1
|
Situ M, Citalan-Madrid AF, Stamatovic SM, Keep RF, Andjelkovic AV. Transcriptomic Profile of Blood–Brain Barrier Remodeling in Cerebral Amyloid Angiopathy. Front Cell Neurosci 2022; 16:931247. [PMID: 35813502 PMCID: PMC9257207 DOI: 10.3389/fncel.2022.931247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a small vessel disease characterized by amyloid β (Aβ) peptide deposition within the walls of medium to small-caliber blood vessels, cerebral microhemorrhage, and blood–brain barrier (BBB) leakage. It is commonly associated with late-stage Alzheimer’s disease. BBB dysfunction is indicated as a pathological substrate for CAA progression with hyperpermeability, enhancing the extravasation of plasma components and inducing neuroinflammation, further worsening BBB injury and contributing to cognitive decline. Although significant effort has been made in defining the gene mutations and risk factors involved in microvascular alterations with vascular dementia and Alzheimer’s disease, the intra- and intercellular pathogenic mechanisms responsible for vascular hyperpermeability are still largely unknown. The present study aimed to elucidate the transcriptional profile of the cerebral microvessels (BBB) in a murine model with CAA vasculopathy to define potential causes and underlying mechanisms of BBB injury. A comprehensive RNA sequencing analysis was performed of CAA vasculopathy in Tg-SwDI mice at 6 and 18 months in comparison to age-matched wildtype controls to examine how age and amyloid accumulation impact the transcriptional signature of the BBB. Results indicate that Aβ has a critical role in triggering brain endothelial cell and BBB dysfunction in CAA vasculopathy, causing an intense proinflammatory response, impairing oxidative metabolism, altering the coagulation status of brain endothelial cells, and remodeling barrier properties. The proinflammatory response includes both adaptive and innate immunity, with pronounced induction of genes that regulate macrophage/microglial activation and chemokines/adhesion molecules that support T and B cell transmigration. Age has an important impact on the effects of Aβ, increasing the BBB injury in CAA vasculopathy. However, early inflammation, particularly microglia/macrophage activation and the mediators of B lymphocytes’ activities are underlying processes of BBB hyperpermeability and cerebral microbleeds in the early stage of CAA vasculopathy. These findings reveal a specific profile of the CAA-associated BBB injury that leads to a full progression of CAA.
Collapse
Affiliation(s)
- Muyu Situ
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Anuska V. Andjelkovic,
| |
Collapse
|
2
|
Ferguson LB, Patil S, Moskowitz BA, Ponomarev I, Harris RA, Mayfield RD, Messing RO. A Pathway-Based Genomic Approach to Identify Medications: Application to Alcohol Use Disorder. Brain Sci 2019; 9:E381. [PMID: 31888299 PMCID: PMC6956180 DOI: 10.3390/brainsci9120381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic, excessive alcohol use alters brain gene expression patterns, which could be important for initiating, maintaining, or progressing the addicted state. It has been proposed that pharmaceuticals with opposing effects on gene expression could treat alcohol use disorder (AUD). Computational strategies comparing gene expression signatures of disease to those of pharmaceuticals show promise for nominating novel treatments. We reasoned that it may be sufficient for a treatment to target the biological pathway rather than lists of individual genes perturbed by AUD. We analyzed published and unpublished transcriptomic data using gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to identify biological pathways disrupted in AUD brain and by compounds in the Library of Network-based Cellular Signatures (LINCS L1000) and Connectivity Map (CMap) databases. Several pathways were consistently disrupted in AUD brain, including an up-regulation of genes within the Complement and Coagulation Cascade, Focal Adhesion, Systemic Lupus Erythematosus, and MAPK signaling, and a down-regulation of genes within the Oxidative Phosphorylation pathway, strengthening evidence for their importance in AUD. Over 200 compounds targeted genes within those pathways in an opposing manner, more than twenty of which have already been shown to affect alcohol consumption, providing confidence in our approach. We created a user-friendly web-interface that researchers can use to identify drugs that target pathways of interest or nominate mechanism of action for drugs. This study demonstrates a unique systems pharmacology approach that can nominate pharmaceuticals that target pathways disrupted in disease states such as AUD and identify compounds that could be repurposed for AUD if sufficient evidence is attained in preclinical studies.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shruti Patil
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bailey A. Moskowitz
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Robert A. Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Roy D. Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Saad MH, Rumschlag M, Guerra MH, Savonen CL, Jaster AM, Olson PD, Alazizi A, Luca F, Pique-Regi R, Schmidt CJ, Bannon MJ. Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. Sci Rep 2019; 9:1534. [PMID: 30733491 PMCID: PMC6367337 DOI: 10.1038/s41598-018-38209-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.
Collapse
Affiliation(s)
- Manal H Saad
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Matthew Rumschlag
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Michael H Guerra
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Candace L Savonen
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Alaina M Jaster
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Philip D Olson
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA
| | - Adnan Alazizi
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Francesca Luca
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Roger Pique-Regi
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, MI, 48201, USA.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- University of Michigan School of Medicine, Department of Pathology, Detroit, MI, 48109, USA
| | - Michael J Bannon
- Wayne State University School of Medicine, Department of Pharmacology, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Co-signaling Molecules in Neurological Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:233-265. [PMID: 31758537 DOI: 10.1007/978-981-32-9717-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Cerebrospinal fluid pentraxin 3 and CD40 ligand in anti- N -menthyl- d -aspartate receptor encephalitis. J Neuroimmunol 2018; 315:40-44. [DOI: 10.1016/j.jneuroim.2017.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
|
6
|
CD40-mediated amplification of local immunity by epithelial cells is impaired by HPV. J Invest Dermatol 2014; 134:2918-2927. [PMID: 24945092 PMCID: PMC4227541 DOI: 10.1038/jid.2014.262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022]
Abstract
The interaction between the transmembrane glycoprotein surface receptor CD40 expressed by skin epithelial cells (ECs) and its T-cell–expressed ligand CD154 was suggested to exacerbate inflammatory skin diseases. However, the full spectrum of CD40-mediated effects by ECs underlying this observation is unknown. Therefore, changes in gene expression after CD40 ligation of ECs were studied by microarrays. CD40-mediated activation for 2 hours stimulated the expression of a coordinated network of immune-involved genes strongly interconnected by IL8 and TNF, whereas after 24 hours anti-proliferative and anti-apoptotic genes were upregulated. CD40 ligation was associated with the production of chemokines and the attraction of lymphocytes and myeloid cells from peripheral blood mononuclear cells (PBMCs). Thus, CD40-mediated activation of ECs resulted in a highly coordinated response of genes required for the local development and sustainment of adaptive immune responses. The importance of this process was confirmed by a study on the effects of human papilloma virus (HPV) infection to the EC's response to CD40 ligation. HPV infection clearly attenuated the magnitude of the response to CD40 ligation and the EC's capacity to attract PBMCs. The fact that HPV attenuates CD40 signaling in ECs indicates the importance of the CD40-CD154 immune pathway in boosting cellular immunity within epithelia.
Collapse
|
7
|
Obulesu M, Jhansilakshmi M. Neuroinflammation in Alzheimer's disease: an understanding of physiology and pathology. Int J Neurosci 2013; 124:227-35. [DOI: 10.3109/00207454.2013.831852] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Li R, He P, Cui J, Staufenbiel M, Harada N, Shen Y. Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer's transgenic mice. Mol Neurobiol 2012. [PMID: 23180279 DOI: 10.1007/s12035-012-8377-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Estrogens have been found to improve memory and reduce risk of dementia, although conflicting results such as failure of estrogen replacement therapy for treatment of Alzheimer's disease (AD) also has been reported. Only recently, our published human brain studies showed a depletion of brain estrogen in women with AD, while other studies have demonstrated cognitive impairment believed to be caused by inhibition of endogenous estrogen synthesis in females. To investigate whether the shortage of brain estrogen alters the sensitivity of response to estrogen replacement therapy, we have used genetic and surgical animal models to examine the response of estrogen treatment in AD neuropathology. Our studies have shown that early treatment with 17β-estradiol (E2) or genistein could reduce brain amyloid levels by increasing Aβ clearance in both APP23 mice with genetic deficiency of aromatase (APP/Ar(+/-)), in which the brains contain nondetectable levels of estrogen, and in APP23 mice with an ovariectomy (APP/OVX), in which the brains still contain certain levels of estrogen. However, only APP/Ar(+/-) mice showed a great reduction in brain amyloid plaque formation after E2 or genistein treatment along with downregulation of β-secretase (BACE1) mRNA and protein expression. Our results suggest that early and long-term usage of E2 and/or genistein may prevent AD pathologies in a dependent manner on endogenous brain estrogen levels in aged females.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education, Roskamp Institute, 2040 Whitfield Ave., Sarasota, FL 34243, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain. ACTA ACUST UNITED AC 2012; 7:117-28. [PMID: 22377050 DOI: 10.1017/s1740925x12000026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is known to play a pro-nociceptive role after peripheral nerve injury upon its release from primary afferent neurons in preclinical models of neuropathic pain. We previously demonstrated a critical role for spinal cord microglial CD40 in the development of spinal nerve L5 transection (L5Tx)-induced mechanical hypersensitivity. Herein, we investigated whether CGRP is involved in the CD40-mediated behavioral hypersensitivity. First, L5Tx was found to significantly induce CGRP expression in wild-type (WT) mice up to 14 days post-L5Tx. This increase in CGRP expression was reduced in CD40 knockout (KO) mice at day 14 post-L5Tx. Intrathecal injection of the CGRP antagonist CGRP8-37 significantly blocked L5Tx-induced mechanical hypersensitivity. In vitro, CGRP induced glial IL-6 and CCL2 production, and CD40 stimulation added to the effects of CGRP in neonatal glia. Further, there was decreased CCL2 production in CD40 KO mice compared to WT mice 21 days post-L5Tx. However, CGRP8-37 did not significantly affect spinal cord CCL2 production following L5Tx in WT mice. Altogether, these data suggest that CD40 contributes to the maintenance of behavioral hypersensitivity following peripheral nerve injury in part through two distinct pathways, the enhancement of CGRP expression and spinal cord CCL2 production.
Collapse
|
10
|
Paris D, Beaulieu-Abdelahad D, Bachmeier C, Reed J, Ait-Ghezala G, Bishop A, Chao J, Mathura V, Crawford F, Mullan M. Anatabine lowers Alzheimer's Aβ production in vitro and in vivo. Eur J Pharmacol 2011; 670:384-91. [PMID: 21958873 DOI: 10.1016/j.ejphar.2011.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/29/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
Abstract
Brain Aβ accumulation represents a key pathological hallmark in Alzheimer's disease. In this study, we investigated the impact of anatabine, a minor alkaloid present in plants of the Solanacea family on Aβ production in vitro using a cell line overexpressing the human amyloid precursor protein (APP) and in vivo using a transgenic mouse model of Alzheimer's disease. In vitro, anatabine lowers Aβ₁₋₄₀ and Aβ₁₋₄₂ levels in a dose dependent manner and reduces sAPPβ production without impacting sAPPα levels suggesting that anatabine lowers Aβ production by mainly impacting the β-cleavage of APP. Additionally, we show that anatabine lowers NFκB activation at doses that inhibit Aβ production in vitro. Since NFκB is known to regulate BACE-1 expression (the rate limiting enzyme responsible for Aβ production), we determined the impact of anatabine on BACE-1 transcription. We show that anatabine inhibits BACE-1 transcription and reduces BACE-1 protein levels in human neuronal like SHSY-5Y cells suggesting that the Aβ lowering properties of anatabine are mediated via a regulation of BACE-1 expression. In vivo, we show that an acute treatment with anatabine for four days significantly lowers brain soluble Aβ₁₋₄₀ and Aβ₁₋₄₂ levels in a transgenic mouse model of Alzheimer's disease. Altogether our data suggest that anatabine may represent an interesting compound for regulating brain Aβ accumulation.
Collapse
Affiliation(s)
- Daniel Paris
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oxidative Stress and β-Amyloid Protein in Alzheimer’s Disease. Neuromolecular Med 2011; 13:223-50. [DOI: 10.1007/s12017-011-8155-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022]
|
12
|
Pratheeshkumar P, Raphael TJ, Kuttan G. Nomilin Inhibits Metastasis via Induction of Apoptosis and Regulates the Activation of Transcription Factors and the Cytokine Profile in B16F-10 Cells. Integr Cancer Ther 2011; 11:48-60. [DOI: 10.1177/1534735411403307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nomilin is a triterpenoid present in common edible citrus fruits with putative anticancer properties. In this study, the authors investigated the antimetastatic potential of nomilin and its possible mechanism of action. Metastasis was induced in C57BL/6 mice through the lateral tail vein using highly metastatic B16F-10 melanoma cells. Administration of nomilin inhibited tumor nodule formation in the lungs (68%) and markedly increased the survival rate of the metastatic tumor–bearing animals. These results correlated with the biochemical parameters and histopathological analysis. Nomilin showed an inhibition of tumor cell invasion and activation of matrix metalloproteinases. Treatment with nomilin induced apoptotic response, characterized by an increase in the sub-G1 fraction of cells with chromatin condensation and membrane blebbing, a typical ladder of DNA fragmentation, and detection of apoptotic cells by TUNEL assay. Nomilin treatment also exhibited a downregulated Bcl-2 and cyclin-D1 expression and upregulated p53, Bax, caspase-9, caspase-3, p21, and p27 gene expression in B16F-10 cells. Proinflammatory cytokine production and gene expression were found to be downregulated in nomilin-treated cells. The study also reveals that nomilin could inhibit the activation and nuclear translocation of antiapoptotic transcription factors such as nuclear factor (NF)-κB, CREB, and ATF-2 in B16F-10 cells.
Collapse
Affiliation(s)
| | - Tharakan J. Raphael
- Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala State, India
| | - Girija Kuttan
- Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala State, India
| |
Collapse
|
13
|
Paris D, Mathura V, Ait-Ghezala G, Beaulieu-Abdelahad D, Patel N, Bachmeier C, Mullan M. Flavonoids lower Alzheimer's Aβ production via an NFκB dependent mechanism. Bioinformation 2011; 6:229-36. [PMID: 21738321 PMCID: PMC3124791 DOI: 10.6026/97320630006229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 05/29/2011] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the brain accumulation of Aβ peptides and by the presence of neurofibrillary tangles. Aβ is believed to play an important role in AD and it has been shown that certain flavonoids can affect Aβ production. Recently, it was suggested that the Aβ lowering properties of flavonoids are mediated by a direct inhibition the β-secretase (BACE-1) activity, the rate limiting enzyme responsible for the production of Aβ peptides. Westernblots and ELISAs were employed to monitor the impact of flavonoids on amyloid precursor protein processing and Aβ production. A cell free chemoluminescent assay using human recombinant BACE-1 was used to assess the effect of flavonoids on BACE-1 activity. The effect of flavonoids on NFκB activation was determined by using a stable NFκB luciferase reporter cell line. Molecular docking simulations were performed to predict the binding of flavonoids to the BACE-1 catalytic site. Real time quantitative PCR was used to determine the effect of flavonoids on BACE-1 transcription. We show in a cell free assay that flavonoids are only weak inhibitors of BACE-1 activity. Docking simulation studies with different BACE-1 structures also suggest that flavonoids are poor BACE-1 inhibitors as they appear to adopt various docking poses in the active site pocket and have weak docking scores that differ as a function of the BACE-1 structures studied. Moreover, a weak correlation was observed between the effect of flavonoids on Aβ production in vitro and their ability to lower BACE-1 activity suggesting that the Aβ lowering properties of flavonoids in whole cells are not mediated via direct inhibition of BACE-1 activity. We found however a strong correlation between the inhibition of NFκB activation by flavonoids and their Aβ lowering properties suggesting that flavonoids inhibit Aβ production in whole cells via NFκB related mechanisms. As NFκB has been shown to regulate BACE-1 expression, we show that NFκB lowering flavonoids inhibit BACE-1 transcription in human neuronal SH-SY5Y cells. Altogether, our data suggest that flavonoids inhibit Aβ and sAPPβ production by regulating BACE-1 expression and not by directly inhibiting BACE-1 activity.
Collapse
Affiliation(s)
- Daniel Paris
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Venkat Mathura
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | | | | | - Nikunj Patel
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Corbin Bachmeier
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| |
Collapse
|
14
|
Jin X, Jin HR, Jung HS, Lee SJ, Lee JH, Lee JJ. An atypical E3 ligase zinc finger protein 91 stabilizes and activates NF-kappaB-inducing kinase via Lys63-linked ubiquitination. J Biol Chem 2010; 285:30539-47. [PMID: 20682767 PMCID: PMC2945548 DOI: 10.1074/jbc.m110.129551] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/11/2010] [Indexed: 11/06/2022] Open
Abstract
The NF-κB transcription factors control many physiological processes, including inflammation, immunity, and apoptosis. Its activity contributes to the development of various cell malignancies. NF-κB-inducing kinase (NIK) plays a pivotal role in NF-κB activation. However, the molecular mechanism to stabilize and activate NIK remains elusive, although it is known that cIAP1/2 (cellular inhibitor of apoptosis 1 and 2) ubiquitinate NIK for degradation. Here, we report a novel NF-κB-related zinc finger protein 91 (ZFP91) that stabilizes and activates NIK in a ubiquitination-dependent manner. We show that ZFP91 interacts with and promotes the Lys(63)-linked ubiquitination of NIK and subsequent processing of p100 to p52. The results of in vitro biochemical assays indicate that ZFP91 functions as an E3 ligase directly to NIK. Remarkably, the ubiquitination of NIK coincides with its Thr(559) phosphorylation. Furthermore, knockdown of ZFP91 expression by RNA interference inhibits the CD40 ligation-induced activation of NIK and p100 processing as well as the expression of noncanonical NF-κB target genes. These data clearly indicate that ZFP91 is an important regulator of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Xuejun Jin
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
- Key Laboratory for Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China, and
| | - Hong Ri Jin
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
- Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Haeng Sun Jung
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
| | - Se Jeong Lee
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Jung Joon Lee
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
- Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| |
Collapse
|
15
|
Giunta B, Rezai-Zadeh K, Tan J. Impact of the CD40-CD40L dyad in Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:149-55. [PMID: 20205645 DOI: 10.2174/187152710791012099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/22/2009] [Indexed: 01/14/2023]
Abstract
As the number of elderly individuals rises, Alzheimer's disease (AD), marked by amyloid-beta deposition, neurofibrillary tangle formation, and low-level neuroinflammation, is expected to lead to an ever-worsening socioeconomic burden. AD pathoetiologic mechanisms are believed to involve chronic microglial activation. This phenomenon is associated with increased expression of membrane-bound CD40 with its cognate ligand, CD40 ligand (CD40L), as well as increased circulating levels of soluble forms of CD40 (sCD40) and CD40L (sCD40L). Here, we review the role of this inflammatory dyad in the pathogenesis of AD. In addition, we examine potential therapeutic strategies such as statins, flavonoids, and human umbilical cord blood transplantation, all of which have been shown to modulate CD40-CD40L interaction in mouse models of AD. Importantly, therapeutic approaches focusing on CD40-CD40L dyad regulation, either alone or in combination with amyloid-beta immunotherapy, may provide for a safe and effective AD prophylaxis or treatment in the near future.
Collapse
Affiliation(s)
- Brian Giunta
- Department of Psychiatry & Behavioral Medicine, Institute for Research in Psychiatry Neuroimmunology Laboratory, University of South Florida College of Medicine, Tampa, FL 33613, USA.
| | | | | |
Collapse
|
16
|
Cao L, Palmer CD, Malon JT, De Leo JA. Critical role of microglial CD40 in the maintenance of mechanical hypersensitivity in a murine model of neuropathic pain. Eur J Immunol 2010; 39:3562-9. [PMID: 19750482 DOI: 10.1002/eji.200939657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We recently demonstrated a contributing role of spinal cord infiltrating CD4+ T lymphocytes in the maintenance of mechanical hypersensitivity in a rodent model of neuropathic pain, spinal nerve L5 transection (L5Tx). It has been demonstrated that microglia play a role in the etiology of pain states. We hypothesized that infiltrating CD4+ T lymphocytes communicate with microglia via a CD40-CD154 interaction. Here, we investigated the role of CD40 in the development of mechanical hypersensitivity post-L5Tx. CD40 KO mice displayed significantly decreased mechanical sensitivity compared with WT mice starting from day 5 post-L5Tx. Using bone marrow chimeric mice, we further identified a pro-nociceptive role of CNS microglial CD40 rather than the peripheral leukocytic CD40. Flow cytometric analysis determined a significant increase of CD40+ microglia in the ipsilateral side of lumbar spinal cord post-L5Tx. Further, spinal cord proinflammatory cytokine (IL-1beta, IL-6, IL-12, and TNF-alpha) profiling demonstrated an induction of IL-6 in both WT and CD40 KO mice post-L5Tx prior to the increase of microglial CD40 expression, indicating a CD40-independent induction of IL-6 following L5Tx. These data establish a novel role of microglial CD40 in the maintenance of nerve injury-induced behavioral hypersensitivity, a behavioral sign of neuropathic pain.
Collapse
Affiliation(s)
- Ling Cao
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | | | | | |
Collapse
|
17
|
Volmar CH, Ait-Ghezala G, Frieling J, Weeks OI, Mullan MJ. CD40/CD40L interaction induces Abeta production and increases gamma-secretase activity independently of tumor necrosis factor receptor associated factor (TRAF) signaling. Exp Cell Res 2009; 315:2265-74. [PMID: 19422822 DOI: 10.1016/j.yexcr.2009.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/23/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
CD40, a member of tumor necrosis factor receptor superfamily, and its cognate ligand CD40L are both elevated in the brain of Alzheimer's disease (AD) patients compared to controls. We have shown that pharmacological or genetic interruption of CD40/CD40L interaction results in mitigation of AD-like pathology in vivo in transgenic AD mouse models, and in vitro. Recently, we showed that CD40L stimulation could increase Abeta levels via NFkappaB signaling, presumably through TRAFs. In the present work, using CD40 mutants, we show that CD40L can increase levels of Abeta(1-40), Abeta(1-42), sAPPbeta, sAPPalpha and CTFbeta independently of TRAF signaling. We report an increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells, reflecting alterations in APP trafficking. In addition, results from CD40L treatment of a neuroblastoma cell line over-expressing the C-99 APP fragment suggest that CD40L has an effect on gamma-secretase. Furthermore, inhibition of gamma-secretase activity significantly reduces sAPPbeta levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on gamma-secretase and affects beta-secretase via a positive feedback mechanism. Taken together, our data suggest that CD40/CD40L interaction modulates APP processing independently of TRAF signaling.
Collapse
Affiliation(s)
- Claude-Henry Volmar
- Roskamp Institute, Division of Genomics and Molecular Biology, Sarasota, Fl 34243, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Some 15-20% of the population over the age of 65 years suffer from dementia, currently one of the leading causes of death behind cardiovascular diseases, cancer and cerebrovascular diseases. The major forms of dementia share in common overactivation of the CD40-CD40-L complex, leading to high levels of proinflammatory cytokine production by immune cells of the central nervous system (CNS), including microglia and astrocytes. Consequently, both neuronal survival and signaling are negatively affected, leading to the characteristic progressive loss of higher cortical functions. We have reviewed the literature concerning the involvement of this complex in the pathology of three major forms of dementia: Alzheimer's-type, HIV-associated and vascular dementia. This is followed by a discussion of current preclinical and clinical therapies that may influence this interaction, and thus point the way toward a future neuroimmunological approach to inhibiting the effects of CD40-CD40-L in neuropsychiatric disease.
Collapse
Affiliation(s)
- B. Giunta
- Departments of Psychiatry & Behavioral Medicine, Institute for Research in Psychiatry Neuroimmunology Laboratory, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - K.P. Figueroa
- Department of Neurosurgery Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - T. Town
- Department of Neurosurgery Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences and Medicine, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90048, USA
| | - J. Tan
- Department of Psychiatry & Behavioral Medicine, Rashid Developmental Neurobiology Laboratory, University of South Florida College of Medicine, Tampa, FL 33613, USA
| |
Collapse
|
19
|
Buchhave P, Janciauskiene S, Zetterberg H, Blennow K, Minthon L, Hansson O. Elevated plasma levels of soluble CD40 in incipient Alzheimer's disease. Neurosci Lett 2009; 450:56-9. [DOI: 10.1016/j.neulet.2008.10.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
20
|
Laporte V, Ait-Ghezala G, Volmar CH, Ganey C, Ganey N, Wood M, Mullan M. CD40 ligation mediates plaque-associated tau phosphorylation in β-amyloid overproducing mice. Brain Res 2008; 1231:132-42. [DOI: 10.1016/j.brainres.2008.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 05/30/2008] [Accepted: 06/01/2008] [Indexed: 12/30/2022]
|
21
|
Volmar CH, Ait-Ghezala G, Frieling J, Paris D, Mullan MJ. The granulocyte macrophage colony stimulating factor (GM-CSF) regulates amyloid beta (Abeta) production. Cytokine 2008; 42:336-44. [PMID: 18434187 DOI: 10.1016/j.cyto.2008.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the accumulation of amyloid beta (Abeta) plaques in the brain parenchyma. An inflammatory component to AD has been suggested in association with increased cytokine release. We have previously shown that CD40L stimulation of microglia induces increases in pro-inflammatory cytokines such as interleukin-1beta (IL-1beta), IL-6, IL-8 and GM-CSF. We have also shown that CD40L stimulation increases Abeta levels in HEK-293 cells over-expressing both the amyloid precursor protein (APP) and CD40 (HEK/APPsw/CD40). In this study, we show that GM-CSF neutralizing antibodies mitigate the CD40L-induced production of Abeta in HEK/APPsw/CD40 cells. In addition, we demonstrate that treatment of these cells with recombinant GM-CSF significantly increases Abeta levels. Furthermore, we show that shRNA silencing of the GM-CSF receptor gene significantly reduces Abeta levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Analysis of cell surface proteins revealed that silencing of the GM-CSF receptor also decreases APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). Taken together, our results suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Abeta production by influencing APP trafficking. GM-CSF signaling may be a suitable therapeutic target against Abeta production in AD.
Collapse
|
22
|
Ait-Ghezala G, Volmar CH, Frieling J, Paris D, Tweed M, Bakshi P, Mullan M. CD40 promotion of amyloid beta production occurs via the NF-κB pathway. Eur J Neurosci 2007; 25:1685-95. [PMID: 17432959 DOI: 10.1111/j.1460-9568.2007.05424.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The CD40 receptor is a member of the tumor necrosis factor (TNF) super-family of trans-membrane receptors. Interaction of CD40 with its ligand CD40L mediates a broad range of immune and inflammatory responses in the periphery and in the central nervous system. Recently it has been suggested that CD40/CD40L interaction is involved in amyloid precursor protein (APP) processing and Alzheimer's disease (AD)-like pathology in transgenic mouse models of AD. We have previously shown that pharmacologically inhibiting CD40/CD40L interaction improves memory deficits in the PSAPP AD mouse model. We have also recently shown that CD40 deficiency mitigates amyloid deposition in APPsw and PSAPP mouse models. In the present report, using human embryonic kidney cells (HEK293) over-expressing both the APPsw mutation and CD40, we demonstrate that CD40/CD40L interaction directly increases the production of APP metabolites (Abeta 1-40, Abeta 1-42, CTFs, sAPPbeta and sAPPalpha). The results also show that CD40/CD40L interaction affects APP processing via the NF-kappaB pathway. Using NFkappaB inhibitors and SiRNAs to silence diverse elements of the NFkappaB pathway, we observe a reduction in levels of both Abeta 1-40 and Abeta 1-42. Taken together, our results further suggest that CD40L stimulation may be a key component in AD pathology and that elements of the NF-kappaB pathway may be suitable targets for therapeutic approaches against AD.
Collapse
|
23
|
Parachikova A, Agadjanyan MG, Cribbs DH, Blurton-Jones M, Perreau V, Rogers J, Beach TG, Cotman CW. Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging 2006; 28:1821-33. [PMID: 17052803 PMCID: PMC2198930 DOI: 10.1016/j.neurobiolaging.2006.08.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/21/2006] [Accepted: 08/30/2006] [Indexed: 12/29/2022]
Abstract
Alzheimer disease (AD) is the most prominent cause of dementia in the elderly. To determine changes in the AD brain that may mediate the transition into dementia, the gene expression of approximately 10,000 full-length genes was compared in mild/moderate dementia cases to non-demented controls that exhibited high AD pathology. Including this latter group distinguishes this work from previous studies in that it allows analysis of early cognitive loss. Compared to non-demented high-pathology controls, the hippocampus of AD cases with mild/moderate dementia had increased gene expression of the inflammatory molecule major histocompatibility complex (MHC) II, as assessed with microarray analysis. MHC II protein levels were also increased and inversely correlated with cognitive ability. Interestingly, the mild/moderate AD dementia cases also exhibited decreased number of T cells in the hippocampus and the cortex compared to controls. In conclusion, transition into AD dementia correlates with increased MHC II(+) microglia-mediated immunity and is paradoxically paralleled by a decrease in T cell number, suggesting immune dysfunction.
Collapse
Affiliation(s)
- A Parachikova
- Institute for Brain Aging & Dementia, University of California, 1113 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4540, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jee SW, Cho JS, Kim CK, Hwang DY, Shim SB, Lee SH, Sin JS, Park JH, Kim YS, Choi SY, Kim YK. Oligonucleotide-based analysis of differentially expressed genes in hippocampus of transgenic mice expressing NSE-controlled APPsw. Neurochem Res 2006; 31:1035-44. [PMID: 16933151 DOI: 10.1007/s11064-006-9117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2006] [Indexed: 11/27/2022]
Abstract
The complexity of Alzheimer's disease (AD) has made it difficult to examine its underlying mechanisms. A gene microarray offers a solution to the complexity through parallel analysis of most of the genes expressed in the hippocampal tissues from AD-transgenic and age-matched control littermates. This study examined the potential effect of APPsw over-expression on the modulation of genes for AD. To accomplish this, an oligonucleotide array was used with the large-scale screening of the hippocampus mRNA from 12-month-old APPsw-transgenic and control mice. There was a total of 116 differentially expressed genes, 59 up-regulated and 57 down-regulated, in the hippocampal region of the transgenic mice compared with the control mice. Initially, two of each of the down-regulated (Xlr3b and Mup3) and up-regulated genes (Serpina9 and Ccr6) were chosen for further investigation if the magnitude of change in these genes on the oligonucleotide array would correspond to those in the RT-PCR analysis from APPsw-transgenic mice. We also found that the changes in the differentially expressed genes are reliable. Thus, these genes might associate with AD neuropathology in neurodegenerative process of AD, although relevance of long lists altered genes should be evaluated in a future study.
Collapse
Affiliation(s)
- Seung W Jee
- Team of Laboratory Animal Resources, National Institute of Toxicological Research, Korea FDA, Seoul 122-704, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Laporte V, Ait-Ghezala G, Volmar CH, Mullan M. CD40 deficiency mitigates Alzheimer's disease pathology in transgenic mouse models. J Neuroinflammation 2006; 3:3. [PMID: 16504112 PMCID: PMC1456952 DOI: 10.1186/1742-2094-3-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 02/24/2006] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that transgenic mice carrying a mutant human APP but deficient in CD40L, display a decrease in astrocytosis and microgliosis associated with a lower amount of deposited Aβ. Furthermore, an anti-CD40L treatment causes a diminution of Aβ pathology in the brain and an improved performance in several cognitive tasks in the double transgenic PSAPP mouse model. Although these data suggest a potential role for CD40L in Alzheimer's disease pathology in transgenic mice they do not cast light on whether this effect is due to inhibition of signaling via CD40 or whether it is due to the mitigation of some other unknown role of CD40L. In the present report we have generated APP and PSAPP mouse models with a disrupted CD40 gene and compared the pathological features (such as amyloid burden, astrocytosis and microgliosis that are typical of Alzheimer's disease-like pathology in these transgenic mouse strains) with appropriate controls. We find that all these features are reduced in mouse models deficient for CD40 compared with their littermates where CD40 is present. These data suggest that CD40 signaling is required to allow the full repertoire of AD-like pathology in these mice and that inhibition of the CD40 signaling pathway is a potential therapeutic strategy in Alzheimer's disease.
Collapse
|