1
|
Singh G, Duhan N, Dhilip Kumar TJ, Nagaraja CM. Pyrene-Based Nanoporous Covalent Organic Framework for Carboxylation of C-H Bonds with CO 2 and Value-Added 2-Oxazolidinones Synthesis under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5857-5868. [PMID: 38259199 DOI: 10.1021/acsami.3c16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The selective carbon capture and utilization (CCU) as a one-carbon (C1) feedstock offers dual advantages for mitigating the rising atmospheric CO2 content and producing fine chemicals/fuels. In this context, herein, we report the application of a porous bipyridine-functionalized, pyrene-based covalent organic framework (Pybpy-COF) for the stable anchoring of catalytic Ag(0) nanoparticles (NPs) and its catalytic investigation for fixation of CO2 to commodity chemicals at ambient conditions. Notably, Ag@Pybpy-COF showed excellent catalytic activity for the carboxylation of various terminal alkynes to corresponding alkynyl carboxylic acids/phenylpropiolic acids via C-H bond activation under atmospheric pressure conditions. Besides, carboxylative cyclization of various propargylic amines with CO2 to generate 2-oxazolidinones, an important class of antibiotics, has also been achieved under mild conditions. This significant catalytic activity of Ag@Pybpy-COF with wide functional group tolerance is rendered by the presence of highly exposed, alkynophilic Ag(0) catalytic sites decorated on the pore walls of high surface area (787 m2 g-1) Pybpy-COF. Further, density functional theory calculations unveiled the detailed mechanistic path of the Ag@Pybpy-COF-catalyzed transformation of CO2 to alkynyl carboxylic acids and 2-oxazolidinones. Moreover, the catalyst showed high recyclability for several cycles of reuse without significant loss in its catalytic activity and structural rigidity. This work demonstrates the promising application of Pybpy-COF for stable anchoring of Ag NPs for successful transformation of CO2 to valuable commodity chemicals at ambient conditions.
Collapse
Affiliation(s)
- Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Nidhi Duhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
2
|
Keypour H, Kouhdareh J, Rabiei K, Karakaya İ, Karimi-Nami R, Alavinia S. Pd nanoparticles decorated on a porous Co(BDC-NH 2) MOF as an effective heterogeneous catalyst for dye reduction. NANOSCALE ADVANCES 2023; 5:5570-5579. [PMID: 37822910 PMCID: PMC10563842 DOI: 10.1039/d3na00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 10/13/2023]
Abstract
Herein, a new catalytic nanocomposite [Co(BDC-NH2)-Pd NPs] composed of a Co(BDC-NH2) MOF has been developed. The catalyst was prepared by modifying the synthesized porous Co(BDC-NH2) MOF with decorated Pd nanoparticles. This nanocatalyst was used as a heterogeneous catalyst in the reductive degradation of organic dyes Rhodamine B and methyl orange with NaBH4. The kinetic and thermodynamic parameters of the reactions were evaluated. The results showed that the low catalyst content could successfully catalyze the dye reduction reaction quickly (1 min). The metal-organic frameworks unique porous morphology of the Co(BDC-NH2) MOF appears to increase dye adsorption and achieve effective dye reduction. Additionally, recyclability studies of the catalyst confirmed that it could be recovered and reused for 10 consecutive reaction cycles with negligible Pd leaching and reduction in catalytic activity.
Collapse
Affiliation(s)
- Hassan Keypour
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Jamal Kouhdareh
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - İdris Karakaya
- Department of Chemistry, College of Basic Sciences, Gebze Technical University 41400 Gebze Turkey
| | - Rahman Karimi-Nami
- Department of Chemistry, Faculty of Science, University of Maragheh Maragheh 55181-83111 Iran
| | - Sedigheh Alavinia
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
3
|
TiO 2-Modified Montmorillonite-Supported Porous Carbon-Immobilized Pd Species Nanocomposite as an Efficient Catalyst for Sonogashira Reactions. Molecules 2023; 28:molecules28052399. [PMID: 36903644 PMCID: PMC10005427 DOI: 10.3390/molecules28052399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, a combination of the porous carbon (PCN), montmorillonite (MMT), and TiO2 was synthesized into a composite immobilized Pd metal catalyst (TiO2-MMT/PCN@Pd) with effective synergism improvements in catalytic performance. The successful TiO2-pillaring modification for MMT, derivation of carbon from the biopolymer of chitosan, and immobilization of Pd species for the prepared TiO2-MMT/PCN@Pd0 nanocomposites were confirmed using a combined characterization with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms, high-resolution transition electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It was shown that the combination of PCN, MMT, and TiO2 as a composite support for the stabilization of the Pd catalysts could synergistically improve the adsorption and catalytic properties. The resultant TiO2-MMT80/PCN20@Pd0 showed a high surface area of 108.9 m2/g. Furthermore, it exhibited moderate to excellent activity (59-99% yield) and high stability (recyclable 19 times) in the liquid-solid catalytic reactions, such as the Sonogashira reactions of aryl halides (I, Br) with terminal alkynes in organic solutions. The positron annihilation lifetime spectroscopy (PALS) characterization sensitively detected the development of sub-nanoscale microdefects in the catalyst after long-term recycling service. This study provided direct evidence for the formation of some larger-sized microdefects during sequential recycling, which would act as leaching channels for loaded molecules, including active Pd species.
Collapse
|
4
|
Novel palladium tagged ferrite nanoparticle supported ionic liquid phase catalyst for the efficient copper-free Sonogashira coupling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Sevim M, Bayrak C, Menzek A. Chemoselective reduction of α,β-unsaturated carbonyl compounds in the presence of CuPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as highly efficient catalyst. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Alamgholiloo H, Pesyan NN, Rostamnia S. A novel strategy for stabilization of sub-nanometric Pd colloids on kryptofix functionalized MCM-41: nanoengineered material for Stille coupling transformation. Sci Rep 2021; 11:18417. [PMID: 34531483 PMCID: PMC8446008 DOI: 10.1038/s41598-021-97914-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
The stabilization of sub-nanometric metal particles (< 1 nm) with suitable distribution remained challenging in the catalytic arena. Herein, an intelligent strategy was described to anchoring and stabilizing sub-nanometric Pd colloids with an average size of 0.88 nm onto Kryptofix 23 functionalized MCM-41. Then, the catalytic activity of Pd@Kryf/MCM-41 was developed in Stille coupling reaction with a turnover frequency (TOF) value of 247 h-1. The findings demonstrate that porous MCM-41 structure and high-affinity Kryptofix 23 ligand toward adsorption of Pd colloids has a vital role in stabilizing the sub-nanometric particles and subsequent catalytic activity. Overall, these results suggest that Pd@Kryf/MCM-41 is a greener, more suitable option for large-scale applications and provides new insights into the stabilization of sub-nanometric metal particles.
Collapse
Affiliation(s)
- Hassan Alamgholiloo
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159, Urmia, Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159, Urmia, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
| |
Collapse
|
7
|
Modak A, Mankar AR, Pant KK, Bhaumik A. Mesoporous Porphyrin-Silica Nanocomposite as Solid Acid Catalyst for High Yield Synthesis of HMF in Water. Molecules 2021; 26:2519. [PMID: 33925892 PMCID: PMC8123422 DOI: 10.3390/molecules26092519] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Solid acid catalysts occupy a special class in heterogeneous catalysis for their efficiency in eco-friendly conversion of biomass into demanding chemicals. We synthesized porphyrin containing porous organic polymers (PorPOPs) using colloidal silica as a support. Post-modification with chlorosulfonic acid enabled sulfonic acid functionalization, and the resulting material (PorPOPS) showed excellent activity and durability for the conversion of fructose to 5-hydroxymethyl furfural (HMF) in green solvent water. PorPOPS composite was characterized by N2 sorption, FTIR, TGA, CHNS, FESEM, TEM and XPS techniques, justifying the successful synthesis of organic networks and the grafting of sulfonic acid sites (5 wt%). Furthermore, a high surface area (260 m2/g) and the presence of distinct mesopores of ~15 nm were distinctly different from the porphyrin containing sulfonated porous organic polymer (FePOP-1S). Surprisingly the hybrid PorPOPS showed an excellent yield of HMF (85%) and high selectivity (>90%) in water as compared to microporous pristine-FePOP-1S (yield of HMF = 35%). This research demonstrates the requirement of organic modification on silica surfaces to tailor the activity and selectivity of the catalysts. We foresee that this research may inspire further applications of biomass conversion in water in future environmental research.
Collapse
Affiliation(s)
- Arindam Modak
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India; (A.M.); (A.R.M.)
| | - Akshay R. Mankar
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India; (A.M.); (A.R.M.)
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India; (A.M.); (A.R.M.)
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Date NS, Hengne AM, Huang K, Chikate RC, Rode CV. One Pot Hydrogenation of Furfural to 2‐Methyl Tetrahydrofuran over Supported Mono‐ and Bi‐metallic Catalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202002322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nandan S. Date
- Chemical Engineering and process development DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008
- Department of ChemistryMES's Abasaheb Garware College Karve Road Pune 411004
| | - Amol M. Hengne
- Catalysis Centre and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - K.‐W. Huang
- Catalysis Centre and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajeev C. Chikate
- Department of ChemistryMES's Abasaheb Garware College Karve Road Pune 411004
| | - Chandrashekhar V. Rode
- Chemical Engineering and process development DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008
| |
Collapse
|
9
|
Mohan R, Modak A, Subramanian P, Cahan R, Sivakumar P, Gedanken A, Schechter A. Electrochemical Oxidation of Glycine with Bimetallic Nickel−Manganese Oxide Catalysts. ChemElectroChem 2020. [DOI: 10.1002/celc.201901996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roopathy Mohan
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | - Arindam Modak
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | | | - Rivka Cahan
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| | - P. Sivakumar
- Department of Chemistry Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA)Bar-Ilan University Ramat-Gan 52900 Israel
| | - Aharon Gedanken
- Department of Chemistry Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA)Bar-Ilan University Ramat-Gan 52900 Israel
| | - Alex Schechter
- Department of Chemical SciencesAriel University Ariel 40700 Israel
| |
Collapse
|
10
|
Wang G, Yuan S, Wu Z, Liu W, Zhan H, Liang Y, Chen X, Ma B, Bi S. Ultra‐low‐loading palladium nanoparticles stabilized on nanocrystalline Polyaniline (Pd@PANI): A efficient, green, and recyclable catalyst for the reduction of nitroarenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gang Wang
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Shuo Yuan
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Zhiqiang Wu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Wanyi Liu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Haijuan Zhan
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Yanping Liang
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Xiaoyan Chen
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Baojun Ma
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Shuxian Bi
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| |
Collapse
|
11
|
Lamme WS, van der Heijden O, Krans NA, Nöllen E, Mager N, Hermans S, Zečević J, de Jong KP. Origin and prevention of broad particle size distributions in carbon-supported palladium catalysts prepared by liquid-phase reduction. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Han G, Jiang Q, Ye W, Liu C, Wang X. Fabrication of Pd NPs-supported porous carbon by integrating the reducing reactivity and carbon-rich network of lignin. Sci Rep 2019; 9:7300. [PMID: 31086221 PMCID: PMC6514013 DOI: 10.1038/s41598-019-43840-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/27/2019] [Indexed: 12/02/2022] Open
Abstract
The renewable resource as a major feedstock to prepare porous carbon has showed many advantages compared to fossil-based materials. This study proposes a new strategy to synthesize palladium nanoparticles (Pd NPs)-supported porous carbon, utilizing both the chemical reactivity and the carbon-rich 3D network of lignin. The Pd NPs-supported porous carbons were prepared in one-pot synthesis, with Pd(NH3)2Cl2 as precursor, lignin as reducing and stabilizing agents of Pd NPs, nano SiO2 as hard-template, followed by carbonization and removal of the template. The results reveal a positive effect of Pd precursor dosage on the development and excellent texture of the Pd NPs-supported porous carbon. Accordingly, the synthesized porous carbon was proved to have large micropore volume and good micro-mesopore porous structure, revealing it a promising hydrogen adsorbent.
Collapse
Affiliation(s)
- Guocheng Han
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qimeng Jiang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Weijie Ye
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
13
|
Kim T, Naoki W, Miyawaki J, Park JI, Lee C, Jung HK, Jeon MS, Kim HJ, Yoon SH. Synthesis of surface-replicated ultra-thin silica hollow nanofibers using structurally different carbon nanofibers as templates. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Modak A, Bhanja P, Bhaumik A. Pt Nanoparticles Supported over Porous Porphyrin Nanospheres for Chemoselective Hydrogenation Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201802108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arindam Modak
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
- Technical Research CentreS. N. Bose National Centre for Basic Sciences Block-JD, Sector-III Salt Lake, Kolkata- 700106 India
| | - Piyali Bhanja
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Asim Bhaumik
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
15
|
Tomar R, Singh N, Kumar N, Tomar V, Chandra R. Base-Free Suzuki–Miyaura Coupling Reaction Using Palladium(II) Supported Catalyst in Water. Catal Letters 2019. [DOI: 10.1007/s10562-019-02723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Gholinejad M, Naghshbandi Z, Nájera C. Carbon‐Derived Supports for Palladium Nanoparticles as Catalysts for Carbon‐Carbon Bonds Formation. ChemCatChem 2019. [DOI: 10.1002/cctc.201802101] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mohammad Gholinejad
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137-66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Zhwan Naghshbandi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137-66731 Iran
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Alicante Apdo. 99 E-03080- Alicante Spain
| |
Collapse
|
17
|
Li M, He J, Tang Y, Sun J, Fu H, Wan Y, Qu X, Xu Z, Zheng S. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon. CHEMOSPHERE 2019; 217:742-753. [PMID: 30448754 DOI: 10.1016/j.chemosphere.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Liquid catalytic hydrogenation is a green and cost-effective technique for the reductive removal of pollutants in water. Supported noble metals are the most frequently used catalysts in liquid phase catalytic hydrogenation, whereas marked catalyst deactivation is commonly identified. In this study, we coated supported Pd catalyst on carbon nanotube (denoted as Pd/CNT) by different overcoatings (including SiO2, carbon and N-doped carbon) to prevent catalyst deactivation. The activities of the coated catalysts for liquid phase catalytic hydrogenation reduction of hexavalent chromium (Cr(VI)) differed with the overcoating properties. Negligible Cr(VI) conversion was observed on SiO2 coated Pd/CNT, while feasible Cr(VI) reduction was identified on carbon coated (denoted as Pd/CNT@C) and N-doped carbon coated catalysts (denoted as Pd/CNT@CN). Pd/CNT@CN exhibited a much higher catalytic activity than Pd/CNT@C, which was ascribed to the stronger Cr(VI) adsorption on CN overcoating. The catalytic activity of Pd/CNT@CN was positively correlated with the conductivity and hydrophilicity of CN overcoating, which could be optimized by varying carbonization temperature. Furthermore, Pd/CNT@CN retained its initial activity after ten consecutive catalyst cycles without any deactivation, whereas Pd/CNT only retained 8.2% of its initial activity, reflecting much higher catalytic stability of Pd/CNT@CN than Pd/CNT. The findings in the present study highlight that liquid catalytic reduction using Pd/CNT@CN as the catalyst is a highly stable and effective method to remove Cr(VI) in water.
Collapse
Affiliation(s)
- Minghui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Jiao He
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Yuqiong Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Jingya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Yuqiu Wan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
18
|
Cyanation of aryl bromides with K4[Fe(CN)6] using polydopamine supported Pd nanoparticle catalysis: formation of magnetite during the reaction. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1478-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Modak A, Bhanja P, Bhaumik A. Microporous Nanotubes and Nanospheres with Iron-Catechol Sites: Efficient Lewis Acid Catalyst and Support for Ag Nanoparticles in CO 2 Fixation Reaction. Chemistry 2018; 24:14189-14197. [PMID: 29979469 DOI: 10.1002/chem.201802319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 11/09/2022]
Abstract
FeIII -containing hyper-crosslinked microporous nanotubes (FeNTs) and nanospheres (FeNSs) are synthesized through the reaction of catechol and dimethoxymethane in the presence of FeCl3 or CF3 SO3 H. Both FeNTs and FeNSs demonstrate excellent catalytic activity in Lewis acid catalysis (hydrolysis and regioselective methanolysis of styrene oxide) and tandem catalysis involving a sequential oxidation-cyclization process, which selectively converts benzyl alcohol to 2-phenyl benzimidazole. Apart from Lewis acidity, the FeNTs and FeNSs also showed CO2 uptake capacities of 2.6 and 2.2 mmol g-1 , respectively, at a pressure of 1 atm and temperature of 273 K. Furthermore, Ag nanoparticles are immobilized successfully on the surfaces of FeNTs and FeNSs by the liquid-phase impregnation method to prepare Ag@FeNT and Ag@FeNS nanocomposites, which show high catalytic activity for the selective fixation of CO2 to phenylacetylene to yield phenylpropiolic acid at 60 °C and 1 atm CO2 pressure. Hence, FeIII -catechol-containing hyper-crosslinked nanotubes and nanospheres have huge potential not only as Lewis acid catalysts, but also as excellent supports for immobilizing Ag nanoparticles in the design of a robust catalyst for the carboxylation of terminal alkynes, which has wide scope in catalysis and environmental research.
Collapse
Affiliation(s)
- Arindam Modak
- Department of Materials Science, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata-, 700032, India.,S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Piyali Bhanja
- Department of Materials Science, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Asim Bhaumik
- Department of Materials Science, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
20
|
Alamgholiloo H, Rostamnia S, Hassankhani A, Khalafy J, Baradarani MM, Mahmoudi G, Liu X. Stepwise post-modification immobilization of palladium Schiff-base complex on to the OMS-Cu (BDC) metal-organic framework for Mizoroki-Heck cross-coupling reaction. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hassan Alamgholiloo
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science; University of Maragheh; PO Box 55181-83111 Maragheh Iran
- Faculty of Chemistry; University of Urmia; Urmia 57153-165 Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science; University of Maragheh; PO Box 55181-83111 Maragheh Iran
| | - Asadollah Hassankhani
- Department of New Materials, Institute of Science and High Technology and Environmental Sciences; Graduate University of Advanced Technology; Kerman Iran
| | - Jabbar Khalafy
- Faculty of Chemistry; University of Urmia; Urmia 57153-165 Iran
| | | | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science; University of Maragheh; PO Box 55181-83111 Maragheh Iran
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P. R. China
| |
Collapse
|
21
|
|
22
|
|
23
|
Lamme WS, Zečević J, de Jong KP. Influence of Metal Deposition and Activation Method on the Structure and Performance of Carbon Nanotube Supported Palladium Catalysts. ChemCatChem 2018; 10:1552-1555. [PMID: 29780433 PMCID: PMC5947541 DOI: 10.1002/cctc.201701991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Indexed: 12/03/2022]
Abstract
The effects of the metal deposition and activation methods on metal particle size and distribution were investigated for carbon nanotube supported Pd catalysts. The Pd precursor was loaded by incipient wetness impregnation, ion adsorption, and deposition precipitation and was activated by thermal treatment under a nitrogen atmosphere or in the liquid phase by reduction by formaldehyde or sodium borohydride. Regardless of the metal precursor loading method, activation under a N2 atmosphere at 500 °C led to homogeneously distributed 4 nm Pd particles. Liquid‐phase reduction by sodium borohydride provided a bimodal distribution with particle sizes of approximately 1 and >10 nm. A somewhat weaker reducing agent, formaldehyde, yielded particles approximately 1 nm in size. The activities of the catalysts for the hydrogenation of cinnamaldehyde correlated with the particle sizes.
Collapse
Affiliation(s)
- Wouter S Lamme
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Krijn P de Jong
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
24
|
Kumar BS, Pitchumani K. Chemistry in Confinement: Copper and Palladium Catalyzed Ecofriendly Organic Transformations within Porous Frameworks. CHEM REC 2017; 18:506-526. [DOI: 10.1002/tcr.201700056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Basuvaraj Suresh Kumar
- Department of Natural Products Chemistry, School of Chemistry; Madurai Kamaraj University; Madurai 625021, Tamil Nadu India
| | - Kasi Pitchumani
- Department of Natural Products Chemistry, School of Chemistry; Madurai Kamaraj University; Madurai 625021, Tamil Nadu India
- Centre for Green Chemistry Processes, School of Chemistry; Madurai Kamaraj University; Madurai 625021, Tamil Nadu India
| |
Collapse
|
25
|
Savastano M, Arranz-Mascarós P, Bazzicalupi C, Clares MP, Godino-Salido ML, Gutiérrez-Valero MD, Inclán M, Bianchi A, García-España E, López-Garzón R. Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles. J Catal 2017. [DOI: 10.1016/j.jcat.2017.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Bhanja P, Liu X, Modak A. Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Hypercrosslinked Porous Polymer Nanotubes as Selective Hydrogenation Catalyst for α,β-Unsaturated Aldehydes. ChemistrySelect 2017. [DOI: 10.1002/slct.201701761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Piyali Bhanja
- Department of Materials science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata-700032 India
| | - Xiao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Arindam Modak
- Department of Materials science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata-700032 India
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
- S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake; Kolkata 700106 India
| |
Collapse
|