe NV, d’Escoffier LN, Paiva JP, de Miranda MGN, Mendes-de-Almeida F, Zaverucha do Valle T. Can P-glycoprotein and β-tubulin polymorphisms be used as genetic markers of resistance in Dirofilaria immitis from Rio de Janeiro, Brazil? BMC Res Notes 2018; 11:152. [PMID: 29475454 PMCID: PMC5824453 DOI: 10.1186/s13104-018-3259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Dirofilaria immitis, the causative agent of canine heartworm infection, is worldwide the most important filarid to affect domestic dogs. Prevention of this infection is done by macrocyclic lactones, but some reports on the lack of efficacy have been published. Although the actual cause of resistance is unknown, single nucleotide polymorphisms (SNPs) on a P-glycoprotein ABC transporter and β-tubulin genes have been pointed out as candidates for genetic markers of resistance. We conducted a survey to verify the presence of these suggested genetic markers in microfilariae from 30 naturally infected dogs under macrocyclic lactones treatment living in an endemic area in the state of Rio de Janeiro. RESULTS The analysis of these specific SNPs demonstrated no sign of polymorphism on the P-glycoprotein loci, while 72 and 48% of the samples were polymorphic to the first and second SNPs on β-tubulin loci, respectively. This work demonstrates that the P-glycoprotein position 11 and 618 were not polymorphic and, therefore, not suitable as a genetic marker of resistance in Rio de Janeiro whereas both β-tubulin loci were polimorphic. This work points out the difficulty of finding a universal genetic marker for resistance.
Collapse
Affiliation(s)
- Liliane Maria Valentim Willi
- Programa de Pós-Graduação em Medicina Veterinária – Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ 24230-340 Brazil
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| | - Norma Vollmer Labarthe
- Programa de Pós-Graduação em Medicina Veterinária – Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ 24230-340 Brazil
- Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| | - Luiz Ney d’Escoffier
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| | - Jonimar Pereira Paiva
- Departamento de Medicina e Cirurgia Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, Seropédica, RJ 23890-000 Brazil
| | | | - Flavya Mendes-de-Almeida
- Programa de Pós-Graduação em Medicina Veterinária – Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ 24230-340 Brazil
| | - Tânia Zaverucha do Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360 Brazil
| |
Collapse
|
11
|
Mordvinov VA, Ershov NI, Pirozhkova DS, Pakharukov YV, Pakharukova MY. ABC transporters in the liver fluke Opisthorchis felineus. Mol Biochem Parasitol 2017; 216:60-68. [PMID: 28729070 DOI: 10.1016/j.molbiopara.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023]
Abstract
ATP-binding cassette transporters (ABC transporters) are essential components of normal cellular physiological machinery in all eukaryotic and prokaryotic species, including parasites. Some ABC transporters, e.g., P-glycoproteins, are involved in the efflux of toxins and xenobiotics from the cell. At present, nothing is known about ABC transporter genes in epidemiologically important liver flukes from the Opisthorchiidae family, including European liver fluke Opisthorchis felineus. Opisthorchiasis caused by O. felineus is a serious public health problem on the territory of Russia and other Eastern European countries. ABC drug transporters are attractive objects of research on molecular markers of resistance and on ways to potentiate sensitivity to anthelmintics through suppression of the transporters themselves with specific inhibitors. Here we aimed at the identification of ABC transporters in the O. felineus transcriptome and identification of P-glycoproteins. In addition, our aim was to assess ABC transcript abundance in the RNA-seq data, to study the mRNA expression of P-glycoprotein genes by Droplet Digital PCR throughout the life cycle of O. felineus, and to test the gene induction in response to xenobiotics or anthelminthic agents. We found 23 nucleotide sequences encoding ABC transporters belonging to different subfamilies, including four sequences of P-glycoproteins. According to the transcript abundance in the RNA-seq data, one of P-glycoproteins (P4) has the highest expression among all ABC genes in the adult worm. P-glycoproteins showed substantially differential mRNA expression throughout the fluke life cycle, with high expression in the adult worms. Putative activity of P-glycoproteins as xenobiotic efflux pumps was found to be linked to the excretory system of O. felineus and to be inhibited by verapamil or tariquidar. Thus, ABC drug transporters in the liver fluke O. felineus are functionally active, indicating that ABC drug transporters are likely to be molecular targets for a combination therapy aimed at prevention of a xenobiotic removal from helminth tissues and at increasing the drug concentration in the tissues.
Collapse
Affiliation(s)
- Viatcheslav A Mordvinov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Institute of Molecular Biology and Biophysics SB RAMS, 2/12 Timakova Str., Novosibirsk 630060, Russia
| | - Nikita I Ershov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Darya S Pirozhkova
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Yuri V Pakharukov
- Industrial University of Tyumen, 38 Volodarskogo Str., Tyumen 625000, Russia
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Institute of Molecular Biology and Biophysics SB RAMS, 2/12 Timakova Str., Novosibirsk 630060, Russia; Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| |
Collapse
|
12
|
Abstract
Fasciolosis caused by Fasciola hepatica severely affects the efficiency of livestock production systems worldwide. In addition to the economic impact inflicted on livestock farmers, fasciolosis is an emergent zoonosis. This review emphasizes different aspects of the disease in South America. Available data on epidemiology in bovines and ovines in different countries, as well as a growing body of information on other domestic and wildlife definitive hosts, are summarized. The issue of drug resistance that compromises the long-term sustainability of current pharmacological strategies is examined from a regional perspective. Finally, efforts to develop a single-antigen recombinant vaccine in ruminants are reviewed, focusing on the cases of leucine aminopeptidase or thioredoxin glutathione reductase.
Collapse
|
13
|
Novobilský A, Amaya Solis N, Skarin M, Höglund J. Assessment of flukicide efficacy against Fasciola hepatica in sheep in Sweden in the absence of a standardised test. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:141-147. [PMID: 27380550 PMCID: PMC4933035 DOI: 10.1016/j.ijpddr.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/20/2016] [Indexed: 11/19/2022]
Abstract
Anthelmintic resistance (AR) to Fasciola hepatica is emerging worldwide. Recently, AR to the adulticide compound albendazole (ABZ) was shown in Argentina and Spain. In Sweden, ABZ treatment failure against F. hepatica was first reported in sheep in 2012. The present study tested the efficacy of ABZ and triclabendazole (TCBZ) in sheep naturally infected with F. hepatica using a combination of three different diagnostic methods: faecal egg counts (FEC), coproantigen ELISA (cELISA) and Fasciola egg hatch test (FEHT). Two deworming trials, in November 2014 and January 2015, were performed on two sheep farms (farms A and B) in south-western Sweden. Except ABZ in November, treatment with ABZ or TCBZ achieved sufficient efficacy (97-100%) against adult F. hepatica on farm A. In contrast, ABZ treatment failed in the sheep flock on farm B, despite low initial faecal egg output. On farm B, ABZ efficacy based on FEC was 67% (95% CI: 35-84) and four of eight ewes tested were coproantigen-positive 21 days post-treatment. Ovicidal activity of ABZ against Fasciola eggs in isolates from both farms and one additional bovine isolate were tested by FEHT to exclude the presence of juvenile flukes and other factors such as dosing failure and poor quality of drug product. Irrespective of drug trial, data from FEHT showed significantly lower ovicidal activity of ABZ for the ovine farm B isolate than for the isolate from farm A. This confirms that the low efficacy of ABZ in sheep flock B was associated with ABZ resistance. Overall, the usefulness of three complementary methods for detection of ABZ resistance in the field was demonstrated.
Collapse
Affiliation(s)
- Adam Novobilský
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden.
| | - Natalia Amaya Solis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Moa Skarin
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| |
Collapse
|
14
|
Kelley JM, Elliott TP, Beddoe T, Anderson G, Skuce P, Spithill TW. Current Threat of Triclabendazole Resistance in Fasciola hepatica. Trends Parasitol 2016; 32:458-469. [PMID: 27049013 DOI: 10.1016/j.pt.2016.03.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/18/2016] [Accepted: 03/03/2016] [Indexed: 01/07/2023]
Abstract
Triclabendazole (TCBZ) is the only chemical that kills early immature and adult Fasciola hepatica (liver fluke) but widespread resistance to the drug greatly compromises fluke control in livestock and humans. The mode of action of TCBZ and mechanism(s) underlying parasite resistance to the drug are not known. Due to the high prevalence of TCBZ resistance (TCBZ-R), effective management of drug resistance is now critical for sustainable livestock production. Here, we discuss the current status of TCBZ-R in F. hepatica, the global distribution of resistance observed in livestock, the possible mechanism(s) of drug action, the proposed mechanisms and genetic basis of resistance, and the prospects for future control of liver fluke infections using an integrated parasite management (IPM) approach.
Collapse
Affiliation(s)
- Jane M Kelley
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | | | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | | | - Philip Skuce
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, UK
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|