1
|
Siódmiak J, Dulęba J, Kocot N, Mastalerz R, Haraldsson GG, Marszałł MP, Siódmiak T. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. Int J Mol Sci 2024; 25:5084. [PMID: 38791124 PMCID: PMC11121684 DOI: 10.3390/ijms25105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.
Collapse
Affiliation(s)
- Joanna Siódmiak
- Department of Laboratory Medicine, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Jacek Dulęba
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
| | - Natalia Kocot
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rafał Mastalerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
| | | | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
| | - Tomasz Siódmiak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
| |
Collapse
|
2
|
Moguei MRS, Habibi Z, Shahedi M, Yousefi M, Alimoradi A, Mobini S, Mohammadi M. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen. BIOTECHNOLOGY REPORTS 2022; 35:e00759. [PMID: 36060211 PMCID: PMC9434027 DOI: 10.1016/j.btre.2022.e00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 10/26/2022]
|
3
|
Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V. Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential a*ntibiofilm property. Int J Biol Macromol 2022; 211:741-753. [PMID: 35504418 DOI: 10.1016/j.ijbiomac.2022.04.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
The lipase gene from Psychrobacter celer PU3 was cloned into pET-28a(+) expression vector and overexpressed in E. coli BL21 (DE3) pLysS cells. The purified Psychrobacter celer lipase (PCL) was characterized as an alkaline active enzyme and has a molecular mass of around 30 kDa. The PCL was active even at a low temperature and the optimum range was observed between 10 and 40 °C temperatures. MALDI-TOF and phylogenetic analysis ensued that Psychrobacter celer PU3 lipase (PCL) was closely related to P. aureginosa lipase (PAL). MD simulation results suggests that temperature change did not affect overall structure of PCL, but it may alter temperature- dependent PCL structural changes. R1 (129-135 AA) and R2 (187-191 AA) regions could be important for temperature-dependent PCL function as they fluctuate much at 35 °C temperature. PMSF completely inhibited PCL lipase activity and it demonstrates the presence of serine residues in the active site of PCL. PCL is moderately halophilic and most of the tested organic solvents found to be inhibiting the lipase activity except the solvents ethanol and methanol. PCL activity was increased with surfactants (SDS and CTAB) and bleaching agents (hydrogen peroxide). The effect of different metal ions on PCL resulted that only mercuric chloride was found as the enhancer of the lipase activity. Antibiofilm property of PCL was evaluated against pathogenic Vibrio parahaemolyticus isolated from the diseased shrimp and MIC value was 500 U. PCL significantly altered the morphology and biofilm density of V. parahaemolyticus and the same was observed through scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) imaging. RT-PCR analysis revealed that the mRNA expression level of biofilm, colony morphology and major toxin-related (aphA, luxS, opaR, tolC, toxR) genes of V. parahaemolyticus were significantly downregulated with PCL treatment.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Christian Bharathi
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Repally Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Natwar Jha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Ponnuraj Karthe
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
4
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
5
|
Ashjari M, Garmroodi M, Amiri Asl F, Emampour M, Yousefi M, Pourmohammadi Lish M, Habibi Z, Mohammadi M. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Covalent Immobilization of Candida rugosa Lipase on Epichlorohydrin-Coated Magnetite Nanoparticles: Enantioselective Hydrolysis Studies of Some Racemic Esters and HPLC Analysis. Appl Biochem Biotechnol 2020; 191:1411-1431. [PMID: 32103473 DOI: 10.1007/s12010-020-03274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
In this study, a new biocatalyst was prepared by immobilizing Candida rugosa lipase epichlorohydrin-functionalized onto the surface of the nanoparticles. Magnetite nanoparticles were obtained by chemical co-precipitation method of Fe2+ and Fe3+, and then the prepared uncoated and coated nanoparticles were characterized by XRD, FT-IR and TGA. Lipase was covalently attached to activated nanoparticles. The catalytic properties of free and immobilized lipases were determined. It was found that the optimum temperature for free and immobilized lipases was 30 °C and 35 °C, respectively. The optimum pH values were found to be 7.0 and 8 for free and immobilized lipases, respectively. Immobilized lipase was found to retain significant activity even after the seventh use. In the final section of the study, optically pure compounds were obtained by carrying out the enantioselective hydrolysis studies of racemic esters by using immobilized lipase. Enantiomeric excesses of the products in the enantioselective hydrolysis of racemic ibuprofen and naproxen methyl ester and racemic butyl mandelate were determined to be 94.93, 77.30 and 68.15, respectively.
Collapse
|
7
|
Abstract
Hydrolytic enantioselective cleavage of different racemic non-steroidal anti-inflammatory drugs (NSAIDs) ester derivatives has been studied. An engineered esterase form Bacillus subtilis (BS2m) significantly outperformed homologous enzymes from Halomonas elongata (HeE) and Bacillus coagulants (BCE) in the enantioselective hydrolysis of naproxen esters. Structural analysis of the three active sites highlighted key differences which explained the substrate preference. Immobilization of a chimeric BS2m-T4 lysozyme fusion (BS2mT4L1) was improved by resin screening achieving twice the recovered activity (22.1 ± 5 U/g) with respect to what had been previously reported, and was utilized in a packed bed reactor. Continuous hydrolysis of α-methyl benzene acetic acid butyl ester as a model substrate was easily achieved, albeit at low concentration (1 mM). However, the high degree of insolubility of the naproxen butyl ester resulted in a slurry which could not be efficiently bioconverted, despite the addition of co-solvents and lower substrate concentration (1 mM). Addition of Triton® X-100 to the substrate mix yielded 24% molar conversion and 80% e.e. at a 5 mM scale with 5 min residence time and sufficient retention of catalytic efficiency after 6 h of use.
Collapse
|
8
|
Gao B, Li Y, Chen L. Surface molecularly imprinted material for enantiomeric resolution of ibuprofen: Preparation and study on chiral recognition and resolution property. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1383253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Baojiao Gao
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| | - Yanbin Li
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| | - Lulu Chen
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| |
Collapse
|
9
|
Memarpoor-Yazdi M, Karbalaei-Heidari HR, Doroodmand MM. Enantioselective hydrolysis of ibuprofen ethyl ester by a thermophilic immobilized lipase, ELT, from Rhodothermus marinus. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Silva FBD, Morais Júnior WGD, Silva CVD, Vieira AT, Batista ACF, Faria AMD, Assunção RMN. Preparation and Characterization of Cellulose Triacetate as Support for Lecitase Ultra Immobilization. Molecules 2017; 22:molecules22111930. [PMID: 29144385 PMCID: PMC6150194 DOI: 10.3390/molecules22111930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
The use of polymers as supports for enzyme immobilization is a strategy that enables to remove the enzymes from a chemical reaction and improve their efficiency in catalytic processes. In this work, cellulose triacetate (CTA) was used for physical adsorption of phospholipase Lecitase ultra (LU). CTA is more hydrophobic than cellulose, shows good performance in the lipases immobilization being a good candidate for immobilization of phospholipases. We investigated the immobilization of LU in CTA, the stability of the immobilized enzyme (CTA-LU) and the performance of CTA-LU using soybean oil as a substrate. LU was efficiently immobilized in CTA reaching 97.1% in 60 min of contact with an enzymatic activity of 975.8 U·g-1. The CTA-LU system presents good thermal stability, being superior of the free enzyme and increase of the catalytic activity in the whole range of pH values. The difference observed for immobilized enzyme compared to free one occurs because of the interaction between the enzyme and the polymer, which stabilizes the enzyme. The CTA-LU system was used in the transesterification of soybean oil with methanol, with the production of fatty acid methyl esters. The results showed that CTA-LU is a promising system for enzymatic reactions.
Collapse
Affiliation(s)
- Francielle Batista da Silva
- Laboratory of Polymers Recycling, Chemistry Institute, Federal University of Uberlândia, Uberlândia 38408-144, MG, Brazil.
| | | | - Cleuzilene Vieira da Silva
- Laboratory of Polymers Recycling, Chemistry Institute, Federal University of Uberlândia, Uberlândia 38408-144, MG, Brazil.
| | - Andressa Tironi Vieira
- Faculty of Integrated Sciences-FACIP, Federal University of Uberlândia, Ituiutaba 38304-402, MG, Brazil.
| | | | - Anízio Márcio de Faria
- Faculty of Integrated Sciences-FACIP, Federal University of Uberlândia, Ituiutaba 38304-402, MG, Brazil.
| | | |
Collapse
|
11
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
12
|
Efficient resolution of profen ethyl ester racemates by engineered Yarrowia lipolytica Lip2p lipase. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Han H, Zhou Y, Li S, Wang Y, Kong XZ. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25714-25724. [PMID: 27618157 DOI: 10.1021/acsami.6b07979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A porous polyurea (PPU) was prepared through a simple protocol by reacting toluene diisocyanate with water in binary solvent of water-acetone. Its amine group was determined through spectrophotometric absorbance based on its iminization with p-nitrobenzaldehyde amines. PPU was then used as a novel polymer support for enzyme immobilization, through activation by glutaraldehyde followed by immobilization of an enzyme, lipase from Pseudomonas fluorescens (PFL), via covalent bonding with the amine groups of lipase molecules. Influences of glutaraldehyde and enzyme concentration and pH in the process were studied. The results revealed that the activity of the immobilized PFL reached a maximum at GA concentration of 0.17 mol/L and at pH 8. Immobilization rate of 60% or higher for PFL was obtained under optimized condition with an enzyme activity of 283 U/mg. The porous structure of PPU, prior to and after GA activation and PFL immobilization, was characterized. The activity of the immobilized PFL at different temperature and pH and its stability at 40 °C as well as its reusability were tested. The immobilized enzyme was finally used as enantioselective catalyst in kinetic resolution of racemic 1-phenylethanol (1-PEOH), and its performance compared with the free PFL. The results demonstrate that the enzyme activity and stability were greatly improved for the immobilized PFL, and highly pure enantiomers from racemic 1-PEOH were effectively achieved using the immobilized PFL. Noticeable deactivation of PFL in the resolution was observed by acetaldehyde in situ formed. In addition, the immobilized PFL was readily recovered from the reaction system for reuse. A total of 73% of the initial activity was retained after 5 repeated reuse cycles. This work provides a novel route to preparation of a polyurea porous material and its enzyme immobilization, leading to a novel type of immobilized enzyme for efficient kinetic resolution of racemic molecules.
Collapse
Affiliation(s)
- Hui Han
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yamei Zhou
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
- College of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Yinping Wang
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| |
Collapse
|
14
|
Thermodynamic Study of Racemic Ibuprofen Separation by Liquid Chromatography Using Cellulose-Based Stationary Phase. ACTA ACUST UNITED AC 2016. [DOI: 10.1155/2016/7484731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID), also known for its significant antipyretic and analgesic properties. This chiral drug is commercialized in racemic form; however, only S-(+)-ibuprofen has clinical activities. In this paper the effect of temperature change (from 288.15 to 308.15 K) on the ibuprofen resolution was studied. A column (250×4.6 mm) packed with tris(3,5-dimethylphenylcarbamate) was used to obtain the thermodynamic parameters, such as enthalpy change (ΔH), entropy change (ΔS), variation enthalpy change (ΔΔH), variation entropy change (ΔΔS), and isoenantioselective temperature (Tiso). The mobile phase was a combination of hexane (99%), isopropyl alcohol (1%), and TFA (0.1%), as an additive. The conditions led to a selectivity of 1.20 and resolution of 4.55. The first peak, R-(−)-ibuprofen, presented an enthalpy change of 7.21 kJ/mol and entropy change of 42.88 kJ/K·mol; the last peak, S-(+)-ibuprofen, has an enthalpy change of 8.76 kJ/mol and 49.40 kJ/K·mol of entropy change.
Collapse
|
15
|
Enzymatic Hydrolytic Resolution of Racemic Ibuprofen Ethyl Ester Using an Ionic Liquid as Cosolvent. Molecules 2016; 21:molecules21070905. [PMID: 27420042 PMCID: PMC6274346 DOI: 10.3390/molecules21070905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 06/27/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to develop an ionic liquid (IL) system for the enzymatic resolution of racemic ibuprofen ethyl ester to produce (S)-ibuprofen. Nineteen ILs were selected for use in buffer systems to investigate the effects of ILs as cosolvents for the production of (S)-ibuprofen using thermostable esterase (EST10) from Thermotoga maritima. Analysis of the catalytic efficiency and conformation of EST10 showed that [OmPy][BF₄] was the best medium for the EST10-catalyzed production of (S)-ibuprofen. The maximum degree of conversion degree (47.4%), enantiomeric excess of (S)-ibuprofen (96.6%) and enantiomeric ratio of EST10 (177.0) were achieved with an EST10 concentration of 15 mg/mL, racemic ibuprofen ethyl ester concentration of 150 mM, at 75 °C , with a reaction time of 10 h. The reaction time needed to achieve the highest yield of (S)-ibuprofen was decreased from 24 h to 10 h. These results are relevant to the proposed application of ILs as solvents for the EST10-catalyzed production of (S)-ibuprofen.
Collapse
|
16
|
Bulut D, Duangdee N, Gröger H, Berkessel A, Hummel W. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone. Chembiochem 2016; 17:1349-58. [PMID: 27123855 DOI: 10.1002/cbic.201600101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/28/2022]
Abstract
The stereoselective synthesis of chiral 1,3-diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β-hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β-hydroxy-β-trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2-trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β-hydroxy-β-trifluoromethyl ketone was identified after purification and subsequent MALDI-TOF mass spectrometric analysis. As a result, a new NADP(+) -dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β-hydroxy-β-trifluoromethyl ketone to its corresponding 1,3-diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N- or C-terminal His-tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N-terminal His-tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β-hydroxy-β-trifluoromethyl ketone.
Collapse
Affiliation(s)
- Dalia Bulut
- Institute of Molecular Enzyme Technology, Heinrich Heine University of Düsseldorf, Research Centre Jülich, Wilhelm-Johnen-Strasse, 52426, Jülich, Germany.,Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Nongnaphat Duangdee
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Köln, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Albrecht Berkessel
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Köln, Germany
| | - Werner Hummel
- Institute of Molecular Enzyme Technology, Heinrich Heine University of Düsseldorf, Research Centre Jülich, Wilhelm-Johnen-Strasse, 52426, Jülich, Germany. .,Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
17
|
Huang J, Yan R, He JY, Wang P. Purification and Immobilization of a Novel Enantioselective Lipase from Tsukamurella tyrosinosolvents for Efficient Resolution of Ethyl 2-(2-oxopyrrolidin-1-yl) Butyrate. Appl Biochem Biotechnol 2016; 180:609-622. [PMID: 27179518 DOI: 10.1007/s12010-016-2119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/06/2016] [Indexed: 02/01/2023]
Abstract
A highly enantioselective lipase from Tsukamurella tyrosinosolvents E105 was purified via ultrasonic extraction, precipitation, and chromatographic steps. The enzyme was purified about 38-fold with the recovery yield of 9 % and was confirmed as a dimer protein consisting of two identical subunits with a molecular mass of 24 kDa. The purified lipase was used to catalyze resolution of racemic ethyl 2-(2-oxopyrrolidin-1-yl) butyrate to (S)-2-(2-oxopyrrolidin-1-yl) butyric acid. The maximum activity of such lipase was obtained at pH 7.5, 35 °C, and the highest relative activity (156.80 %) was observed in the presence of 0.5 mM Co2+. Subsequently, the lipase was encapsulated within a mixture of 3 % sodium alginate and 0.8 % carrageenan, and then cross-linked with 0.6 % glutaraldehyde to enhance its biocatalytic capability and stability. Comparing with 36.9 % product yield and 97.5 % product ee of free lipase, the highest product yield of 46.3 % and ee of 98.5 % for immobilized lipase were achieved with the presence of 20 mM substrate. In addition, the reusability of immobilized lipase was also investigated, which could maintain 63.7 % of its initial conversion yield after seven repeated batch reactions. Thus, the evaluated enantioselective lipase in this work has a good potential for further industrial application.
Collapse
Affiliation(s)
- Jin Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ren Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun-Yao He
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
18
|
Garmroodi M, Mohammadi M, Ramazani A, Ashjari M, Mohammadi J, Sabour B, Yousefi M. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int J Biol Macromol 2016; 86:208-15. [DOI: 10.1016/j.ijbiomac.2016.01.076] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022]
|
19
|
Spectroscopy and kinetics evidence for the hydrogen-bond activating effect of anion/cation of [Bmim]OAc on the hydrolysis of esters. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Numerical determination of non-Langmuirian adsorption isotherms of ibuprofen enantiomers on Chiralcel OD column using ultraviolet–circular dichroism dual detector. J Chromatogr A 2016; 1435:92-9. [DOI: 10.1016/j.chroma.2016.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 11/22/2022]
|
21
|
Mohammadi M, Gandomkar S, Habibi Z, Yousefi M. One pot three-component reaction for covalent immobilization of enzymes: application of immobilized lipases for kinetic resolution of rac-ibuprofen. RSC Adv 2016. [DOI: 10.1039/c6ra11284f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one pot three-component reaction was used for the covalent immobilization of CALB and RML on epoxy-functionalized supports.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Somayyeh Gandomkar
- Department of Pure Chemistry
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | - Zohreh Habibi
- Department of Pure Chemistry
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center
- Avicenna Research Institute
- ACECR
- Tehran
- Iran
| |
Collapse
|
22
|
Ashjari M, Mohammadi M, Badri R. Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Selectivity of R-α-monobenzoate glycerol synthesis catalyzed by Candida antarctica lipase B immobilized on heterofunctional supports. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Babaki M, Yousefi M, Habibi Z, Mohammadi M, Brask J. Effect of water, organic solvent and adsorbent contents on production of biodiesel fuel from canola oil catalyzed by various lipases immobilized on epoxy-functionalized silica as low cost biocatalyst. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Enantioselective resolution of racemic ibuprofen esters using different lipases immobilized on epoxy-functionalized silica. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Babaki M, Yousefi M, Habibi Z, Brask J, Mohammadi M. Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Ashjari M, Mohammadi M, Badri R. Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: Modulation of stability and selectivity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Amphiphilic polymer conetworks with defined nanostructure and tailored swelling behavior for exploring the activation of an entrapped lipase in organic solvents. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Rueda N, dos Santos JCS, Torres R, Ortiz C, Barbosa O, Fernandez-Lafuente R. Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Adv 2015. [DOI: 10.1039/c4ra13338b] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A new heterofunctional support, octyl-glyoxyl agarose, is proposed in this study.
Collapse
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatálisis. Instituto de Catálisis-CSIC
- Campus UAM-CSIC Madrid
- Spain
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
| | - Jose C. S. dos Santos
- Departamento de Biocatálisis. Instituto de Catálisis-CSIC
- Campus UAM-CSIC Madrid
- Spain
- Departamento de Engenharia Química
- Universidade Federal Do Ceará
| | - Rodrigo Torres
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias. Universidad del Tolima
- Ibagué
- Colombia
| | | |
Collapse
|