1
|
Bouteldja AA, Penichet D, Srivastava LK, Cermakian N. The circadian system: A neglected player in neurodevelopmental disorders. Eur J Neurosci 2024; 60:3858-3890. [PMID: 38816965 DOI: 10.1111/ejn.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.
Collapse
Affiliation(s)
- Ahmed A Bouteldja
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Li R, Masuda K, Ono D, Kanbayashi T, Hirano A, Sakurai T. Aripiprazole disrupts cellular synchrony in the suprachiasmatic nucleus and enhances entrainment to environmental light-dark cycles in mice. Front Neurosci 2023; 17:1201137. [PMID: 37621713 PMCID: PMC10445652 DOI: 10.3389/fnins.2023.1201137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Many patients with psychiatric conditions, such as bipolar disorder and major depressive disorder, frequently experience disruptions in their sleep-wake cycles. Several case studies and clinical trials have shown that the administration of aripiprazole, a commonly prescribed antipsychotic drug, alleviates the symptoms of circadian sleep disorders in these patients. This improvement may be attributed to the effects of aripiprazole on the circadian central clock, specifically the hypothalamic suprachiasmatic nucleus (SCN), which regulates various circadian physiological rhythms, including the sleep-wake cycle, in mammals. To examine whether aripiprazole facilitates adaptation to changes in the light-dark cycle, we orally administered aripiprazole to mice and subjected them to jet-lag experiments. Mice receiving aripiprazole were more rapidly entrained to 6 h advanced light-dark cycles. Moreover, we examined the effect of aripiprazole on the cellular rhythms of SCN slice cultures and found that aripiprazole disrupted cellular synchronization in the SCN, thereby accelerating the damping of the SCN rhythm at the population level. Adenosine 3'5' monophosphate (cAMP) assay using a bioluminescence indicator revealed that intracellular cAMP level in the SCN increased following aripiprazole treatment. However, this increase was blocked by pre-treatment with the serotonin 1A receptor (5-HT1AR) antagonist. Based on these findings, we propose that aripiprazole modulates intracellular signaling, including 5-HT1AR-mediated cAMP signaling, and desynchronizes SCN neurons, ultimately leading to enhanced entrainment to phase advanced light-dark cycles in mice. These findings indicate that the improvement in sleep symptoms reported in patients with psychiatric disorders receiving aripiprazole may be due to modulation of the circadian clock. Our study provides novel insights into the potential clinical applications of aripiprazole in patients with various circadian sleep disorders.
Collapse
Affiliation(s)
- Ruoshi Li
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kosaku Masuda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Kanbayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Ibaraki Prefectural Medical Center of Psychiatry, Kasama, Japan
| | - Arisa Hirano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Yamaguchi T, Hamada T, Iijima N. Differences in recovery processes of circadian oscillators in various tissues after sevoflurane treatment in vivo. Biochem Biophys Rep 2022; 30:101258. [PMID: 35434385 PMCID: PMC9006766 DOI: 10.1016/j.bbrep.2022.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022] Open
Abstract
The inhalation anesthetic sevoflurane reversibly suppresses Period2 (Per2) mRNA expression in the suprachiasmatic nucleus (SCN). However, a discrepancy exists in phase shifting of the Per2 expression rhythm between sevoflurane application in rats (in vivo application) and explants (ex vivo application). This investigation aimed to resolve this issue. First, tissues from the SCN, choroid plexus in the lateral ventricle (CP-LV), and choroid plexus in the fourth ventricle (CP–4V), which are robust circadian oscillators, and pineal gland (PG) tissue, which is a circadian influencer, were prepared from Per2::dLuc transgenic rats. Significant phase responses of bioluminescence rhythms for different preparation times were monitored in the four tissue explant types. Second, tissue explants were prepared from anesthetized rats immediately after sevoflurane treatment, and bioluminescence rhythms were compared with those from non-anesthetized rats at various preparation times. Regarding bioluminescence rhythm phases, in vivo application of sevoflurane induced phase shifts in CP-LV, CP-4V, and PG explants according to the times that rats were administered anesthesia and the explants were prepared. Phase shifts in these peripheral explants were withdrawn due to the recovery period after the anesthetic treatment, which suggests that peripheral tissues require the assistance of related tissues or organs to correct phase shifts. In contrast, no phase shifts were observed in SCN explants. These results indicated that SCN explants can independently correct bioluminescence rhythm phase. The bioluminescence intensity of explants was also decreased after in vivo sevoflurane application. The suppressive effects on SCN explants were withdrawn due to a recovery day after the anesthetic treatment. In contrast, the suppressive effects on the bioluminescence intensities of CP-LV, CP-4V, and PG explants remained at 30 days after anesthesia administration. These results suggest that anesthetic suppression is imprinted within the peripheral tissues. We monitored bioluminescence in explants from Per2::dLuc rats after anesthesia. Sevoflurane induced phase shifts in peripheral explants but not in the SCN. Phase shifts in peripheral explants were withdrawn due to recovery period. Sevoflurane weakened the bioluminescence intensity of all explant types. The suppressive effects on peripheral explants were remained in a week later.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Toshiyuki Hamada
- Department of Pharmacology, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Norio Iijima
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara, Tochigi, Japan
- Corresponding author.
| |
Collapse
|
4
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
5
|
Knöchel C, Frickmann H, Nürnberger F. Effects of Sleep Deprivation by Olfactorily Induced Sexual Arousal Compared to Immobilization Stress and Manual Sleep Deprivation on Neuromessengers and Time Keeping Genes in the Suprachiasmatic Nuclei and Other Cerebral Entities of Syrian Hamsters-An Immunohistochemical Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179169. [PMID: 34501759 PMCID: PMC8430648 DOI: 10.3390/ijerph18179169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
We investigated the effects of sexual arousal induced by olfactory stimuli on the expression of neuromodulators, neurotransmitters and sexual steroid receptors in the suprachiasmatic nucleus (SCN, the circadian pacemaker of mammals) and other cerebral entities of Syrian hamsters (Mesocricetus auratus) compared to manual sleep deprivation and immobilization stress. The hamsters kept under a 12:12 hours (h) light:dark cycle were deprived of sleep by sexual stimulation, gentle manual handling or immobilization stress for 1 h at the beginning of the light phase and subsequently sacrificed at zeitgeber time 01:00, respectively; for comparison, hamsters were manually sleep deprived for 6 or 20 h or sacrificed after completing a full sleep phase. As demonstrated by immunohistochemistry, apart from various alterations after manual sleep deprivation, sexual stimulation caused down-regulation of arginine-vasopressin (AVP), vasointestinal peptide (VIP), serotonin (5-HT), substance P (SP), and met-enkephalin (ME) in the SCN. Somatostatin (SOM) was diminished in the medial periventricular nucleus (MPVN). In contrast, an increase in AVP was observed in the PVN, that of oxytocin (OXY) in the supraoptic nucleus (SON), of tyrosine-hydroxylase (TH) in the infundibular nucleus (IN), and dopamine beta-hydroxylase (DBH) in the A7 neuron population of the brain stem (A7), respectively. Testosterone in plasma was increased. The results indicate that sexual arousal extensively influences the neuropeptide systems of the SCN, suggesting an involvement of the SCN in reproductive behavior.
Collapse
Affiliation(s)
- Christian Knöchel
- Vitos Clincis of Forensic Psychiatry Eltville, 65346 Eltville, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Frank Nürnberger
- Institute for Anatomy II, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
6
|
San L, Arranz B. Agomelatine: A novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur Psychiatry 2020; 23:396-402. [DOI: 10.1016/j.eurpsy.2008.04.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 11/25/2022] Open
Abstract
AbstractThe clinical finding that depressive disorders are often associated with desynchronization of internal rhythms has encouraged the idea that resetting normal circadian rhythms may have antidepressant potential. Agomelatine, a naphthalene analog of melatonin, is both an agonist of human cloned melatonergic MT1 and MT2 receptors and a serotonin 5-HT2C receptor antagonist. Agomelatine combines zeitgeber (synchroniser of the circadian system) activity with neurotransmitter augmentation properties (enhances the levels of dopamine and noradrenaline in frontal cortex). The efficacy of agomelatine in treating depression has been shown in three short-term, pivotal, randomized, placebo–controlled studies. These studies have demonstrated agomelatine to be efficacious in Major Depressive Disorder at the standard dose of 25 mg/day, with the possibility of increasing doses to 50 mg/day in those patients with insufficient improvement. The number of adverse events during the treatment period was comparable to placebo. Four studies have shown the positive effect of agomelatine on sleep continuity and quality and shortening of sleep latency. Despite these promising data, further studies are needed to examine agomelatine's efficacy over a longer treatment period.
Collapse
|
7
|
Yang J, Jin HJ, Mocaër E, Seguin L, Zhao H, Rusak B. Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sci 2016; 155:147-54. [DOI: 10.1016/j.lfs.2016.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
8
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
9
|
Morioka N, Sugimoto T, Sato K, Okazaki S, Saeki M, Hisaoka-Nakashima K, Nakata Y. The induction of Per1 expression by the combined treatment with glutamate, 5-hydroxytriptamine and dopamine initiates a ripple effect on Bmal1 and Cry1 mRNA expression via the ERK signaling pathway in cultured rat spinal astrocytes. Neurochem Int 2015; 90:9-19. [DOI: 10.1016/j.neuint.2015.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/18/2015] [Accepted: 06/27/2015] [Indexed: 11/30/2022]
|
10
|
Kennaway DJ, Varcoe TJ, Voultsios A, Salkeld MD, Rattanatray L, Boden MJ. Acute inhibition of casein kinase 1δ/ε rapidly delays peripheral clock gene rhythms. Mol Cell Biochem 2014; 398:195-206. [PMID: 25245819 DOI: 10.1007/s11010-014-2219-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/12/2014] [Indexed: 12/23/2022]
Abstract
Circadian rhythms are generated through a transcription-translation feedback loop involving clock genes and the casein kinases CSNK1D and CSNK1E. In this study, we investigated the effects of the casein kinase inhibitor PF-670462 (50 mg/kg) on rhythmic expression of clock genes in the liver, pancreas and suprachiasmatic nucleus (SCN) as well as plasma corticosterone, melatonin and running behaviour in rats and compared them to the responses to a 4 h extension of the light phase. PF-670462 acutely phase delayed the rhythmic transcription of Bmal1, Per1, Per2 and Nr1d1 in both liver and pancreas by 4.5 ± 1.3 and 4.5 ± 1.2 h, respectively, 1 day after administration. In the SCN, the rhythm of Nr1d1 and Dbp mRNA expression was delayed by 4.2 and 4 h, respectively. Despite these changes, the time of peak plasma melatonin secretion was not delayed, although the plasma corticosterone rhythm and onset of wheel-running activity were delayed by 2.1 and 1.1 h, respectively. These changes are in contrast to the effects of the 4 h light extension, which resulted in delays in peak expression of the clock genes of less than 1 h and no change in the melatonin or corticosterone rhythms. The ability of the casein kinase inhibitor to bring about large phase shifts in the rhythms of major metabolic target tissues may lead to new drugs being developed to rapidly phase adjust circadian rhythms to alleviate the metabolic impact of shift work.
Collapse
Affiliation(s)
- D J Kennaway
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia,
| | | | | | | | | | | |
Collapse
|
11
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
12
|
Olfactory bulb monoamine concentrations vary with time of day. Neuroscience 2013; 247:234-41. [PMID: 23727009 DOI: 10.1016/j.neuroscience.2013.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/21/2022]
Abstract
The olfactory bulb (OB) has been recently identified as a circadian oscillator capable of operating independently of the master circadian pacemaker, the suprachiasmatic nuclei of the hypothalamus. OB oscillations manifest as rhythms in clock genes, electrical activity, and odor sensitivity. Dopamine, norepinephrine, and serotonin have been shown to modulate olfactory information processing by the OB and may be part of the mechanism that underlies diurnal changes in olfactory sensitivity. Rhythmic release of these neurotransmitters could generate OB rhythms in electrical activity and olfactory sensitivity. We hypothesized that these monoamines were rhythmically released in the OB. To test our hypotheses, we examined monoamine levels in the OB, over the course of a day, by high-performance liquid chromatography coupled to electrochemical detection. We observed that dopamine and its metabolite, 3-4-dihydroxyphenylacetic acid, rhythmically fluctuate over the day. In contrast, norepinephrine is arrhythmic. Serotonin and its metabolite hydroxyindoleacetic acid appear to rhythmically fluctuate. Each of these monoamines has been shown to alter OB circuit behavior and influence odor processing. Rhythmic release of serotonin may be a mechanism by which the suprachiasmatic nuclei communicate, indirectly, with the OB.
Collapse
|
13
|
MDMA induces Per1, Per2 and c-fos gene expression in rat suprachiasmatic nuclei. Psychopharmacology (Berl) 2012; 220:835-43. [PMID: 22038537 DOI: 10.1007/s00213-011-2541-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/09/2011] [Indexed: 10/16/2022]
Abstract
RATIONALE ±3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a psychoactive drug that has marked effects on the serotonergic system. Serotonergic agonists are known to interact with the circadian pacemaker located in the suprachiasmatic nuclei (SCN). OBJECTIVES Given changes reported in the behavioral activity rhythm following MDMA treatment, the effects of MDMA on core clock gene (Per1, Per2) and c-fos expression were evaluated. METHODS Male Long-Evans rats (n = 72) were injected once with MDMA (5 mg/kg i.p.) or saline either at the middle of their 'rest' phase (Zeitgeber Time: ZT6) or the middle of their 'active' phase (Zeitgeber Time: ZT16) and killed at 30, 60, or 120 min posttreatment for gene expression analysis in the SCN using PCR. Behavioral rhythms of a separate group of rats (n = 20) were measured following treatment at ZT16 while they were held in constant darkness for 10 days posttreatment. RESULTS At ZT6, c-fos mRNA was significantly induced 120 min post-MDMA treatment but there were no significant changes in Per1 or Per2 mRNA expression. At ZT16, there were significant inductions of c-fos mRNA (30 and 60 min) and Per1 and Per2 mRNA (both 60 min) post-MDMA treatment. However, no differences in behavioral activity patterns were noted following MDMA treatment at ZT16. CONCLUSIONS These data provide evidence that MDMA has time of day dependent actions on SCN functioning, as evident from its induction of core clock genes that are important for generating and maintaining circadian rhythmicity.
Collapse
|
14
|
OGEIL RP, RAJARATNAM SMW, BROADBEAR JH. Ecstasy and sleep disturbance: Progress towards elucidating a role for the circadian system. Sleep Biol Rhythms 2011. [DOI: 10.1111/j.1479-8425.2011.00510.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Moons T, Claes S, Martens GJM, Peuskens J, Van Loo KMJ, Van Schijndel JE, De Hert M, van Winkel R. Clock genes and body composition in patients with schizophrenia under treatment with antipsychotic drugs. Schizophr Res 2011; 125:187-93. [PMID: 21050724 DOI: 10.1016/j.schres.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/30/2022]
Abstract
CONTEXT In the healthy population, several pathways are known to exert an effect on basal metabolic factors. Previous studies have found associations between single nucleotide polymorphisms in clock genes or downstream hormone receptors such as the leptin receptor (LEPR) or glucocorticoid receptor (NR3C1) and obesity in the healthy population, but this association remains to be examined in patients with schizophrenia treated with antipsychotics. OBJECTIVE To assess anthropomorphic parameters in patients taking second-generation antipsychotics (SGA) as a function of nine polymorphisms in three core genes of the clock pathway, and two genes of downstream hormone receptors. METHODS Clinical parameters were evaluated in 261 patients with schizophrenia spectrum disorder. Polymorphisms in LEPR, MC3R, NR3C1, PER2 and SDC3 were genotyped. In order to control for multiple testing, permutation tests were used to generate corrected empirical p-values using the Max(T) procedure in PLINK. RESULTS A significant effect of the rs6196 polymorphism in the NR3C1 on weight (β=-4.18; SE=2.02; p=0.018), BMI (β=-1.88; SE=0.64; p=0.004), waist (β=-5.77; SE=1.75; p=0.001) and waist/hip ratio (β=-0.03; SE=0.012; p=0.009) was found. Permutation tests confirmed the findings for BMI (p=0.037) and waist (p=0.024). Carriers of the G allele consistently displayed better parameters than patients with the wild type allele. A weak effect of rs4949184 in SDC3 on BMI was found, but this did not sustain permutation testing (β=-1.27; SE=0.58; p=0.030, p=0.270 after permutations). CONCLUSION Variations in genes implicated in circadian regulation or its related downstream pathways may be important in the regulation of antropomorphic parameters in patients with schizophrenia during long-term treatment with SGA.
Collapse
Affiliation(s)
- Tim Moons
- University Psychiatric Centre Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Acute MDMA administration alters the distribution and circadian rhythm of wheel running activity in the rat. Brain Res 2010; 1359:128-36. [DOI: 10.1016/j.brainres.2010.08.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/21/2010] [Accepted: 08/30/2010] [Indexed: 12/29/2022]
|
17
|
Abstract
The rhythms of life are ever pervasive, touching almost every aspect of our lives. We are finely tuned to the cycle of light and dark, so that we normally sleep during the night and are active during the day. Physiological rhythms are, however, not just slaves to the solar day, but are actually generated endogenously within the suprachiasmatic nuclei in the hypothalamus and are entrained via the retina. The circadian timing system is organized hierarchically with the suprachiasmatic nuclei providing neural and/or hormonal cues to the various organ systems, allowing them to express their own rhythmic physiological output. There is now a substantial body of evidence emerging that disruption of rhythmicity through altered sleep/wake patterns and exposure to light, or through endogenous disruption of key determinants of endogenous rhythms, can be detrimental to health. Circadian rhythm disturbances have long been associated with mood disorders, especially delayed sleep onset, and evidence is accumulating that alterations to the cellular timing system may underpin some aspects of the disorders. For example, mice carrying mutations in either Clock or per2 spend less time immobile in swim tests, which has been suggested as mimicking mania. In humans, single nucleotide polymorphisms in Clock and other clock genes have been associated with depression. With this increasing knowledge we may predict that new antidepressant drugs will emerge that, as a primary or secondary mechanism of action, target and correct abnormalities in the circadian timing system.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Institute, Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Australia.
| |
Collapse
|
18
|
Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 2009; 19:887-97. [PMID: 19604677 DOI: 10.1016/j.euroneuro.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
Though serotonergic mechanisms modulate circadian rhythms, roles of individual serotonin (5-HT) receptors remain uncertain since data are lacking for antagonists. Herein, both the 5-HT(5A) receptor antagonist, A843277 (10 mg/kg), and the 5-HT(1B) antagonist, SB224289 (1 mg/kg), inhibited light-induced phase advances in hamster circadian wheel-running rhythms. Conversely, though 5-HT(1A) and 5-HT(7) receptors are likewise implicated in circadian scheduling, their blockade by WAY100635 (0.5 mg/kg) and SB269970 (1 mg/kg), respectively, was ineffective. Since actions of 5-HT reuptake inhibitors are modified by antagonists, we evaluated their influence on suppression of phase advances by citalopram (10 mg/kg). Its action was potentiated by WAY100635 and the 5-HT(2C) antagonist, SB242084 (1 mg/kg), but not by A842377, SB224289, SB269970, and antagonists at 5-HT(2A) (MDL100907) and 5-HT(6) (SB399885) receptors. In conclusion, this is the first in vivo evidence for an influence of 5-HT(5A) receptors upon circadian rhythms, but no single class of 5-HT receptor mediates their control by citalopram.
Collapse
|
19
|
Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Biogerontology 2009; 11:299-308. [PMID: 19774481 DOI: 10.1007/s10522-009-9248-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 09/10/2009] [Indexed: 01/08/2023]
Abstract
The decline in physiological functions with aging may affect the ability of the SCN, the biological clock, circadian pacemaker to transmit rhythmic information to other neural target sites, and thereby modify the expression of biological rhythms resulting in circadian disorders. Neurotransmitter serotonin plays important role in the photic and non-photic regulation of circadian rhythms and is a precursor of neurohormone melatonin, an internal zeitgeber. To assess effects of aging on the functional integrity of circadian system, we studied daily serotonin rhythms in the SCN by measuring serotonin levels at variable time points in wide range of age groups such as 15 days, 1, 2, 3 (adult), 4, 6, 9, 12, 18 and 24 months old male wistar rats. Animals were maintained in light-dark conditions (LD; 12:12) two weeks prior to experiment. We report here that in 15 days, 1 and 2 months old rat SCN the mean serotonin level is low and daily serotonin rhythm is just beginning; at 3, 4 and 6 months, serotonin levels and rhythms are robust and at 9, 12, 18 and 24 months mean serotonin levels are low again and rhythm is becoming more disrupted. Previous studies have shown the 5-HT rhythmicity was established by 3 month in rat brain but disintegrated by 6 months of age. As melatonin, an endogenous synchronizer and an antiaging agent, declines with aging, the effects of exogenous melatonin administration on serotonin rhythmicity in SCN in 3, 6, 9 and 24 months old rats were studied to assess effects of aging on responsiveness to melatonin. Our studies indicated an age related loss of sensitivity to melatonin in the restoration of age induced changes in SCN serotonin amplitude and rhythmicity.
Collapse
|
20
|
Cuesta M, Clesse D, Pévet P, Challet E. New light on the serotonergic paradox in the rat circadian system. J Neurochem 2009; 110:231-43. [PMID: 19457131 DOI: 10.1111/j.1471-4159.2009.06128.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main mammalian circadian clock, localized in the suprachiasmatic nuclei can be synchronized not only with light, but also with serotonergic activation. Serotonergic agonists and serotonin reuptake inhibitors (e.g., fluoxetine) have a non-photic influence (shifting effects during daytime and attenuation of photic resetting during nighttime) on hamsters' and mice' main clock. Surprisingly, in rats serotonergic modulation of the clock shows essentially photic-like features in vivo (shifting effects during nighttime). To delineate this apparent paradox, we analyzed the effects of fluoxetine and serotonin agonists on rats' clock. First, fluoxetine induced behavioral phase-advances associated with down-regulated expression of the clock genes Per1 and Rorbeta and up-regulated expression of Rev-erbalpha during daytime. Moreover, fluoxetine produced an attenuation of light-induced phase-advances in association with altered expression of Per1, Per2 and Rorbeta during nighttime. Second, we showed that 5-HT(1A) receptors -maybe with co-activation of 5-HT(7) receptors- were implicated in non-photic effects on the main clock. By contrast, 5-HT(3) and 5-HT(2C) receptors were involved in photic-like effects and, for 5-HT(2C) subtype only, in potentiation of photic resetting. Thus this study demonstrates that as for other nocturnal rodents, a global activation of the serotonergic system induces non-photic effects in the rats' clock during daytime and nighttime.
Collapse
Affiliation(s)
- Marc Cuesta
- Département de Neurobiologie des Rythmes, Institut de Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
21
|
Kang SW, Leclerc B, Mauro LJ, El Halawani ME. Serotonergic and catecholaminergic interactions with co-localised dopamine-melatonin neurones in the hypothalamus of the female turkey. J Neuroendocrinol 2009; 21:10-9. [PMID: 19094089 DOI: 10.1111/j.1365-2826.2008.01804.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serotonin and catecholamines (dopamine, norepinephrine, epinephrine) have important roles as neurotransmitters in avian reproduction, but their anatomical relationship to the neuroendocrine circuitry that regulates reproduction is poorly understood. Our previous studies have shown that co-localised dopamine-melatonin (DA-MEL) neurones in the avian premammillary nucleus (PMM) are active during periods of photoresponsiveness and, therefore, are potentially photosensitive neurones. Because serotonergic and catecholaminergic neurotransmitters are important regulators of reproductive function in the female turkey, we hypothesised that the serotonergic/catecholaminergic neurones within the brainstem might interact with PMM DA-MEL neurones and constitute an important circuit for reproductive function. To examine this possible interaction, the retrograde fluorescent tract tracer, 1,1'dioctadecyl-3,3,3'3'-tetramethyleindocarbocyanine perchlorate (DiI) was injected into the PMM, and combined with serotonin, tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and phenyl N-methyltransferse (PNMT) immunocytochemistry to reveal neuroanatomical connections. Changes in the activities of serotonergic, dopaminergic, adrenergic and noradrenergic neuronal systems projecting to the PMM were measured at different reproductive states with in situ hybridisation (ISH) techniques, using tryptophan hydroxylase 2 (TPH2) and TH mRNA expression, respectively. Cells labelled with DiI were found in anatomically discrete areas in or near the hypothalamus and the brainstem. Double immunocytochemistry confirmed that there were serotonin, DBH and PNMT fibres in close apposition to DA-MEL neurones. TPH2 mRNA expression in serotonin neurones was found in several nuclei, and its most abundant mRNA expression was seen in the nucleus Locus ceruleus of laying and incubating hens. TH mRNA expression levels in the six catecholaminegic areas labelled with DiI was measured across the different reproductive states. In the nucleus tractus solitarius (adrenergic), the highest level of TH mRNA expression was found in photorefractory hens and the lowest level in incubating hens. These observed patterns of serotonin/catecholamine neuronal distribution and their variable interactions with PMM DA-MEL neurones during different reproductive states may offer a significant neuroanatomical basis for understanding the control of avian reproductive seasonality.
Collapse
Affiliation(s)
- S W Kang
- Department of Animal Science, University of Minnesota, St. Paul, MN, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Basic scientific advances in understanding the neuropsychobioloqy of bipolar disorder have given us a multitude of opportunities to explore and exploit new avenues of therapeutics. Pharmacotherapeutic approaches include: neuropeptides (agonists such as thyrotropin-releasing hormone and antagonists such as corticotropin-releasing hormone), neurotrophic factors (especially brain-derived neurotrophic factor), and glutamatergic mechanisms (such as riluzole, ketamine, and antagonists of the NR-2B subunit of the glutamate receptor). Physiological interventions that would offer alternatives to electroconvulsive therapy include: repeated transcranial magnetic stimulation, especially at more intense stimulation parameters; magnetic stimulation therapy (seizures induced more focally by magnetic rather than electrical stimulation with resulting reduced meaning loss); vagal nerve stimulation, and deep brain stimulation. However, these, as well as the panoply of existing treatments, require further intensive investigation to place each of them in the proper therapeutic seguence and combination for the individual patient, based on development of better clinical and biological predictors of response. Large clinical trial networks and development of systematic research in clinical practice settings, such as that featured by the National Cancer institute for cancer chemotherapy, would greatly accelerate the progress in incorporating new, as well as existing, agents into the best treatment strategies. The bipolar disorders, which are increasingly recognized as complex, highly comorbid conditions with a high morbidity and mortality, of which the majority start in childhood and adolescence, are not likely to respond completely to any single new treatment agent, and new public health initiatives and research strategies are needed as much as any new single treatment advance.
Collapse
Affiliation(s)
- Robert M Post
- George Washington University School of Medicine, USA.
| |
Collapse
|
23
|
Smith VM, Sterniczuk R, Phillips CI, Antle MC. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Neuroscience 2008; 157:513-23. [PMID: 18930788 DOI: 10.1016/j.neuroscience.2008.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
24
|
Activation of 5-HT2C receptors acutely induces Per1 gene expression in the rat SCN in vitro. Brain Res 2008; 1209:19-28. [DOI: 10.1016/j.brainres.2008.02.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/01/2008] [Accepted: 02/24/2008] [Indexed: 11/18/2022]
|
25
|
Kumar HBK, Purushottam M, Kubendran S, Gayathri P, Mukherjee O, Murthy AR, Ghosh S, Chandra P, Reddy YCJ, Benegal V, Brahmachari SK, Jain S. Serotonergic candidate genes and puerperal psychosis: an association study. Psychiatr Genet 2007; 17:253-60. [PMID: 17728663 DOI: 10.1097/ypg.0b013e3280ae6cc3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Altered serotonergic function is implicated in the aetiology and pathogenesis of a host of psychiatric disorders, and structural variations/polymorphisms in genes encoding the serotonin transporter and various serotonin receptor subtypes are attractive candidates to investigate the biological component underlying these disorders. Specific phenotypic subtypes, that perhaps represent homogeneous forms of the disorder, may increase the power to detect genes in complex diseases. OBJECTIVE We investigated regulatory and functional polymorphic DNA markers of serotonergic candidate genes using a case-control approach in puerperal psychosis and bipolar affective disorder probands. METHODS We genotyped 320 female participants (104 puerperal psychosis probands, 102 bipolar disorder participants and 114 controls) at the serotonin transporter SERT (5-HTT) 5-HTTVNTR and 5-HTTLPR locus; serotonin receptor 2A (5-HT2A)-T102C and His452Tyr loci, the serotonin receptor 2C (5-HT2C)-Cys23Ser locus, and seven unrelated Alu polymorphic markers. RESULTS We observed an association of the puerperal psychosis phenotype with the allele 10 of 5-HTTVNTR of SERT (P=0.004) and a modest association with the genotypic frequencies of the 5-HTTLPR (P=0.036). A nominal P value of 0.006 was observed with the S-10 haplotype in the PP group as compared with bipolar affective disorder probands. Significant association was observed with bipolar affective disorder phenotype with Tyr allele of the 5-HT2A His452Tyr gene polymorphism (P=0.00043) even after a conservative multiple test correction. No association was observed, however, with the 5-HT2A T102C locus, and the distribution of the other seven Alu markers did not differ between the groups. CONCLUSION The association between polymorphisms in serotonergic genes (SERT and 5-HT2A, 5-HT2C) suggests that these genetic factors can modulate vulnerability to puerperal psychosis in female bipolar participants.
Collapse
Affiliation(s)
- H B Kiran Kumar
- Molecular Genetics Laboratory, [corrected] National Institute of Mental Health and Neurosciences, [corrected] Bangalore, Karnataka [corrected] India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Olié JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 2007; 10:661-73. [PMID: 17477888 DOI: 10.1017/s1461145707007766] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Current antidepressants used in major depressive disorder (MDD) are still not efficacious enough for many patients due to high levels of treatment resistance and bothersome side-effects. Using a novel blinding method (interactive voice response system), this flexible-dosing study examined the effects of therapeutic doses of agomelatine, a new approach to depressive therapy offering potent melatonergic MT1/MT2 receptor agonism with 5-HT2C receptor antagonist properties, in patients with moderate-to-severe MDD. This 6-wk, double-blind, parallel-group study randomized 238 patients to 25 mg/d agomelatine (with dose adjustment at 2 wk to 50 mg/d in patients with insufficient improvement) or placebo. Depression severity was assessed using the Hamilton Depression Rating Scale (HAMD) and the Clinical Global Impression (CGI) scale. Agomelatine was significantly more efficacious than placebo, with an agomelatine-placebo difference of 3.44 (p<0.001) using the HAMD final total score. Compared with placebo, agomelatine also had a significant positive impact on CGI - Improvement (treatment difference=0.45) and CGI - Severity (treatment difference=0.50) (both p=0.006), response rate (54.3% vs. 35.5% with placebo, p<0.05) and time to first response (p=0.008). Similar results were seen in patients with the most severe MDD. Depressed mood and sleep items of the HAMD were also significantly improved with agomelatine, which was well tolerated with a safety profile similar to placebo at both doses. This study confirms that agomelatine is effective in treating major depression, including the most severely depressed patients, with a good safety and tolerability profile, therefore providing physicians with an effective pharmacological approach to antidepressant therapy.
Collapse
Affiliation(s)
- Jean Pierre Olié
- Sainte Anne Hospital, University Department of Psychiatry, Paris, France.
| | | |
Collapse
|
27
|
Jenkins TC, Andrews JB, Meyer-Bernstein EL. Daily oscillation of phospholipase C beta4 in the mouse suprachiasmatic nucleus. Brain Res 2007; 1178:83-91. [PMID: 17920566 DOI: 10.1016/j.brainres.2007.07.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 11/26/2022]
Abstract
An endogenous biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) regulates the timing of an organism's physiology and behavior. A variety of receptors are found on SCN pacemaker cells which permit the clock mechanism to respond to extra- and intra-SCN chemical messengers. A subset of these receptors is coupled to G-proteins, which when bound, lead to the activation of a variety of intracellular signaling cascades. One common signaling pathway employs the phosphotidylinositol-specific phospholipase C enzyme to increase intracellular calcium levels. A specific isoform of this enzyme, phospholipase C beta4, is of particular interest to circadian biologists because in its absence, mice display a circadian phenotype. Moreover, it has been shown to be associated with receptor types that are involved in clock resetting. Despite compelling data that this enzyme could be a critical component of an intracellular signaling pathway in the SCN, no study to date has investigated the possible oscillation of phospholipase C in any mammalian tissue. In the present study, we analyzed the temporal variation in the number of phospholipase C beta4 immunoreactive cells in the SCN. Herein, we show that PLCbeta4 levels oscillate in the SCN of mice housed in a light:dark photoperiod. Protein levels reached a significant peak during the early night and a trough during the day. The oscillation was considerably damped in the SCN of mice housed in constant dark conditions indicating the cycle is photoperiod-dependent. These data are critical to understanding the temporal regulation of a variety of inputs to the mammalian central circadian clock.
Collapse
Affiliation(s)
- Travis C Jenkins
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | | | | |
Collapse
|
28
|
Nichols CD. 5-HT2 receptors in Drosophila are expressed in the brain and modulate aspects of circadian behaviors. Dev Neurobiol 2007; 67:752-63. [PMID: 17443822 DOI: 10.1002/dneu.20370] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dysregulation of 5-HT(2) receptor function has been strongly implicated in many neuropsychiatric disorders, including schizophrenia. At present, the molecular mechanisms linking 5-HT(2) receptor activation to behaviors is not well understood. In efforts to elucidate these processes, the fruit fly, Drosophila melanogaster, is proposed to serve as a powerful genetically tractable model organism to study 5-HT(2) receptor function. Data are presented here on the expression of the fly ortholog of the mammalian 5-HT(2) receptor, 5-HT(2)Dro, in the larval and adult brain of the fly, and on the involvement of these circuits in certain circadian behaviors. In the adult brain, 5-HT(2)Dro is expressed in the protocerebrum and ellipsoid body, areas believed to participate in higher order behaviors including learning, locomotion, and sensory perception. In the third instar larva, 5-HT(2)Dro receptor expression is detected in a specific pattern that markedly changes from early to late third instar. To probe the function of this receptor we have examined the effects of the 5-HT(2) receptor-specific agonist DOI in wild type and 5-HT(2)Dro hypomorphic flies on circadian behaviors. DOI was found to increase early day activity, eliminate anticipatory behavior, and reduce viability. The effects of DOI were significantly diminished in a 5-HT(2)Dro hypomorphic strain. Identifying the 5-HT(2)Dro receptor circuitry and behaviors they mediate are significant steps towards developing this model system to study conserved molecular mechanisms underlying behaviors mediated by 5-HT(2) receptors in mammalian systems.
Collapse
Affiliation(s)
- Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
29
|
Graff C, Challet E, Pévet P, Wollnik F. 5-HT3 receptor-mediated photic-like responses of the circadian clock in the rat. Neuropharmacology 2007; 52:662-71. [PMID: 17084866 DOI: 10.1016/j.neuropharm.2006.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 09/08/2006] [Accepted: 09/20/2006] [Indexed: 11/30/2022]
Abstract
Serotonin (5-HT) and 5-HT agonists have various resetting effects on the master clock, located in the suprachiasmatic nucleus (SCN), depending on the species. In rats, they induce photic-like effects on both locomotor activity rhythms and gene expression in the SCN. The 5-HT receptor(s) mediating these effects at circadian time 22 are localized in the SCN, most likely at a presynaptic level, on the retinohypothalamic terminals (RHT) known to convey photic information by releasing glutamate. Indeed, RHT degeneration blocks photic-like effects of a non-specific 5-HT agonist, quipazine. However, the 5-HT receptor subtype(s) involved is still unknown, although 5-HT(3) receptor activation is known to induce glutamate release. We thus analyzed the effects of selective 5-HT(3) agonist and antagonist, as well as a specific NMDA receptor antagonist, on different parameters of the clock. This study shows that the 5-HT(3) receptor mediates the resetting effects of quipazine on locomotor activity rhythms. The 5-HT(3) receptor is only partially implicated in quipazine-induced expression of c-FOS, while NMDA receptor inhibition blocks quipazine photic-like effects on both parameters. Taken together, photic-like responses produced by 5-HT stimulation in rats are likely mediated by (presynaptic?) 5-HT(3) receptor activation followed by NMDA receptor activation.
Collapse
Affiliation(s)
- Caroline Graff
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|
30
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
31
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
32
|
Gannon RL, Millan MJ. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors. Neuroscience 2005; 137:287-99. [PMID: 16289351 DOI: 10.1016/j.neuroscience.2005.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/31/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
Mammalian circadian activity rhythms are generated by pacemaker cells in the suprachiasmatic nucleus (SCN). As revealed by the actions of diverse agonists, serotonergic input from raphe nuclei generally inhibits photic signaling in the suprachiasmatic nucleus. In contrast, the serotonin (5HT)1A partial agonist, 4-(benzodioxan-5-yl)1-(indan2-yl)piperazine (S 15535), was found to enhance the phase-shifting influence of light on hamster circadian rhythms [Gannon, Neuroscience 119 (2003) 567]. Herein, we extend this observation in showing that S 15535 (5.0 mg/kg, i.p.) markedly (275%) enhanced the light-induced phase shift in circadian activity rhythms: further, this action was dose-dependently abolished by the highly-selective 5HT1A receptor antagonist, WAY 100,635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-2-pyridinyl-cyclohexane-carboxamide maleate) (0.1-0.5 mg/kg, i.p.). WAY 100,635, which was inactive alone, shares the antagonist actions of S 15535 at postsynaptic 5HT1A sites, yet blocks its effects at their presynaptic counterparts. Thus, 5HT1A autoreceptor activation must be involved in this effect of S 15535 which contrasts with the opposite, inhibitory influence upon phase shifts of the "full" agonist, 8-OH-DPAT, which acts by stimulation of postsynaptic 5HT1A receptors [Rea et al., J Neurosci 14 (1994) 3635]. Despite the occurrence of 5HT2A and 5HT2C receptors in the (rat) suprachiasmatic nucleus, their influence on circadian rhythms is unknown since actions of selective ligands have never been evaluated. This issue was investigated with the most selective agents currently available. However, the 5HT2A agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.25 and 0.5 mg/kg), and the 5HT2C agonist, alphaS-6-chloro-5-fluoro-a-methyl-1H-indole-1-ethanamine fumarate (Ro-60-0175) (1.0 and 5.0 mg/kg), failed to affect light-induced phase shifts in hamsters. Moreover, even over broad dose-ranges, the 5HT2A antagonist, (+)-(2,3-dimethoxy-phenyl)-[1-[2-(4-fluoro-phenyl)-ethyl]-piperidin-4-yl]methanol (MDL 100,907) (0.1-1.0 mg/kg), and the 5HT2C antagonist, 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl carbamoyl]indoline (SB 242,084) (1.0-10.0 mg/kg), were likewise inactive. In view of evidence that 5HT2A and 5HT2C sites functionally interact with 5HT1A receptors, we also examined the influence of these agents upon the actions of S 15535, but no significant alteration was seen in its enhancement of rhythms. In conclusion, S 15535 elicits a striking enhancement of light-induced phase shifts in circadian rhythms by specifically recruiting 5HT1A autoreceptors, which leads to suppression of serotonergic input to the suprachiasmatic nucleus. Surprisingly, no evidence for a role of 5HT2A or 5HT2C sites was found, though comparable functional studies remain to be undertaken in rats. Indeed, the present work underlines the importance of comparative studies of circadian rhythms in various species, as well as the need for further study of potential interactions among 5HT receptor subtypes in their control.
Collapse
MESH Headings
- Animals
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Dose-Response Relationship, Drug
- Male
- Mesocricetus
- Piperazines/pharmacology
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Suprachiasmatic Nucleus/drug effects
- Suprachiasmatic Nucleus/metabolism
Collapse
Affiliation(s)
- R L Gannon
- Department of Biology, Idle Hour Boulevard, Dowling College, Oakdale, NY 11769, USA.
| | | |
Collapse
|
33
|
Graff C, Kohler M, Pévet P, Wollnik F. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat. Neuroscience 2005; 135:273-83. [PMID: 16084651 DOI: 10.1016/j.neuroscience.2005.05.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/19/2005] [Accepted: 05/29/2005] [Indexed: 10/25/2022]
Abstract
Light is the major synchronizer of the mammalian circadian pacemaker located in the suprachiasmatic nucleus. Photic information is perceived by the retina and conveyed to the suprachiasmatic nucleus either directly by the retinohypothalamic tract or indirectly by the intergeniculate leaflet and the geniculohypothalamic tract. In addition, serotonin has been shown to affect the suprachiasmatic nucleus by both direct and indirect serotonin projections from the raphe nuclei. Indeed, systemic as well as local administrations of the serotonin agonist quipazine in the region of the suprachiasmatic nucleus mimic the effects of light on the circadian system of rats, i.e. they induce phase-advances of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus during late subjective night. The aim of this study was to localize the site(s) of action mediating those effects. Phase shifts of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus after s.c. injection of quipazine (10 mg/kg) were assessed in Lewis rats, which had received either radio-frequency lesions of the intergeniculate leaflet or infusions of the serotonin neurotoxin 5,7-dihydroxytryptamine into the suprachiasmatic nucleus (25 microg) or bilateral enucleation. Lesions of intergeniculate leaflet and serotonin afferents to the suprachiasmatic nucleus did not reduce the photic-like effects of quipazine, whereas bilateral enucleation and the subsequent degeneration of the retinohypothalamic tract abolished both the phase-shifting and the FOS-inducing effects of quipazine. The results indicate that photic-like effects of quipazine are mediated via the retinohypothalamic tract.
Collapse
Affiliation(s)
- C Graff
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|