1
|
Ren W, La Y, Ma X, Wu X, Guo X, Chu M, Yan P, Lan X, Liang C. Comparative Analysis of miRNA Expression Profiles of Yak Milk-Derived Exosomes at Different Altitudes. Animals (Basel) 2025; 15:87. [PMID: 39795030 PMCID: PMC11718820 DOI: 10.3390/ani15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing. These miRNAs were found to be implicated in pathways associated with mammary gland inflammation, virus infection regulation, and heat stress response. Functional enrichment analyses, utilizing GO and KEGG databases, revealed that the target genes of these differentially expressed miRNAs are enriched in signaling pathways crucial for Th17 cell differentiation and the Ras-MAPK signaling pathway. In conclusion, this research illuminates the adaptive mechanisms of yaks through the differential expression of miRNAs in their milk-derived exosomes across varying environmental conditions. These findings provide a valuable foundation for future investigations into yak resilience and the potential of milk-derived exosomes as tools for disease management and immune modulation.
Collapse
Affiliation(s)
- Wenwen Ren
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Barrero-Torres DM, Herrera-Torres G, Pérez J, Martínez-Moreno Á, Martínez-Moreno FJ, Flores-Velázquez LM, Buffoni L, Rufino-Moya PJ, Ruiz-Campillo MT, Molina-Hernández V. Unraveling the microRNAs Involved in Fasciolosis: Master Regulators of the Host-Parasite Crosstalk. Int J Mol Sci 2024; 26:204. [PMID: 39796061 PMCID: PMC11719827 DOI: 10.3390/ijms26010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Fasciolosis is a neglected tropical disease caused by helminth parasites of the genus Fasciola spp., including Fasciola hepatica (F. hepatica) and Fasciola gigantica (F. gigantica), being a major zoonotic problem of human and animal health. Its control with antihelminthics is becoming ineffective due to the increase in parasite resistance. Developing new therapeutic protocols is crucial to a deeper knowledge of the molecular bases in the host-parasite interactions. The high-throughput omics technologies have dramatically provided unprecedented insights into the complexity of the molecular host-parasite crosstalk. MicroRNAs (miRNAs) are key players as critical regulators in numerous biological processes, modifying the gene expression of cells by degradation of messenger RNA (mRNA), regulating transcription and translation functions, protein positioning, cell cycle integrity, differentiation and apoptosis. The large-scale exploration of miRNAs, including the miRNome, has offered great scientific knowledge of steps in fasciolosis, further scrutinizing the pathogenesis, the growth and development of their strains and their interaction with the host for the survival of the different parasite stages. This review compiles the updated knowledge related to miRNAs involved in fasciolosis and the generated miRNome, highlighting the importance of these key molecules in the host-parasite interactions and the pathogenesis of Fasciola spp. directing towards the development of new biotherapeutic protocols for the control of fasciolosis.
Collapse
Affiliation(s)
- Diana María Barrero-Torres
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - Guillem Herrera-Torres
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - Francisco Javier Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - Luis Miguel Flores-Velázquez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
- Unidad de Anatomía, Histología y Patología Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias Naturales, Universidad San Sebastián, Campus Puerto Montt, Puerto Montt 5480000, Chile
| | - Leandro Buffoni
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - Pablo José Rufino-Moya
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (Á.M.-M.); (F.J.M.-M.); (L.B.); (P.J.R.-M.)
| | - María Teresa Ruiz-Campillo
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain; (D.M.B.-T.); (G.H.-T.); (J.P.); (L.M.F.-V.)
| |
Collapse
|
3
|
Cuccato M, Divari S, Giannuzzi D, Grange C, Moretti R, Rinaldi A, Leroux C, Sacchi P, Cannizzo FT. Extracellular vesicle miRNome during subclinical mastitis in dairy cows. Vet Res 2024; 55:112. [PMID: 39300590 DOI: 10.1186/s13567-024-01367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Bovine mastitis is one of the main inflammatory diseases that can affect the udder during lactation. Somatic cell counts and sometimes microbiological tests are routinely adopted during monitoring diagnostics in dairy herds. However, subclinical mastitis is challenging to identify, reducing the possibility of early treatments. The main aim of this study was to investigate the miRNome profile of extracellular vesicles isolated from milk as potential biomarkers of subclinical mastitis. Milk samples were collected from a total of 60 dairy cows during routine monitoring tests. Small RNA sequencing technology was applied to extracellular vesicles of milk samples collected from cows classified according to the somatic cell count to identify differences in the miRNome between mastitic and healthy cows. A total of 1997 miRNAs were differentially expressed between both groups. Among them, 68 miRNAs whose FDRs were < 0.05 were mostly downregulated, with only one upregulated miRNA (i.e., miR-361). Functional analysis revealed that miR-455-3p, miR-503-3p, miR-1301-3p and miR-361-5p are involved in the regulation of several biological processes related to mastitis, including immune system-related processes. This study suggests the involvement of extracellular vesicle-derived miRNAs in the regulation of mastitis. Moreover, these findings provide evidence that miRNAs from milk extracellular vesicles can be used to identify biomarkers of mastitis. However, further studies must be conducted to validate these miRNAs, especially for subclinical diagnosis.
Collapse
Affiliation(s)
- Matteo Cuccato
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy
| | - Sara Divari
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy.
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020, Padua, Italy
| | - Cristina Grange
- Department of Medical Sciences, VEXTRA Facility, University of Turin, 10126, Turin, Italy
| | - Riccardo Moretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy
| | - Andrea Rinaldi
- Faculty of Biomedical Sciences, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Paola Sacchi
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy
| | | |
Collapse
|
4
|
Chowdhury S, Ricafrente A, Cwiklinski K, Sais D, Dalton JP, Tran N, Donnelly S. Exploring the utility of circulating miRNAs as diagnostic biomarkers of fasciolosis. Sci Rep 2024; 14:7431. [PMID: 38548871 PMCID: PMC10978983 DOI: 10.1038/s41598-024-57704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
Effective management and control of parasitic infections on farms depends on their early detection. Traditional serological diagnostic methods for Fasciola hepatica infection in livestock are specific and sensitive, but currently the earliest detection of the parasite only occurs at approximately three weeks post-infection. At this timepoint, parasites have already entered the liver and caused the tissue damage and immunopathology that results in reduced body weight and loss in productivity. Here, we investigated whether the differential abundance of micro(mi)miRNAs in sera of F. hepatica-infected sheep has potential as a tool for the early diagnosis of infection. Using miRNA sequencing analysis, we discovered specific profiles of sheep miRNAs at both the pre-hepatic and hepatic infection phases in comparison to non-infected sheep. In addition, six F. hepatica-derived miRNAs were specifically identified in sera from infected sheep. Thus, a panel of differentially expressed miRNAs comprising four sheep (miR-3231-3p; miR133-5p; 3957-5p; 1197-3p) and two parasite miRNAs (miR-124-3p; miR-Novel-11-5p) were selected as potential biomarkers. The expression of these candidates in sera samples from longitudinal sheep infection studies collected between 7 days and 23 weeks was quantified using RT-qPCR and compared to samples from age-matched non-infected sheep. We identified oar-miR-133-5p and oar-miR-3957-5p as promising biomarkers of fasciolosis, detecting infection as early as 7 days. The differential expression of the other selected miRNAs was not sufficient to diagnose infection; however, our analysis found that the most abundant forms of fhe-miR-124-3p in sera were sequence variants (IsomiRs) of the canonical miRNA, highlighting the critical importance of primer design for accurate diagnostic RT-qPCR. Accordingly, this investigative study suggests that certain miRNAs are biomarkers of F. hepatica infection and validates miRNA-based diagnostics for the detection of fasciolosis in sheep.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia
| | - Alison Ricafrente
- The School of Life Sciences, University of Technology, Sydney, Australia
| | - Krystyna Cwiklinski
- Centre for One Health, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - John P Dalton
- Centre for One Health, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| |
Collapse
|
5
|
McVeigh P, McCammick E, Robb E, Brophy P, Morphew RM, Marks NJ, Maule AG. Discovery of long non-coding RNAs in the liver fluke, Fasciola hepatica. PLoS Negl Trop Dis 2023; 17:e0011663. [PMID: 37769025 PMCID: PMC10564125 DOI: 10.1371/journal.pntd.0011663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/10/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Long non-coding (lnc)RNAs are a class of eukaryotic RNA that do not code for protein and are linked with transcriptional regulation, amongst a myriad of other functions. Using a custom in silico pipeline we have identified 6,436 putative lncRNA transcripts in the liver fluke parasite, Fasciola hepatica, none of which are conserved with those previously described from Schistosoma mansoni. F. hepatica lncRNAs were distinct from F. hepatica mRNAs in transcript length, coding probability, exon/intron composition, expression patterns, and genome distribution. RNA-Seq and digital droplet PCR measurements demonstrated developmentally regulated expression of lncRNAs between intra-mammalian life stages; a similar proportion of lncRNAs (14.2%) and mRNAs (12.8%) were differentially expressed (p<0.001), supporting a functional role for lncRNAs in F. hepatica life stages. While most lncRNAs (81%) were intergenic, we identified some that overlapped protein coding loci in antisense (13%) or intronic (6%) configurations. We found no unequivocal evidence for correlated developmental expression within positionally correlated lncRNA:mRNA pairs, but global co-expression analysis identified five lncRNA that were inversely co-regulated with 89 mRNAs, including a large number of functionally essential proteases. The presence of micro (mi)RNA binding sites in 3135 lncRNAs indicates the potential for miRNA-based post-transcriptional regulation of lncRNA, and/or their function as competing endogenous (ce)RNAs. The same annotation pipeline identified 24,141 putative lncRNAs in F. gigantica. This first description of lncRNAs in F. hepatica provides an avenue to future functional and comparative genomics studies that will provide a new perspective on a poorly understood aspect of parasite biology.
Collapse
Affiliation(s)
- Paul McVeigh
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Erin McCammick
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Emily Robb
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Peter Brophy
- Department of Life Sciences, Aberystwyth University, Wales, United Kingdom
| | - Russell M. Morphew
- Department of Life Sciences, Aberystwyth University, Wales, United Kingdom
| | - Nikki J. Marks
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Aaron G. Maule
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Altered miRNA Expression Profiles in the Serum of Beagle Dogs Experimentally Infected with Toxocara canis. Animals (Basel) 2023; 13:ani13020299. [PMID: 36670839 PMCID: PMC9854737 DOI: 10.3390/ani13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Toxocara canis is a neglected roundworm, which can cause debilitating disease in dogs and humans worldwide. Serum is an excellent material for monitoring the occurrence of many diseases. However, no information is available on the expression of microRNAs (miRNAs) in the serum of dogs infected with T. canis. In this study, RNA-seq analysis was performed to identify the serum miRNA profiles in Beagle dogs infected with T. canis at different stages of infection. A total of 3, 25 and 25 differently expressed miRNAs (DEmiRNAs) were identified in dog serum at 24 h post-infection (hpi), 10 days post-infection (dpi) and 36 dpi, respectively, such as cfa-let-7g, cfa-miR-16, cfa-miR-92b, cfa-miR-93, cfa-miR-122, cfa-miR-485 and cfa-miR-451. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these miRNAs could regulate the pathways related to parasitic infectious diseases and immune system, such as amoebiasis, toxoplasmosis, platelet activation, IL-17 signaling pathway and chemokine signaling pathway. These results provide a foundation to explore the underlying regulatory role of miRNAs in definitive hosts after T. canis infection.
Collapse
|
7
|
Ojo OE, Kreuzer-Redmer S. MicroRNAs in Ruminants and Their Potential Role in Nutrition and Physiology. Vet Sci 2023; 10:vetsci10010057. [PMID: 36669058 PMCID: PMC9867202 DOI: 10.3390/vetsci10010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The knowledge of how diet choices, dietary supplements, and feed intake influence molecular mechanisms in ruminant nutrition and physiology to maintain ruminant health, is essential to attain. In the present review, we focus on the role of microRNAs in ruminant health and disease; additionally, we discuss the potential of circulating microRNAs as biomarkers of disease in ruminants and the state of technology for their detection, also considering the major difficulties in the transition of biomarker development from bench to clinical practice. MicroRNAs are an inexhaustible class of endogenous non-protein coding small RNAs of 18 to 25 nucleotides that target either the 3' untranslated (UTR) or coding region of genes, ensuring a tight post-transcriptionally controlled regulation of gene expression. The development of new "omics" technologies facilitated a fresh perspective on the nutrition-to-gene relationship, incorporating more extensive data from molecular genetics, animal nutrition, and veterinary sciences. MicroRNAs might serve as important regulators of metabolic processes and may present the inter-phase between nutrition and gene regulation, controlled by the diet. The development of biomarkers holds the potential to revolutionize veterinary practice through faster disease detection, more accurate ruminant health monitoring, enhanced welfare, and increased productivity. Finally, we summarize the latest findings on how microRNAs function as biomarkers, how technological paradigms are reshaping this field of research, and how platforms are being used to identify novel biomarkers. Numerous studies have demonstrated a connection between circulating microRNAs and ruminant diseases such as mastitis, tuberculosis, foot-and-mouth disease, fasciolosis, and metabolic disorders. Therefore, the identification and analysis of a small number of microRNAs can provide crucial information about the stage of a disease, etiology, and prognosis.
Collapse
|
8
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
9
|
Ullah H, Tian Y, Arbab S, Li K, Khan MIU, Rahman SU, Qadeer A, Muhammad N, Suleman, Hassan IU. Circulatory microRNAs in helminthiases: Potent as diagnostics biomarker, its potential role and limitations. Front Vet Sci 2022; 9:1018872. [PMID: 36387413 PMCID: PMC9650547 DOI: 10.3389/fvets.2022.1018872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 08/08/2023] Open
Abstract
Infections caused by helminths are responsible for severe public health problems and economic burden on continental scale. Well-timed and precise diagnosis of helminth infections is critical for taking by appropriate approaches for pathogen control. Circulating miRNAs are stable diagnostic tool for different diseases found in a variety of body fluid. As diagnostic biomarkers in infectious diseases, miRNAs detection in body fluids of helminth infected hosts is growing promptly. Uncovering miRNAs is a relatively new tool, used for early-stage detection of helminth infection from experimental or non-invasive clinical samples. miRNAs can be detected in body fluids such as serum, saliva, urine, and tissues of helminth infected host, mainly blood offering important benefits for diagnosis accurately. In this review, we discuss different characteristics of helminth parasite-derived circulating and EV miRNAs, supporting its potential uses in for helminth diagnosis and treatment efficiency.
Collapse
Affiliation(s)
- Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Yali Tian
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Abdul Qadeer
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nehaz Muhammad
- Department of Zoology, University of Swabi, Swabi, Pakistan
| | - Suleman
- Department of Zoology, University of Swabi, Swabi, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| |
Collapse
|
10
|
Herron CM, O’Connor A, Robb E, McCammick E, Hill C, Marks NJ, Robinson MW, Maule AG, McVeigh P. Developmental Regulation and Functional Prediction of microRNAs in an Expanded Fasciola hepatica miRNome. Front Cell Infect Microbiol 2022; 12:811123. [PMID: 35223544 PMCID: PMC8867070 DOI: 10.3389/fcimb.2022.811123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
The liver fluke, Fasciola hepatica, is a global burden on the wellbeing and productivity of farmed ruminants, and a zoonotic threat to human health. Despite the clear need for accelerated discovery of new drug and vaccine treatments for this pathogen, we still have a relatively limited understanding of liver fluke biology and host interactions. Noncoding RNAs, including micro (mi)RNAs, are key to transcriptional regulation in all eukaryotes, such that an understanding of miRNA biology can shed light on organismal function at a systems level. Four previous publications have reported up to 89 mature miRNA sequences from F. hepatica, but our data show that this does not represent a full account of this species miRNome. We have expanded on previous studies by sequencing, for the first time, miRNAs from multiple life stages (adult, newly excysted juvenile (NEJ), metacercariae and adult-derived extracellular vesicles (EVs)). These experiments detected an additional 61 high-confidence miRNAs, most of which have not been described in any other species, expanding the F. hepatica miRNome to 150 mature sequences. We used quantitative (q)PCR assays to provide the first developmental profile of miRNA expression across metacercariae, NEJ, adult and adult-derived Evs. The majority of miRNAs were expressed most highly in metacercariae, with at least six distinct expression clusters apparent across life stages. Intracellular miRNAs were functionally analyzed to identify target mRNAs with inversely correlated expression in F. hepatica tissue transcriptomes, highlighting regulatory interactions with key virulence transcripts including cathepsin proteases, and neuromuscular genes that control parasite growth, development and motility. We also linked 28 adult-derived EV miRNAs with downregulation of 397 host genes in F. hepatica-infected transcriptomes from ruminant lymph node, peripheral blood mononuclear cell (PBMC) and liver tissue transcriptomes. These included genes involved in signal transduction, immune and metabolic pathways, adding to the evidence for miRNA-based immunosuppression during fasciolosis. These data expand our understanding of the F. hepatica miRNome, provide the first data on developmental miRNA regulation in this species, and provide a set of testable hypotheses for functional genomics interrogations of liver fluke miRNA biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul McVeigh
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Fontenla S, Langleib M, de la Torre-Escudero E, Domínguez MF, Robinson MW, Tort J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front Cell Infect Microbiol 2022; 11:812141. [PMID: 35155272 PMCID: PMC8824774 DOI: 10.3389/fcimb.2021.812141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression being involved in many different biological processes and play a key role in developmental timing. Additionally, recent studies have shown that miRNAs released from parasites are capable of regulating the expression of host genes. In the present work, we studied the expression patterns of ncRNAs of various intra-mammalian life-cycle stages of the liver fluke, Fasciola hepatica, as well as those packaged into extracellular vesicles and shed by the adult fluke. The miRNA expression profile of the intra-mammalian stages shows important variations, despite a set of predominant miRNAs that are highly expressed across all stages. No substantial variations in miRNA expression between dormant and activated metacercariae were detected, suggesting that they might not be central players in regulating fluke gene expression during this crucial step in the invasion of the definitive host. We generated a curated pipeline for the prediction of putative target genes that reports only sites conserved between three different prediction approaches. This pipeline was tested against an iso-seq curated database of the 3’ UTR regions of F. hepatica genes to detect miRNA regulation networks within liver fluke. Several functions related to the host immune response or modulation were enriched among the targets of the most highly expressed parasite miRNAs, stressing that they might be key players during the establishment and maintenance of infection. Additionally, we detected fragments derived from the processing of tRNAs, in all developmental stages analyzed, and documented the presence of novel long tRNA fragments enriched in vesicles. We confirmed the presence of at least 5 putative vault RNAs (vtRNAs), that are expressed across different stages and enriched in vesicles. The presence of tRNA fragments and vtRNAs in vesicles raise the possibility that they could be involved in the host-parasite interaction.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| | - Mauricio Langleib
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Maria Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - José Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| |
Collapse
|
12
|
Sarwalia P, Raza M, Soni A, Dubey P, Chandel R, Kumar R, Kumaresan A, Onteru SK, Pal A, Singh K, Iquebal MA, Jaiswal S, Kumar D, Datta TK. Establishment of Repertoire of Placentome-Associated MicroRNAs and Their Appearance in Blood Plasma Could Identify Early Establishment of Pregnancy in Buffalo ( Bubalus bubalis). Front Cell Dev Biol 2021; 9:673765. [PMID: 34513824 PMCID: PMC8427669 DOI: 10.3389/fcell.2021.673765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Precise early pregnancy diagnosis in dairy animals is of utmost importance for an efficient dairy production system. Not detecting a dairy animal pregnant sufficiently early after the breeding results to extending the unproductive time of their milk production cycle and causes substantial economic loss for a dairy producer. At present, the most conventional and authentic pregnancy confirmation practice in cows and buffaloes is rectal palpation of the reproductive organs at Days 35–40 after insemination, which sometime leads to considering an animal as false pregnant. Other alternative methods available for early pregnancy diagnosis lack either accuracy or reproducibility or require elaborate instrumentation and laboratory setup not feasible to practice at farmers’ doorstep. The present study was aimed at establishment of the microRNA (miRNA) repertoire of the placentome in buffaloes, which could capture the event of the cross talk between a growing embryo and a dam, through fetal cotyledons and maternal caruncles, and thus could hint at the early pregnancy establishment event in ruminants. Total RNA was isolated from buffalo placentome tissues during early stages of pregnancy (at Day < 25 and Days 30–35), and global small RNA analysis was performed by using Illumina single-end read chemistry and Bubalus bubalis genome. A total of 2,199 miRNAs comprising 1,620 conserved and 579 non-conserved miRNAs were identified. Stringent functional miRNA selection criteria could predict 20 miRNAs worth evaluating for their abundance in the plasma of pregnant, non-pregnant, cyclic non-bred, and non-cyclic prepubertal animals. Eight of them (viz., miR-195-5p, miR-708-3p, miR-379-5p, miR-XX1, miR-XX2, miR-130a-3p, miR-200a-3p, and miR-27) displayed typical abundance patterns in the plasma samples of the animals on Day 19 as well as Day 25 post-insemination, thus making them ambiguous candidates for early pregnancy detection. Similarly, higher abundance of miR-200a-3p and miR130a-3p in non-pregnant animals was indicative of their utility for detecting the animals as not pregnant. Most interestingly, miR-XX1 and miR-XX2 were very characteristically abundant only in pregnant animals. In silico target prediction analysis confirmed that these two miRNAs are important regulators of cyclooxygenase-2 (COX-2) and cell adhesion molecule-2 (CADM-2), both of which play a significant role in the implantation process during feto-maternal cross talk. We interpret that circulatory miR-XX1 and miR-XX2 in blood plasma could be the potential biomarkers for early pregnancy detection in buffaloes.
Collapse
Affiliation(s)
- Parul Sarwalia
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Apoorva Soni
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Pratiksha Dubey
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.,Biological Science Laboratory, Indian Institute of Science Education and Research, Mohali, India
| | - Rajeev Chandel
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - A Kumaresan
- Theriogenology Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Kalpana Singh
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Mu Y, McManus DP, Gordon CA, Cai P. Parasitic Helminth-Derived microRNAs and Extracellular Vesicle Cargos as Biomarkers for Helminthic Infections. Front Cell Infect Microbiol 2021; 11:708952. [PMID: 34249784 PMCID: PMC8267863 DOI: 10.3389/fcimb.2021.708952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
As an adaption to their complex lifecycles, helminth parasites garner a unique repertoire of genes at different developmental stages with subtle regulatory mechanisms. These parasitic worms release differential components such as microRNAs (miRNAs) and extracellular vesicles (EVs) as mediators which participate in the host-parasite interaction, immune regulation/evasion, and in governing processes associated with host infection. MiRNAs are small (~ 22-nucleotides) non-coding RNAs that regulate gene expression at the post-transcriptional level, and can exist in stable form in bodily fluids such as serum/plasma, urine, saliva and bile. In addition to reports focusing on the identification of miRNAs or in the probing of differentially expressed miRNA profiles in different development stages/sexes or in specific tissues, a number of studies have focused on the detection of helminth-derived miRNAs in the mammalian host circulatory system as diagnostic biomarkers. Extracellular vesicles (EVs), small membrane-surrounded structures secreted by a wide variety of cell types, contain rich cargos that are important in cell-cell communication. EVs have attracted wide attention due to their unique functional relevance in host-parasite interactions and for their potential value in translational applications such as biomarker discovery. In the current review, we discuss the status and potential of helminth parasite-derived circulating miRNAs and EV cargos as novel diagnostic tools.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
14
|
MicroRNA Interference in Hepatic Host-Pathogen Interactions. Int J Mol Sci 2021; 22:ijms22073554. [PMID: 33808062 PMCID: PMC8036276 DOI: 10.3390/ijms22073554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host-pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.
Collapse
|
15
|
Cucher MA, Ancarola ME, Kamenetzky L. The challenging world of extracellular RNAs of helminth parasites. Mol Immunol 2021; 134:150-160. [PMID: 33773158 DOI: 10.1016/j.molimm.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
In the last years, cell free or extracellular RNAs (ex-RNAs) have emerged as novel intercellular messengers between animal cells, including pathogens. In infectious diseases, ex-RNAs represent novel players in the host-pathogen and pathogen-pathogen interplays and have been described in parasitic helminths from the three major taxonomic groups: nematodes, trematodes and cestodes. Altogether, it is estimated that approximately 30 percent of the world's population is infected with helminths, which cause debilitating diseases and syndromes. Ex-RNAs are protected from degradation by encapsulation in extracellular vesicles (EV), or association to proteins or lipoproteins, and have been detected in the excretion/secretion products of helminth parasites, with EV as the preferred extracellular compartment under study. EV is the generic term used to describe a heterogenous group of subcellular membrane-bound particles, with varying sizes, biogenesis, density and composition. However, recent data suggests that this is not the only means used by helminth parasites to secrete RNAs since ex-RNAs can also be found in EV-depleted samples. Furthermore, the use of pathogen ex-RNAs as biomarkers promise the advent of new diagnostic tools though this field is still in early stages of exploration. In this review, we summarize current knowledge of vesicular and non-vesicular ex-RNAs secretion in helminth parasites, their potential as biomarkers and the evidence of their role in parasite and host reciprocal communication, together with unanswered questions in the field.
Collapse
Affiliation(s)
- Marcela A Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| | - María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Laura Kamenetzky
- Laboratorio de Genómica y Bioinformática de Patógenos, iB3
- Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Differential expression of microRNAs and tRNA fragments mediate the adaptation of the liver fluke Fasciola gigantica to its intermediate snail and definitive mammalian hosts. Int J Parasitol 2021; 51:405-414. [PMID: 33513403 DOI: 10.1016/j.ijpara.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The tropical liver fluke Fasciola gigantica affects livestock and humans in many Asian countries, large parts of Africa, and parts of Europe. Despite the public health and economic impacts of F. gigantica, understanding of F. gigantica biology and how the complex lifecycle of this liver fluke is transcriptionally regulated remain unknown. Here, we tested the hypothesis that the regulatory small non-coding RNAs (sncRNAs), microRNAs (miRNAs) and tRNA-derived fragments (tRFs) play roles in the adaptation of F. gigantica to its intermediate and definitive hosts. We sequenced sncRNAs of eight lifecycle stages of F. gigantica. In total, 56 miRNAs from 33 conserved families and four Fasciola-specific miRNAs were identified. Expression analysis of miRNAs suggested clear stage-related patterns. By leveraging the existing transcriptomic data, we predicted a miRNA-based regulation of metabolism, transport, growth and developmental processes. Also, by comparing miRNA complement of F. gigantica with that of Fasciola hepatica, we detected a high level of conservation and identified differences in some miRNAs, which can be used to distinguish the two species. Moreover, we found that tRFs at each lifecycle stage were predominantly derived by tRNA-Lys and tRNA-Gly at 5' half sites, but relatively high expression was related to the buffalo-infecting stages. Taken together, we provided a comprehensive overview of the dynamic transcriptional changes of small RNAs that occur during the developmental stages of F. gigantica. This global analysis of F. gigantica lifecycle stages revealed new roles of miRNAs and tRFs in parasite development and will facilitate future research into understanding of fasciolosis pathobiology.
Collapse
|
17
|
Peixoto R, Silva LMR, López-Osório S, Zhou E, Gärtner U, Conejeros I, Taubert A, Hermosilla C. Fasciola hepatica induces weak NETosis and low production of intra- and extracellular ROS in exposed bovine polymorphonuclear neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103787. [PMID: 32791176 DOI: 10.1016/j.dci.2020.103787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a worldwide distributed zoonotic disease, leading to hepatitis in humans and livestock. Newly excysted juveniles (NEJ) of F. hepatica are the first invasive stages to encounter leukocytes of host innate immune system in vivo. Among leukocytes, polymorphonuclear neutrophils (PMN) are the most abundant granulocytes of blood system and first ones to migrate into infection sites. PMN are able to cast neutrophil extracellular traps (NETs), also known as NETosis, consisting of nuclear DNA, decorated with histones, enzymes and antimicrobial peptides, which can entrap and eventually kill invasive parasites. Given that only few large parasitic helminths have been identified as potent NETosis inducers, here we studied for first time whether different F. hepatica stages can also trigger NETosis. Therefore, isolated bovine PMN were co-cultured with viable F. hepatica-NEJ, -metacercariae, -eggs and soluble antigen (FhAg). Interestingly, all stages failed to induce considerable levels of NETosis as detected by immunofluorescence- and scanning electron microscopy (SEM) analyses. NEJ remained motile until the end of incubation period. In line, NETosis quantification via nuclear area expansion (NAE) analysis revealed NEJ as weak NETosis inducers. However, bovine PMN frequently displaced towards motile NEJ and were found attached to NEJ surfaces. Functional PMN chemotaxis assays using vital F. hepatica-NEJ revealed a slight increase of PMN migration when compared to non-exposed controls. Additional experiments on intra- and extracellular reactive oxygen species (ROS) production revealed that soluble FhAg failed to induce ROS production of exposed PMN. Finally, mitochondrial oxygen consumption rates (OCR), extracellular acidification rates (ERAC) and proton production rates (PPR) were not significantly increased in FhAg-stimulated PMN. In summary, data suggest that F. hepatica might effectively evade PMN activation and NETosis by secreting parasite-specific molecules to either resolve NETs or to impair NETosis signaling pathways. We call for future molecular analysis not only on F. hepatica-derived NETosis modulation but also on its possible role in fasciolosis-associated pathology in vivo.
Collapse
Affiliation(s)
- Raquel Peixoto
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| | - Liliana M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osório
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany; CIBAV Research Group, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Ershun Zhou
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Faculty of Human Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ivan Conejeros
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
18
|
Siles-Lucas M, Becerro-Recio D, Serrat J, González-Miguel J. Fascioliasis and fasciolopsiasis: Current knowledge and future trends. Res Vet Sci 2020; 134:27-35. [PMID: 33278757 DOI: 10.1016/j.rvsc.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Food-borne zoonotic trematodiases are classified as neglected diseases by the World Health Organization. Among them, fascioliasis is caused worldwide by Fasciola hepatica and F. gigantica, and represent a huge problem in livestock production and human health in endemic areas. Fasciolopsis buski, restricted to specific regions of Asia, causes fasciolopsiasis. The incidence of these trematodiases is underestimated due to under-reporting and to the lack of sensitive and widely accepted tool for their diagnosis. This, together with a rising trend in reporting of drug resistance and the need for an effective vaccine against these parasites, pose a challenge in the effective control of these diseases. Here, the latest reports on fascioliasis outbreaks between 2000 and 2020 and the most recent advances in their epidemiology, diagnosis, treatment and control are revised. Finally, future needs in the field of fascioliasis and fasciolopsiasis are presented, which could be addressed based on current knowledge and by means of new emerging technologies.
Collapse
Affiliation(s)
- Mar Siles-Lucas
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - David Becerro-Recio
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Judit Serrat
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|