1
|
Selective Supercritical CO 2 Extraction and Biocatalytic Valorization of Cucurbita pepo L. Industrial Residuals. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154783. [PMID: 35897957 PMCID: PMC9332722 DOI: 10.3390/molecules27154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction of Cucurbita pepo L. seeds, whose oil is commercialized for the treatment of genito-urinary tract pathologies, has been selected. Supercritical CO2 technology has been employed as a highly selective "green" methodology allowing the recovery of compounds without chemical degradation and limited operational costs. Free fatty acids have been collected in mild conditions while an enrichment in sterols has been selectively obtained from sc-CO2 extracts by appropriate modulation of process parameters (supercritical fluid pressure and temperature), hence demonstrating the feasibility of the technique to target added-value compounds in a selective way. Obtained fatty acids were thus converted into the corresponding ethanol carboxamide derivatives by lipase-mediated biocatalyzed reactions, while the hydroxylated derivatives of unsaturated fatty acids were obtained by stereoselective hydration reaction under reductive conditions in the presence of a selected FADH2-dependent oleate hydratase.
Collapse
|
2
|
Enantioselective Enzymatic Synthesis of (
R
)‐Phenyl Alkyl Esters and Their Analogue Amides using Fatty Acids as Green Acyl Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Sanfilippo C, Patti A. Biocatalytic regio- and stereoselective access to ω-3 endocannabinoid epoxides with peroxygenase from oat flour. Bioorg Chem 2021; 113:105014. [PMID: 34077840 DOI: 10.1016/j.bioorg.2021.105014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
The biocatalytic epoxidation of ethanolamides of ω-3 fatty acids EPA and DHA, regarded as biologically active ω-3 endocannabinoids, in the presence of a peroxygenase-containing preparation from oat flour was investigated. Good regio- and steroselectivity toward the formation of the epoxide on the terminal double bond in the chain was observed with both these fatty acid derivatives and chiral monoepoxides 1 or 2 in 74% optical purity and 51-53% yields were isolated and spectroscopically characterized. The use of acetone as cosolvent in the reaction medium allowed to increase the concentration of starting substrates up to 40 mM and to further improve the selectivity in the epoxidation of DHA-EA. Due to the easy availability of the enzymatic preparation, the method offers a valuable strategy for the access to oxyfunctionalized derivatives of fatty acids.
Collapse
Affiliation(s)
- Claudia Sanfilippo
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy.
| | - Angela Patti
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
4
|
Fatima S, Faryad A, Ataa A, Joyia FA, Parvaiz A. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnol Appl Biochem 2020; 68:445-458. [PMID: 32881094 DOI: 10.1002/bab.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance of enzymes is ever-rising particularly microbial lipases holding great industrial worth owing to their potential to catalyze a diverse array of chemical reactions in aqueous as well as nonaqueous settings. International lipase market is anticipated to cross USD 797.7 million till 2025, rising at a 6.2% compound annual growth rate from 2017 to 2025. The recent breakthrough in the field of lipase research is the generation of new and upgraded versions of lipases via molecular strategies. For example, integration of rational enzyme design and directed enzyme evolution to attain desired properties in lipases. Normally, purification of lipase with significant purity is achieved through a multistep procedure. Such multiple step approach of lipase purification entails both conventional and novel techniques. The present review attempts to provide an overview of different aspects of lipase production including fermentation techniques, factors affecting lipase production, and purification strategies, with the aim to assist researchers to pick a suitable technique for the production and purification of lipase.
Collapse
Affiliation(s)
- Samar Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Faryad
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Asia Ataa
- Department of Biochemistry, Baha-ud-Din Zakariya, University Multan, Multan, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Aqsa Parvaiz
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Maniar D, Silvianti F, Ospina VM, Woortman AJ, van Dijken J, Loos K. On the way to greener furanic-aliphatic poly(ester amide)s: Enzymatic polymerization in ionic liquid. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Homberg A, Hrdina R, Vishe M, Guénée L, Lacour J. Stereoselective deconjugation of macrocyclic α,β-unsaturated esters by sequential amidation and olefin transposition: application to enantioselective phase-transfer catalysis. Org Biomol Chem 2019; 17:6905-6910. [PMID: 31270519 DOI: 10.1039/c9ob01355e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The stereoselective synthesis of chiral macrocycles bearing two aliphatic amide functional groups is reported. After the amidation mediated by TBD, a guanidine derivative, the olefin transposition step is performed with a slight excess of t-BuOK. The products are afforded in moderate to good combined yields (up to 59%) and with an excellent syn diastereoselectivity (dr > 49 : 1). Introducing enantiopure α-branched substituents was possible and it resulted in mixtures of diastereomers, which could be tested as phase-transfer catalysts using the formation of a phenylalanine analog as a test reaction (up to 43% ee). A clear matched-mismatched situation was observed in the two diastereomeric series.
Collapse
Affiliation(s)
- Alexandre Homberg
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | - Radim Hrdina
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | - Mahesh Vishe
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, Quai Ernest Ansermet 24, 1211 Geneva 4, Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| |
Collapse
|
7
|
Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Liang H, Qin X, Tan CP, Li D, Wang Y. Choline-Chloride-Based Eutectic Solvent for the Efficient Production of Docosahexaenoyl and Eicosapentaenoyl Ethanolamides via an Enzymatic Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12361-12367. [PMID: 30394748 DOI: 10.1021/acs.jafc.8b04804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Docosahexaenoyl and eicosapentaenoyl ethanolamides (DHEA and EPEA) have physiological functions, including immunomodulation, brain development, and anti-inflammation, but their efficient production is still unresolved. In this study, choline-chloride-based natural deep eutectic solvents are used as media to improve the production of DHEA and EPEA. The water content showed a key effect on the reactant conversion. Adding water to choline chloride-glucose (CG, molar ratio of 5:2) led to a significant increase (13.03% for EPEA and 27.95% for DHEA) in the yields after 1 h. The high yields of EPEA (96.84%) and DHEA (90.06%) were obtained under the optimized conditions [fish oil ethyl esters/ethanolamine molar ratio of 1:2, temperature of 60 °C, 1 h, enzyme loading of 2195 units, and CG containing 8.50% water of 43.30% (w/w, relative to total reactants)]. The products could be easily separated using centrifugation. In summary, the research has the potential to produce fatty acyl ethanolamides.
Collapse
Affiliation(s)
- Huipei Liang
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Xiaoli Qin
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology , Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
| | - Daoming Li
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an , Shaanxi 710021 , People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
9
|
Lajis AFB. Realm of Thermoalkaline Lipases in Bioprocess Commodities. J Lipids 2018; 2018:5659683. [PMID: 29666707 PMCID: PMC5832097 DOI: 10.1155/2018/5659683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.
Collapse
Affiliation(s)
- Ahmad Firdaus B. Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
10
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
11
|
Lima RN, Porto AL. Biocatalytic aminolysis of ethyl (S)-mandelate by lipase from Candida antarctica. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Aminolysis of linoleic and salicylic acid derivatives with Candida antarctica lipase B: A solvent-free process to obtain amphiphilic amides for cosmetic application. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Quintana PG, García Liñares G, Chanquia SN, Gorojod RM, Kotler ML, Baldessari A. Improved Enzymatic Procedure for the Synthesis of Anandamide andN-Fatty Acylalkanolamine Analogues: A Combination Strategy to Antitumor Activity. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Yıldırım D, Tükel SS. Asymmetric ammonolysis of (R/S)-mandelic acid by immobilized lipases via direct amidation of mandelic acid in biphasic media. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.971120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
|
16
|
|
17
|
Yildirim D, Tükel SS. Immobilized Pseudomonas sp. lipase: A powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Whitten KM, Makriyannis A, Vadivel SK. Enzymatic synthesis of N-Acylethanolamines: Direct method for the aminolysis of esters. Tetrahedron Lett 2012; 53:5753-5755. [PMID: 23175586 DOI: 10.1016/j.tetlet.2012.08.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immobilized Candida antarctica (Novozyme 435) catalyzed synthesis of N-acylethanolamines is described. Treatment of methyl esters with lipase and amines yielded the desired amides within 2-24 hrs with yields ranging from 41-98%.
Collapse
Affiliation(s)
- Kyle M Whitten
- Center for Drug Discovery, 116 Mugar Hall, 360 Huntington Avenue, Northeastern University, Boston, MA 02115
| | | | | |
Collapse
|
19
|
de Oliveira VM, Silva de Jesus R, Gomes AF, Gozzo FC, Umpierre AP, Suarez PAZ, Rubim JC, Neto BAD. Catalytic Aminolysis (Amide Formation) from Esters and Carboxylic Acids: Mechanism, Enhanced Ionic Liquid Effect, and its Origin. ChemCatChem 2011. [DOI: 10.1002/cctc.201100221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Idris A, Bukhari A. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Biotechnol Adv 2011; 30:550-63. [PMID: 22041165 DOI: 10.1016/j.biotechadv.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/09/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
This work reviews the stripping off, role of water molecules in activity, and flexibility of immobilized Candida antarctica lipase B (CALB). Employment of CALB in ring opening polyester synthesis emphasizing on a polylactide is discussed in detail. Execution of enzymes in place of inorganic catalysts is the most green alternative for sustainable and environment friendly synthesis of products on an industrial scale. Robust immobilization and consequently performance of enzyme is the essential objective of enzyme application in industry. Water bound to the surface of an enzyme (contact class of water molecules) is inevitable for enzyme performance; it controls enzyme dynamics via flexibility changes and has intensive influence on enzyme activity. The value of pH during immobilization of CALB plays a critical role in fixing the active conformation of an enzyme. Comprehensive selection of support and protocol can develop a robust immobilized enzyme thus enhancing its performance. Organic solvents with a log P value higher than four are more suitable for enzymatic catalysis as these solvents tend to strip away very little of the enzyme surface bound water molecules. Alternatively ionic liquid can work as a more promising reaction media. Covalent immobilization is an exclusively reliable technique to circumvent the leaching of enzymes and to enhance stability. Activated polystyrene nanoparticles can prove to be a practical and economical support for chemical immobilization of CALB. In order to reduce the E-factor for the synthesis of biodegradable polymers; enzymatic ring opening polyester synthesis (eROPS) of cyclic monomers is a more sensible route for polyester synthesis. Synergies obtained from ionic liquids and immobilized enzyme can be much effective eROPS.
Collapse
Affiliation(s)
- Ani Idris
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | | |
Collapse
|
21
|
Couturier L, Yvergnaux F. Combined structural and biological activities for new polyunsaturated fatty derivatives obtained by biotechnological process. Int J Cosmet Sci 2009; 31:209-24. [DOI: 10.1111/j.1468-2494.2009.00496.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|