1
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Li CM, Kang J, Baek J, Kim Y, Park H, Jung YK. Cytosolic FKBPL and ER-resident CKAP4 co-regulates ER-phagy and protein secretion. Nat Commun 2024; 15:7886. [PMID: 39251576 PMCID: PMC11383940 DOI: 10.1038/s41467-024-52188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator. Overexpression of FKBPL triggers ER fragmentation and ER-phagy. FKBPL has multiple protein binding domains, can self-associate and might act as a scaffold connecting CKAP4 and LC3/GABARAPs. CKAP4 serves as a bridge between FKBPL and ER-phagy cargo. ER-phagy-inducing conditions increase FKBPL-CKAP4 interaction followed by FKBPL oligomerization at the ER, leading to ER-phagy. In addition, FKBPL-CKAP4 deficiency leads to Golgi disassembly and lysosome impairment, and an increase in ER-derived secretory vesicles and enhances cytosolic protein secretion via microvesicle shedding. Taken together, FKBPL with the aid of CKAP4 induces ER fragmentation and ER-phagy, and FKBPL-CKAP4 deficiency facilitates protein secretion.
Collapse
Affiliation(s)
- Cathena Meiling Li
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jaemin Kang
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jongyeon Baek
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Heemin Park
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
3
|
Zhang Y, Yang F, Wu J, Huang J, Li P, Huang G. Idebenone Exerts anti-Triple Negative Breast Cancer Effects via Dual Signaling Pathways of GADD45 and AMPK. Nutr Cancer 2024; 76:379-392. [PMID: 38332562 DOI: 10.1080/01635581.2024.2314320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Idebenone, a mitochondrial regulator, has exhibited anti-cancer activity in neurogenic and prostate tumor cells; however, its efficacy and specific targets in the treatment of triple-negative breast cancer (TNBC) remain unclear. This study aims to evaluate the potential of Idebenone as a therapeutic agent for TNBC. TNBC cell lines and Xenograft mouse models were used to assess the effect of Idebenone on TNBC both in vitro and in vivo. To investigate the underlying mechanism of Idebenone's effect on TNBC, cell viability assay, transwell invasion assay, cell cycle analysis, apoptosis assay, mitochondrial membrane potential assay, immunofluorescence staining, and transcriptome sequencing were utilized. The results showed that Idebenone impeded the proliferation, colony formation, migration, and invasion of TNBC cells, suppressed apoptosis, and halted the cell cycle in the G2/M phase. The inhibitory effect of Idebenone on TNBC was associated with the GADD45/CyclinB/CDK1 signaling pathway. By disrupting the mitochondrial membrane potential (MMP) and promoting mitophagy, Idebenone promoted cell autophagy through the AMPK/mTOR pathway, thus further suppressing the proliferation of TNBC cells. Furthermore, we found that Idebenone inhibited the development of TNBC in vivo. In conclusion, Idebenone may be a promising therapeutic option for TNBC as it is capable of inducing autophagy and apoptosis.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahao Wu
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhong Huang
- Department of General Surgery, Zengcheng District Hospital of Traditional Chinese Medicine, China
| | - Peiqing Li
- Department of General Surgery, Xinyi People's Hospital, Xinyi, China
| | - Guanqun Huang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Choi SH, Cho SY, Park SY, Hur MW. Post-translational regulation of proto-oncogene ZBTB7A expression by p53 status in cancer cells: HSP90-dependent stabilization vs. p53-KLHL20-ubiquitin proteasomal degradation. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2023; 1866:194931. [PMID: 37011832 DOI: 10.1016/j.bbagrm.2023.194931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
ZBTB7A overexpressed in many human cancers is a major oncogenic driver. ZBTB7A promotes tumorigenesis by regulating transcription of the genes involved in cell survival and proliferation, apoptosis, invasion, and migration/metastasis. One unresolved issue is the mechanism underlying the aberrant overexpression of ZBTB7A in cancer cells. Interestingly, inhibition of HSP90 decreased ZBTB7A expression in a variety of human cancer cells. ZBTB7A interacts with and is stabilized by HSP90. Inhibition of HSP90 by 17-AAG resulted in p53-dependent proteolysis of ZBTB7A via increased p53 expression and upregulation of the CUL3-dependent E3 ubiquitin ligase, KLHL20. Down-regulation of ZBTB7A resulted in the derepression of a major negative regulator of cell cycle progression, p21/CDKN1A. We discovered a new function of p53 regulating ZBTB7A expression through KLHL20-E3 ligase and proteasomal protein degradation system.
Collapse
|
5
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
6
|
Yamada Z, Nishio J, Motomura K, Mizutani S, Yamada S, Mikami T, Nanki T. Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine fibrosing interstitial lung disease. Front Immunol 2022; 13:935114. [PMID: 36059455 PMCID: PMC9434111 DOI: 10.3389/fimmu.2022.935114] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosing interstitial lung disease (ILD) develops due to the impaired reparative processes following lung tissue damage. Cellular senescence has been reported to contribute to the progression of fibrosis. However, the mechanisms by which these senescent cells initiate and/or drive the progression of lung tissue fibrosis are not yet fully understood. We demonstrated that p21WAF1/CIP1- and p16INK4A-pathway-dependent senescence in type 2 alveolar epithelial cells (AEC2) were both involved in the initiation and progression of lung fibrosis in murine bleomycin (BLM)-induced ILD. p21WAF1/CIP1-senescent AEC2 emerged rapidly, as early as 1 day after the intratracheal instillation of BLM. Their number subsequently increased and persisted until the later fibrosis phase. Very few p16INK4A-senescent AEC2 emerged upon the instillation of BLM, and their increase was slower and milder than that of p21WAF1/CIP1+ AEC2. AEC2 enriched with senescent cells sorted from BLM-ILD lungs expressed senescence-associated secretory phenotype (SASP)-related genes, including Il6, Serpin1, Tnfa, Ccl2, Tgfb, and Pdgfa, at the initiation and chronic phases of fibrosis, exhibiting distinct expression patterns of magnitude that were dependent on the disease phase. Ly6C+ inflammatory monocytes increased in the lungs immediately after the instillation of BLM and interstitial macrophages increased from day 3. The expression of Acta2 and Col1a1 was upregulated as early as day 1, indicating the activation of fibroblasts. We speculated that IL-6, plasminogen activator inhibitor-1 (PAI-1), and TGF-β contributed to the accumulation of senescent cells during the progression of fibrosis in an autocrine and paracrine manner. In addition, CCL2, produced in large amounts by senescent AEC2, may have induced the infiltration of Ly6C+ inflammatory monocytes in the early phase, and TGF-β and PDGFa from senescent AEC2 may contribute to the activation of fibroblasts in the very early phases. Our study indicated that senescent AEC2 plays a role in the pathogenesis of fibrosing ILD throughout the course of the disease and provides insights into its pathogenesis, which may lead to the development of new therapeutic methods targeting senescent cells or SASP molecules.
Collapse
Affiliation(s)
- Zento Yamada
- Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Junko Nishio
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
- Department of Immunopathology and Immunoregulation, Toho University School of Medicine, Tokyo, Japan
- *Correspondence: Junko Nishio, ; Toshihiro Nanki,
| | - Kaori Motomura
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Satoshi Mizutani
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Soichi Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Toshihiro Nanki
- Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
- *Correspondence: Junko Nishio, ; Toshihiro Nanki,
| |
Collapse
|
7
|
Richards C, Sesperez K, Chhor M, Ghorbanpour S, Rennie C, Ming CLC, Evenhuis C, Nikolic V, Orlic NK, Mikovic Z, Stefanovic M, Cakic Z, McGrath K, Gentile C, Bubb K, McClements L. Characterisation of cardiac health in the reduced uterine perfusion pressure model and a 3D cardiac spheroid model, of preeclampsia. Biol Sex Differ 2021; 12:31. [PMID: 33879252 PMCID: PMC8056582 DOI: 10.1186/s13293-021-00376-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background Preeclampsia is a dangerous cardiovascular disorder of pregnancy that leads to an increased risk of future cardiovascular and metabolic disorders. Much of the pathogenesis and mechanisms involved in cardiac health in preeclampsia are unknown. A novel anti-angiogenic protein, FKBPL, is emerging as having a potential role in both preeclampsia and cardiovascular disease (CVD). Therefore, in this study we aimed to characterise cardiac health and FKBPL regulation in the rat reduced uterine perfusion pressure (RUPP) and a 3D cardiac spheroid model of preeclampsia. Methods The RUPP model was induced in pregnant rats and histological analysis performed on the heart, kidney, liver and placenta (n ≥ 6). Picrosirius red staining was performed to quantify collagen I and III deposition in rat hearts, placentae and livers as an indicator of fibrosis. RT-qPCR was used to determine changes in Fkbpl, Icam1, Vcam1, Flt1 and Vegfa mRNA in hearts and/or placentae and ELISA to evaluate cardiac brain natriuretic peptide (BNP45) and FKBPL secretion. Immunofluorescent staining was also conducted to analyse the expression of cardiac FKBPL. Cardiac spheroids were generated using human cardiac fibroblasts and human coronary artery endothelial cells and treated with patient plasma from normotensive controls, early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE); n = 3. FKBPL and CD31 expression was quantified by immunofluorescent labelling. Results The RUPP procedure induced significant increases in blood pressure (p < 0.001), collagen deposition (p < 0.001) and cardiac BNP45 (p < 0.05). It also induced a significant increase in cardiac FKBPL mRNA (p < 0.05) and protein expression (p < 0.01). RUPP placentae also exhibited increased collagen deposition and decreased Flt1 mRNA expression (p < 0.05). RUPP kidneys revealed an increase in average glomerular size (p < 0.05). Cardiac spheroids showed a significant increase in FKBPL expression when treated with LOPE plasma (p < 0.05) and a trend towards increased FKBPL expression following treatment with EOPE plasma (p = 0.06). Conclusions The rat RUPP model induced cardiac, renal and placental features reflective of preeclampsia. FKBPL was increased in the hearts of RUPP rats and cardiac spheroids treated with plasma from women with preeclampsia, perhaps reflective of restricted angiogenesis and inflammation in this disorder. Elucidation of these novel FKBPL mechanisms in cardiac health in preeclampsia could be key in preventing future CVD. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00376-1.
Collapse
Affiliation(s)
- Claire Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael Chhor
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Chris Evenhuis
- The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Valentina Nikolic
- Department of Pharmacology and Toxicology & Department of Internal Medicine - Gynaecology, Medical Faculty, University of Nis, Nis, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- Department of Pharmacology and Toxicology & Department of Internal Medicine - Gynaecology, Medical Faculty, University of Nis, Nis, Serbia.,Department of Gynaecology and Obstetrics, Clinical Centre Nis, Nis, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia.,The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Kristen Bubb
- The Kolling Institute, University of Sydney, Sydney, NSW, Australia.,Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Huang G, Boesze-Battaglia K, Walker LP, Zekavat A, Schaefer ZP, Blanke SR, Shenker BJ. The Active Subunit of the Cytolethal Distending Toxin, CdtB, Derived From Both Haemophilus ducreyi and Campylobacter jejuni Exhibits Potent Phosphatidylinositol-3,4,5-Triphosphate Phosphatase Activity. Front Cell Infect Microbiol 2021; 11:664221. [PMID: 33854985 PMCID: PMC8039388 DOI: 10.3389/fcimb.2021.664221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Human lymphocytes exposed to Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) undergo cell cycle arrest and apoptosis. In previous studies, we demonstrated that the active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase. Moreover, AaCdt-treated cells exhibit evidence of PI-3-kinase (PI-3K) signaling blockade characterized by reduced levels of PIP3, pAkt, and pGSK3β. We have also demonstrated that PI-3K blockade is a requisite of AaCdt-induced toxicity in lymphocytes. In this study, we extended our observations to include assessment of Cdts from Haemophilus ducreyi (HdCdt) and Campylobacter jejuni (CjCdt). We now report that the CdtB subunit from HdCdt and CjCdt, similar to that of AaCdt, exhibit potent PIP3 phosphatase activity and that Jurkat cells treated with these Cdts exhibit PI-3K signaling blockade: reduced levels of pAkt and pGSK3β. Since non-phosphorylated GSK3β is the active form of this kinase, we compared Cdts for dependence on GSK3β activity. Two GSK3β inhibitors were employed, LY2090314 and CHIR99021; both inhibitors blocked the ability of Cdts to induce cell cycle arrest. We have previously demonstrated that AaCdt induces increases in the CDK inhibitor, p21CIP1/WAF1, and, further, that this was a requisite for toxin-induced cell death via apoptosis. We now demonstrate that HdCdt and CjCdt also share this requirement. It is also noteworthy that p21CIP1/WAF1 was not involved in the ability of the three Cdts to induce cell cycle arrest. Finally, we demonstrate that, like AaCdt, HdCdt is dependent upon the host cell protein, cellugyrin, for its toxicity (and presumably internalization of CdtB); CjCdt was not dependent upon this protein. The implications of these findings as they relate to Cdt’s molecular mode of action are discussed.
Collapse
Affiliation(s)
- Grace Huang
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Lisa P Walker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Ali Zekavat
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Zachary P Schaefer
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| | - Steven R Blanke
- Department of Microbiology, University of Illinois, Urbana, IL, United States.,Pathobiology Department, University of Illinois, Urbana, IL, United States.,Biomedical and Translational Sciences Department, University of Illinois, Urbana, IL, United States
| | - Bruce J Shenker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| |
Collapse
|
9
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 685] [Impact Index Per Article: 228.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
10
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
11
|
Niu J, Gao RQ, Cui MT, Zhang CG, Li ST, Cheng S, Ding W. Suppression of TCAB1 expression induced cellular senescence by lessening proteasomal degradation of p21 in cancer cells. Cancer Cell Int 2021; 21:26. [PMID: 33413389 PMCID: PMC7788802 DOI: 10.1186/s12935-020-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background TCAB1, a.k.a. WRAP53β or WDR79, is an important molecule for the maintenance of Cajal bodies and critically involved in telomere elongation and DNA repair. Upregulation of TCAB1 were discovered in a variety types of cancers. However, the function of TCAB1 in tumor cell senescence remains absent. Methods The TCAB1 knockdown cell lines were constructed. The expression levels of TCAB1, p21, p16 and p53 were detected by qRT-PCR and western blotting. Staining of senescence-associated β-galactosidase was used to detect senescent cells. The ubiquitination of the p21 was analysed by immunoprecipitation and in vivo ubiquitination assay. TCGA databases were employed to perform in silico analyses for the mRNA expression of TCAB1, p21, p16 and p53. Results Here, we discovered that knockdown of TCAB1 induced rapid progression of cellular senescence in A549, H1299 and HeLa cells. In exploiting the mechanism underlining the role of TCAB1 on senescence, we found a significant increase of p21 at the protein levels upon TCAB1 depletion, whereas the p21 mRNA expression was not altered. We verified that TCAB1 knockdown was able to shunt p21 from proteasomal degradation by regulating the ubiquitination of p21. In rescue assays, it was demonstrated that decreasing the expression of p21 or increasing the expression of TCAB1 were able to attenuate the cellular senescence process induced by TCAB1 silencing. Conclusions This study revealed the importance of TCAB1 for its biological functions in the regulation of cell senescence. Our results will be helpful to understand the mechanisms of senescence in cancer cells, which could provide clues for designing novel strategies for developing effective treatment regimens.
Collapse
Affiliation(s)
- Jing Niu
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.,Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Rui-Qi Gao
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Meng-Tian Cui
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Chen-Guang Zhang
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.,Beijing Key Laboratory for Tumor Invasion and Metastasis Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Shen-Tao Li
- Central Facility of Biomedical Research, Capital Medical University, 10 You'an Men West, Beijing, P. R. China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, 10 You'an Men West, Beijing, P. R. China.
| |
Collapse
|
12
|
Dean ME, Johnson JL. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021; 26:3-13. [PMID: 33037995 PMCID: PMC7736379 DOI: 10.1007/s12192-020-01167-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.
Collapse
Affiliation(s)
- Marissa E Dean
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA.
- Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
13
|
Wang L, Han H, Dong L, Wang Z, Qin Y. Function of p21 and its therapeutic effects in esophageal cancer. Oncol Lett 2020; 21:136. [PMID: 33552255 PMCID: PMC7798030 DOI: 10.3892/ol.2020.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most common type of cancer worldwide and ranks sixth among the causes of cancer-related mortality. Due to the high mortality rate and poor treatment efficacy for EC, millions of individuals succumb to this disease; thus, the identification of novel treatment targets is of utmost importance and urgency. In recent years, there have been advances if therapies targeting cell cycle regulators. p21 is a type of cell cycle regulator that plays a dual role in tumor cells, as it can not only regulate the cell cycle, induce apoptosis and inhibit cell proliferation, but can also protect cells from apoptosis. It has been found that p21 often exerts a tumor-suppressive effect on EC, which provides a basis for its use as a treatment target for EC. Therefore, the aim of the present study was to review the function of p21 and its potential value as a therapeutic target for EC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Zhao ML, Rabiee A, Kovary KM, Bahrami-Nejad Z, Taylor B, Teruel MN. Molecular Competition in G1 Controls When Cells Simultaneously Commit to Terminally Differentiate and Exit the Cell Cycle. Cell Rep 2020; 31:107769. [PMID: 32553172 PMCID: PMC8198760 DOI: 10.1016/j.celrep.2020.107769] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Terminal differentiation is essential for the development and maintenance of tissues in all multi-cellular organisms and is associated with permanent exit from the cell cycle. Failure to permanently exit the cell cycle can result in cancer and disease. However, the molecular mechanisms and timing that coordinate differentiation commitment and cell cycle exit are not yet understood. Using live, single-cell imaging of cell cycle progression and differentiation commitment during adipogenesis, we show that a rapid switch mechanism engages exclusively in G1 to trigger differentiation commitment simultaneously with permanent exit from the cell cycle. We identify a molecular competition in G1 between when the differentiation switch is triggered and when the proliferative window closes that allows mitogen and differentiation stimuli to control the balance between terminally differentiating cells produced and progenitor cells kept in reserve, a parameter of critical importance for enabling proper development of tissue domains and organs.
Collapse
Affiliation(s)
- Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Atefeh Rabiee
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Kyle M Kovary
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Zahra Bahrami-Nejad
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Brooks Taylor
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA; Department of Biochemistry and the Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Intrinsic Disorder in Tetratricopeptide Repeat Proteins. Int J Mol Sci 2020; 21:ijms21103709. [PMID: 32466138 PMCID: PMC7279152 DOI: 10.3390/ijms21103709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Among the realm of repeat containing proteins that commonly serve as “scaffolds” promoting protein-protein interactions, there is a family of proteins containing between 2 and 20 tetratricopeptide repeats (TPRs), which are functional motifs consisting of 34 amino acids. The most distinguishing feature of TPR domains is their ability to stack continuously one upon the other, with these stacked repeats being able to affect interaction with binding partners either sequentially or in combination. It is known that many repeat-containing proteins are characterized by high levels of intrinsic disorder, and that many protein tandem repeats can be intrinsically disordered. Furthermore, it seems that TPR-containing proteins share many characteristics with hybrid proteins containing ordered domains and intrinsically disordered protein regions. However, there has not been a systematic analysis of the intrinsic disorder status of TPR proteins. To fill this gap, we analyzed 166 human TPR proteins to determine the degree to which proteins containing TPR motifs are affected by intrinsic disorder. Our analysis revealed that these proteins are characterized by different levels of intrinsic disorder and contain functional disordered regions that are utilized for protein-protein interactions and often serve as targets of various posttranslational modifications.
Collapse
|
16
|
Intracellular Insulin-like growth factor binding protein 2 (IGFBP2) contributes to the senescence of keratinocytes in psoriasis by stabilizing cytoplasmic p21. Aging (Albany NY) 2020; 12:6823-6851. [PMID: 32302288 PMCID: PMC7202509 DOI: 10.18632/aging.103045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Psoriasis is a chronic Th1/Th17 lymphocytes-mediated inflammatory skin disease, in which epidermal keratinocytes exhibit a peculiar senescent state, resistance to apoptosis and the acquisition of senescence-associated secretory phenotype (SASP). SASP consists of the release of soluble factors, including IGFBPs, that exert extracellular and intracellular functions in IGF-dependent or independent manner.In this report, we investigated the expression and function of IGFBP2 in senescent keratinocytes isolated from the skin of patients with plaque psoriasis. We found that IGFBP2 is aberrantly expressed and released by these cells in vivo, as well as in vitro in keratinocyte cultures undergoing progressive senescence, and it associates with the cyclin-dependent kinase inhibitors p21 and p16 expression. For the first time, we provide evidence for a dual action of IGFBP2 in psoriatic keratinocytes during growth and senescence processes. While extracellular IGFBP2 counter-regulates IGF-induced keratinocyte hyper-proliferation, intracellular IGFBP2 inhibits apoptosis by interacting with p21 and protecting it from ubiquitin-dependent degradation. Indeed, we found that cytoplasmic p21 sustains anti-apoptotic processes, by inhibiting pro-caspase 3 cleavage and JNK phosphorylation in senescent psoriatic keratinocytes. As a consequence, abrogation of p21, as well as that of IGFBP2, found to stabilize cytoplasmic p21 levels, lead to the restoration of apoptosis mechanisms in psoriatic keratinocytes, commonly observed in healthy cells.
Collapse
|
17
|
De Leo SA, Zgajnar NR, Mazaira GI, Erlejman AG, Galigniana MD. Role of the Hsp90-Immunophilin Heterocomplex in Cancer Biology. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190102120801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of new factors that may function as cancer markers and become eventual pharmacologic targets is a challenge that may influence the management of tumor development and management. Recent discoveries connecting Hsp90-binding immunophilins with the regulation of signalling events that can modulate cancer progression transform this family of proteins in potential unconventional factors that may impact on the screening and diagnosis of malignant diseases. Immunophilins are molecular chaperones that group a family of intracellular receptors for immunosuppressive compounds. A subfamily of the immunophilin family is characterized by showing structural tetratricopeptide repeats, protein domains that are able to interact with the C-terminal end of the molecular chaperone Hsp90, and via the proper Hsp90-immunophilin complex, the biological properties of a number of client-proteins involved in cancer biology are modulated. Recent discoveries have demonstrated that two of the most studied members of this Hsp90- binding subfamily of immunophilins, FKBP51 and FKBP52, participate in several cellular processes such as apoptosis, carcinogenesis progression, and chemoresistance. While the expression levels of some members of the immunophilin family are affected in both cancer cell lines and human cancer tissues compared to normal samples, novel regulatory mechanisms have emerged during the last few years for several client-factors of immunophilins that are major players in cancer development and progression, among them steroid receptors, the transctiption factor NF-κB and the catalytic subunit of telomerase, hTERT. In this review, recent findings related to the biological properties of both iconic Hsp90-binding immunophilins, FKBP51 and FKBP52, are reviewed within the context of their interactions with those chaperoned client-factors. The potential roles of both immunophilins as potential cancer biomarkers and non-conventional pharmacologic targets for cancer treatment are discussed.
Collapse
Affiliation(s)
- Sonia A. De Leo
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Gisela I. Mazaira
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra G. Erlejman
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
The Cell-Cycle Regulatory Protein p21 CIP1/WAF1 Is Required for Cytolethal Distending Toxin (Cdt)-Induced Apoptosis. Pathogens 2020; 9:pathogens9010038. [PMID: 31906446 PMCID: PMC7168616 DOI: 10.3390/pathogens9010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB’s ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21−) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21− cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21− cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.
Collapse
|
19
|
FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer. Br J Cancer 2019; 122:361-371. [PMID: 31772325 PMCID: PMC7000737 DOI: 10.1038/s41416-019-0649-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours. Methods In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA). Results ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC. Conclusion FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.
Collapse
|
20
|
Heat Shock Protein 90 Ensures the Integrity of Rubella Virus p150 Protein and Supports Viral Replication. J Virol 2019; 93:JVI.01142-19. [PMID: 31484751 DOI: 10.1128/jvi.01142-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Two viral nonstructural proteins, p150 and p90, are expressed in rubella virus (RUBV)-infected cells and mediate viral genome replication, presumably using various host machineries. Molecular chaperones are critical host factors for the maintenance of cellular proteostasis, and certain viral proteins use this chaperone system. The RUBV p150 and p90 proteins are generated from a precursor polyprotein, p200, via processing by the protease activity of its p150 region. This processing is essential for RUBV genome replication. Here we show that heat shock protein 90 (HSP90), a molecular chaperone, is an important host factor for RUBV genome replication. The treatment of RUBV-infected cells with the HSP90 inhibitors 17-allylamino-17-desmethoxygeldanamycin (17-AAG) and ganetespib suppressed RUBV genome replication. HSP90α physically interacted with p150, but not p90. Further analyses into the mechanism of action of the HSP90 inhibitors revealed that HSP90 activity contributes to p150 functional integrity and promotes p200 processing. Collectively, our data demonstrate that RUBV p150 is a client of the HSP90 molecular chaperone and that HSP90 functions as a key host factor for RUBV replication.IMPORTANCE Accumulating evidence indicates that RNA viruses use numerous host factors during replication of their genomes. However, the host factors involved in rubella virus (RUBV) genome replication are largely unknown. In this study, we demonstrate that the HSP90 molecular chaperone is needed for the efficient replication of the RUBV genome. Further, we reveal that HSP90 interacts with RUBV nonstructural protein p150 and its precursor polyprotein, p200. HSP90 contributes to the stability of p150 and the processing of p200 via its protease domain in the p150 region. We conclude that the cellular molecular chaperone HSP90 is a key host factor for functional maturation of nonstructural proteins for RUBV genome replication. These findings provide novel insight into this host-virus interaction.
Collapse
|
21
|
Nucleoporin Nup155 is part of the p53 network in liver cancer. Nat Commun 2019; 10:2147. [PMID: 31089132 PMCID: PMC6517424 DOI: 10.1038/s41467-019-10133-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/16/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-relevant signalling pathways rely on bidirectional nucleocytoplasmic transport events through the nuclear pore complex (NPC). However, mechanisms by which individual NPC components (Nups) participate in the regulation of these pathways remain poorly understood. We discover by integrating large scale proteomics, polysome fractionation and a focused RNAi approach that Nup155 controls mRNA translation of p21 (CDKN1A), a key mediator of the p53 response. The underlying mechanism involves transcriptional regulation of the putative tRNA and rRNA methyltransferase FTSJ1 by Nup155. Furthermore, we observe that Nup155 and FTSJ1 are p53 repression targets and accordingly find a correlation between the p53 status, Nup155 and FTSJ1 expression in murine and human hepatocellular carcinoma. Our data suggest an unanticipated regulatory network linking translational control by and repression of a structural NPC component modulating the p53 pathway through its effectors. The nuclear pore complex (NPC) is known to regulate p53 signaling and this has mainly been linked to peripheral NPC subunits. Here the authors show that Nup155 from the NPC inner ring regulates the p53 pathway by controlling p21 translation while also being a target of p53-mediated repression.
Collapse
|
22
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
23
|
Huang S, Li Y, Yuan X, Zhao M, Wang J, Li Y, Li Y, Lin H, Zhang Q, Wang W, Li D, Dong X, Li L, Liu M, Huang W, Huang C. The UbL-UBA Ubiquilin4 protein functions as a tumor suppressor in gastric cancer by p53-dependent and p53-independent regulation of p21. Cell Death Differ 2018; 26:516-530. [PMID: 29899380 PMCID: PMC6370890 DOI: 10.1038/s41418-018-0141-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.
Collapse
Affiliation(s)
- Shengkai Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China
| | - Xinghua Yuan
- Department of Abdomen Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China
| | - Jia Wang
- Department of Clinical Laboratory, Meitan General Hospital, 100021, Beijing, China
| | - You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361005, Fujian, China.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8140, New Zealand.,Department of Chemistry, University of Canterbury, Christchurch, 8140, New Zealand
| | - Yuan Li
- Department of Developmental Biology, China Medical University, 110122, Shenyang, China
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China
| | - Qiao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China
| | - Wenjie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lanfen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361005, Fujian, China.
| | - Weiyan Huang
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, 43210, USA.
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China. .,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China. .,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, 100021, Beijing, China.
| |
Collapse
|
24
|
Shelton LB, Koren J, Blair LJ. Imbalances in the Hsp90 Chaperone Machinery: Implications for Tauopathies. Front Neurosci 2017; 11:724. [PMID: 29311797 PMCID: PMC5744016 DOI: 10.3389/fnins.2017.00724] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
The ATP-dependent 90 kDa heat shock protein, Hsp90, is a major regulator of protein triage, from assisting in nascent protein folding to refolding or degrading aberrant proteins. Tau, a microtubule associated protein, aberrantly accumulates in Alzheimer's disease (AD) and other neurodegenerative diseases, deemed tauopathies. Hsp90 binds to and regulates tau fate in coordination with a diverse group of co-chaperones. Imbalances in chaperone levels and activity, as found in the aging brain, can contribute to disease onset and progression. For example, the levels of the Hsp90 co-chaperone, FK506-binding protein 51 kDa (FKBP51), progressively increase with age. In vitro and in vivo tau models demonstrated that FKBP51 synergizes with Hsp90 to increase neurotoxic tau oligomer production. Inversely, protein phosphatase 5 (PP5), which dephosphorylates tau to restore microtubule-binding function, is repressed with aging and activity is further repressed in AD. Similarly, levels of cyclophilin 40 (CyP40) are reduced in the aged brain and further repressed in AD. Interestingly, CyP40 was shown to breakup tau aggregates in vitro and prevent tau-induced neurotoxicity in vivo. Moreover, the only known stimulator of Hsp90 ATPase activity, Aha1, increases tau aggregation and toxicity. While the levels of Aha1 are not significantly altered with aging, increased levels have been found in AD brains. Overall, these changes in the Hsp90 heterocomplex could drive tau deposition and neurotoxicity. While the relationship of tau and Hsp90 in coordination with these co-chaperones is still under investigation, it is clear that imbalances in these proteins with aging can contribute to disease onset and progression. This review highlights the current understanding of how the Hsp90 family of molecular chaperones regulates tau or other misfolded proteins in neurodegenerative diseases with a particular emphasis on the impact of aging.
Collapse
Affiliation(s)
- Lindsey B Shelton
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - John Koren
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
25
|
Collier AE, Spandau DF, Wek RC. Translational control of a human CDKN1A mRNA splice variant regulates the fate of UVB-irradiated human keratinocytes. Mol Biol Cell 2017; 29:29-41. [PMID: 29118075 PMCID: PMC5746064 DOI: 10.1091/mbc.e17-06-0362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/20/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Abstract
In response to sublethal ultraviolet B (UVB) irradiation, human keratinocytes transiently block progression of the cell cycle to allow ample time for DNA repair and cell fate determination. These cellular activities are important for avoiding the initiation of carcinogenesis in skin. Central to these processes is the repression of initiation of mRNA translation through GCN2 phosphorylation of eIF2α (eIF2α-P). Concurrent with reduced global protein synthesis, eIF2α-P and the accompanying integrated stress response (ISR) selectively enhance translation of mRNAs involved in stress adaptation. In this study, we elucidated a mechanism for eIF2α-P cytoprotection in response to UVB in human keratinocytes. Loss of eIF2α-P induced by UVB diminished G1 arrest, DNA repair, and cellular senescence coincident with enhanced cell death in human keratinocytes. Genome-wide analysis of translation revealed that the mechanism for these critical adaptive responses by eIF2α-P involved induced expression of CDKN1A encoding the p21 (CIP1/WAF1) protein. We further show that human CDKN1A mRNA splice variant 4 is preferentially translated following stress-induced eIF2α-P by a mechanism mediated in part by upstream ORFs situated in the 5'-leader of CDKN1A mRNA. We conclude that eIF2α-P is cytoprotective in response to UVB by a mechanism featuring translation of a specific splice variant of CDKN1A that facilitates G1 arrest and subsequent DNA repair.
Collapse
Affiliation(s)
- Ann E Collier
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dan F Spandau
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 .,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ronald C Wek
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
26
|
Chang YL, Huang LC, Chen YC, Wang YW, Hueng DY, Huang SM. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines. Int J Biochem Cell Biol 2017; 92:155-163. [DOI: 10.1016/j.biocel.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
|
27
|
Biswas K, Sarkar S, Du K, Brautigan DL, Abbas T, Larner JM. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance. Mol Cancer Res 2017; 15:651-659. [PMID: 28232384 DOI: 10.1158/1541-7786.mcr-16-0466] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
Lung cancer resists radiotherapy, making it one of the deadliest forms of cancer. Here, we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically, ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor, p21 protein, is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene (CDKN1A) in CHIP knockdown cells. Conversely, overexpression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone HSP70. These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity, thus suggesting a novel strategy for the treatment of lung cancer.Implications: The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. Mol Cancer Res; 15(6); 651-9. ©2017 AACR.
Collapse
Affiliation(s)
- Kuntal Biswas
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Sukumar Sarkar
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Kangping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - James M Larner
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
28
|
The androgen-induced protein AIbZIP facilitates proliferation of prostate cancer cells through downregulation of p21 expression. Sci Rep 2016; 6:37310. [PMID: 27853318 PMCID: PMC5112536 DOI: 10.1038/srep37310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
Androgen-Induced bZIP (AIbZIP) is structurally a bZIP transmembrane transcription factor belonging to the CREB/ATF family. This molecule is highly expressed in androgen-sensitive prostate cancer cells and is transcriptionally upregulated by androgen treatment. Here, we investigated molecular mechanism of androgen-dependent expression of AIbZIP and its physiological function in prostate cancer cells. Our data showed that SAM pointed domain-containing ETS transcription factor (SPDEF), which is upregulated by androgen treatment, directly activates transcription of AIbZIP. Knockdown of AIbZIP caused a significant reduction in the proliferation of androgen-sensitive prostate cancer cells with robust expression of p21. Mechanistically, we demonstrated that AIbZIP interacts with old astrocyte specifically induced substance (OASIS), which is a CREB/ATF family transcription factor, and prevents OASIS from promoting transcription of its target gene p21. These findings showed that AIbZIP induced by the androgen receptor (AR) axis plays a crucial role in the proliferation of androgen-sensitive prostate cancer cells, and could be a novel target of therapy for prostate cancer.
Collapse
|
29
|
Zhou W, Jiang Y, Zhu M, Hang D, Chen J, Zhou J, Dai J, Ma H, Hu Z, Jin G, Sha J, Shen H. Low-frequency nonsynonymous variants inFKBPLandARPC1Bgenes are associated with breast cancer risk in Chinese women. Mol Carcinog 2016; 56:774-780. [DOI: 10.1002/mc.22534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Dong Hang
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Jiaping Chen
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Jing Zhou
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Medicine; Nanjing Medical University; Nanjing China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| |
Collapse
|
30
|
SCFFbl12 Increases p21Waf1/Cip1 Expression Level through Atypical Ubiquitin Chain Synthesis. Mol Cell Biol 2016; 36:2182-94. [PMID: 27215384 DOI: 10.1128/mcb.00174-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p21 is an unstructured protein regulated by multiple turnover pathways. p21 abundance is tightly regulated, and its defect causes tumor development. However, the mechanisms that underlie the control of p21 level are not fully understood. Here, we report a novel mechanism by which a component of the SCF ubiquitin ligase, Fbl12, augments p21 via the formation of atypical ubiquitin chains. We found that Fbl12 binds and ubiquitinates p21. Unexpectedly, Fbl12 increases the expression level of p21 by enhancing the mixed-type ubiquitination, including not only K48- but also K63-linked ubiquitin chains, followed by promotion of binding between p21 and CDK2. We also found that proteasome activator PA28γ attenuates p21 ubiquitination by interacting with Fbl12. In addition, UV irradiation induces a dissociation of p21 from Fbl12 and decreases K63-linked ubiquitination, leading to p21 degradation. These data suggest that Fbl12 is a key factor that maintains adequate intracellular concentration of p21 under normal conditions. Our finding may provide a novel possibility that p21's fate is governed by diverse ubiquitin chains.
Collapse
|
31
|
Nelson L, McKeen HD, Marshall A, Mulrane L, Starczynski J, Storr SJ, Lanigan F, Byrne C, Arthur K, Hegarty S, Ali AA, Furlong F, McCarthy HO, Ellis IO, Green AR, Rakha E, Young L, Kunkler I, Thomas J, Jack W, Cameron D, Jirström K, Yakkundi A, McClements L, Martin SG, Gallagher WM, Dunn J, Bartlett J, O'Connor D, Robson T. FKBPL: a marker of good prognosis in breast cancer. Oncotarget 2016; 6:12209-23. [PMID: 25906750 PMCID: PMC4494933 DOI: 10.18632/oncotarget.3528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
FK506-binding protein-like (FKBPL) has established roles as an anti-tumor protein, with a therapeutic peptide based on this protein, ALM201, shortly entering phase I/II clinical trials. Here, we evaluated FKBPL's prognostic ability in primary breast cancer tissue, represented on tissue microarrays (TMA) from 3277 women recruited into five independent retrospective studies, using immunohistochemistry (IHC). In a meta-analysis, FKBPL levels were a significant predictor of BCSS; low FKBPL levels indicated poorer breast cancer specific survival (BCSS) (hazard ratio (HR) = 1.30, 95% confidence interval (CI) 1.14–1.49, p < 0.001). The prognostic impact of FKBPL remained significant after adjusting for other known prognostic factors (HR = 1.25, 95% CI 1.07–1.45, p = 0.004). For the sub-groups of 2365 estrogen receptor (ER) positive patients and 1649 tamoxifen treated patients, FKBPL was significantly associated with BCSS (HR = 1.34, 95% CI 1.13–1.58, p < 0.001, and HR = 1.25, 95% CI 1.04–1.49, p = 0.02, respectively). A univariate analysis revealed that FKBPL was also a significant predictor of relapse free interval (RFI) within the ER positive patient group, but it was only borderline significant within the smaller tamoxifen treated patient group (HR = 1.32 95% CI 1.05–1.65, p = 0.02 and HR = 1.23 95% CI 0.99–1.54, p = 0.06, respectively). The data suggests a role for FKBPL as a prognostic factor for BCSS, with the potential to be routinely evaluated within the clinic.
Collapse
Affiliation(s)
- Laura Nelson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Hayley D McKeen
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
| | | | | | - Sarah J Storr
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Fiona Lanigan
- Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Ken Arthur
- Northern Ireland Molecular Pathology Laboratory, CCRCB, Queens University Belfast, Belfast, United Kingdom
| | - Shauna Hegarty
- Department of Pathology, Royal Group of Hospitals, Grosvenor Road, Belfast, United Kingdom
| | | | - Fiona Furlong
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Emad Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Leonie Young
- Royal College of Surgeons Ireland, Dublin, Ireland
| | - Ian Kunkler
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Thomas
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wilma Jack
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - David Cameron
- Edinburgh Breast Unit, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karin Jirström
- Department of Clinical Sciences, Lund University, Sweden
| | - Anita Yakkundi
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lana McClements
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Stewart G Martin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Janet Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
| | - John Bartlett
- Ontario Institute for Cancer Research, Toronto, Canada.,Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Darran O'Connor
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
32
|
Akbarzadeh A, Leder EH. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:89-97. [DOI: 10.1016/j.cbpa.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
|
33
|
Bennett R, Yakkundi A, McKeen HD, McClements L, McKeogh TJ, McCrudden CM, Arthur K, Robson T, McCarthy HO. RALA-mediated delivery of FKBPL nucleic acid therapeutics. Nanomedicine (Lond) 2015; 10:2989-3001. [PMID: 26419658 DOI: 10.2217/nnm.15.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like - FKBPL gene (pFKBPL) - a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). MATERIALS & METHODS The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. RESULTS RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. CONCLUSION RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.
Collapse
Affiliation(s)
- Rachel Bennett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Anita Yakkundi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Hayley D McKeen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Lana McClements
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Thomas J McKeogh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Kenneth Arthur
- Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tracy Robson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
34
|
Affiliation(s)
- Rati Fotedar
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert L Margolis
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
35
|
Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 2015; 138:797-808. [PMID: 25754838 DOI: 10.1002/ijc.29509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María F Camisay
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Sonia De Leo
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Alejandra G Erlejman
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mario D Galigniana
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina.,Instituto De Biología Y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
36
|
Howell M, Brickner H, Delorme-Walker VD, Choi J, Saffin JM, Miller D, Panopoulos A, DerMardirossian C, Fotedar A, Margolis RL, Fotedar R. WISp39 binds phosphorylated Coronin 1B to regulate Arp2/3 localization and Cofilin-dependent motility. ACTA ACUST UNITED AC 2015; 208:961-74. [PMID: 25800056 PMCID: PMC4384738 DOI: 10.1083/jcb.201410095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously identified Waf1 Cip1 stabilizing protein 39 (WISp39) as a binding partner for heat shock protein 90 (Hsp90). We now report that WISp39 has an essential function in the control of directed cell migration, which requires WISp39 interaction with Hsp90. WISp39 knockdown (KD) resulted in the loss of directional motility of mammalian cells and profound changes in cell morphology, including the loss of a single leading edge. WISp39 binds Coronin 1B, known to regulate the Arp2/3 complex and Cofilin at the leading edge. WISp39 preferentially interacts with phosphorylated Coronin 1B, allowing it to complex with Slingshot phosphatase (SSH) to dephosphorylate and activate Cofilin. WISp39 also regulates Arp2/3 complex localization at the leading edge. WISp39 KD-induced morphological changes could be rescued by overexpression of Coronin 1B together with a constitutively active Cofilin mutant. We conclude that WISp39 associates with Hsp90, Coronin 1B, and SSH to regulate Cofilin activation and Arp2/3 complex localization at the leading edge.
Collapse
Affiliation(s)
- Michael Howell
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Howard Brickner
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | - Justin Choi
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jean-Michel Saffin
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Daniel Miller
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | - Arun Fotedar
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | - Rati Fotedar
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
37
|
Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 2015; 78:35-68. [PMID: 25487015 DOI: 10.1007/978-3-319-11731-7_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hsp90 functionally interacts with a broad array of client proteins, but in every case examined Hsp90 is accompanied by one or more co-chaperones. One class of co-chaperone contains a tetratricopeptide repeat domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is now clear that the client protein influences, and is influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Naihsuan C Guy
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 79968, El Paso, TX, USA,
| | | | | | | | | |
Collapse
|
38
|
Mazaira GI, Lagadari M, Erlejman AG, Galigniana MD. The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- G. I. Mazaira
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Lagadari
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A. G. Erlejman
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. D. Galigniana
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
39
|
Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3. Oncogene 2014; 34:2538-45. [PMID: 24975575 PMCID: PMC4617825 DOI: 10.1038/onc.2014.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/15/2022]
Abstract
The cyclin-dependent kinase inhibitor 1A (CDKN1A), p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle promoting kinases, CDK2 and CDK4. Thus, delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here, we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Ablenzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability, and support the model that the tumor suppressive function of Cables1 occurs at least in part through enhancing the tumor suppressive activity of p21.
Collapse
|
40
|
Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 2014; 34:1758-67. [DOI: 10.1038/onc.2014.133] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
|
41
|
Ferraz Franco C, Santos R, Varela Coelho A. Proteolytic events are relevant cellular responses during nervous system regeneration of the starfish Marthasterias glacialis. J Proteomics 2014; 99:1-25. [DOI: 10.1016/j.jprot.2013.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/12/2023]
|
42
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
43
|
Noncanonical FK506-binding protein BDBT binds DBT to enhance its circadian function and forms foci at night. Neuron 2013; 80:984-96. [PMID: 24210908 DOI: 10.1016/j.neuron.2013.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 11/22/2022]
Abstract
The kinase DOUBLETIME is a master regulator of the Drosophila circadian clock, yet the mechanisms regulating its activity remain unclear. A proteomic analysis of DOUBLETIME interactors led to the identification of an unstudied protein designated CG17282. RNAi-mediated knockdown of CG17282 produced behavioral arrhythmicity and long periods and high levels of hypophosphorylated nuclear PERIOD and phosphorylated DOUBLETIME. Overexpression of DOUBLETIME in flies suppresses these phenotypes and overexpression of CG17282 in S2 cells enhances DOUBLETIME-dependent PERIOD degradation, indicating that CG17282 stimulates DOUBLETIME's circadian function. In photoreceptors, CG17282 accumulates rhythmically in PERIOD- and DOUBLETIME-dependent cytosolic foci. Finally, structural analyses demonstrated CG17282 is a noncanonical FK506-binding protein with an inactive peptide prolyl-isomerase domain that binds DOUBLETIME and tetratricopeptide repeats that may promote assembly of larger protein complexes. We have named CG17282 BRIDE OF DOUBLETIME and established it as a mediator of DOUBLETIME's effects on PERIOD, most likely in cytosolic foci that regulate PERIOD nuclear accumulation.
Collapse
|
44
|
Wu LC, Wen ZS, Qiu YT, Chen XQ, Chen HB, Wei MM, Liu Z, Jiang S, Zhou GB. Largazole Arrests Cell Cycle at G1 Phase and Triggers Proteasomal Degradation of E2F1 in Lung Cancer Cells. ACS Med Chem Lett 2013; 4:921-6. [PMID: 24900585 DOI: 10.1021/ml400093y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022] Open
Abstract
Aberration in cell cycle has been shown to be a common occurrence in lung cancer, and cell cycle inhibitor represents an effective therapeutic strategy. In this study, we test the effects of a natural macrocyclic depsipeptide largazole on lung cancer cells and report that this compound potently inhibits the proliferation and clonogenic activity of lung cancer cells but not normal bronchial epithelial cells. Largazole arrests cell cycle at G1 phase with up-regulation of the expression of cyclin-dependent kinase inhibitor p21. Interestingly, largazole enhances the E2F1-HDAC1 binding affinity and induces a proteasomal degradation of E2F1, leading to suppression of E2F1 function in lung cancer but not normal bronchial epithelial cells. Because E2F1 is overexpressed in lung cancer tumor samples, these data indicate that largazole is an E2F1-targeting cell cycle inhibitor, which bears therapeutic potentials for this malignant neoplasm.
Collapse
Affiliation(s)
- Li-Chuan Wu
- Division of Molecular Carcinogenesis
and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane
and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049,
China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery,
The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ya-Tao Qiu
- Guangzhou Institute
of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao-Qin Chen
- Department of Thoracic Surgery,
The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao-Bin Chen
- Department of Pathology, The First People’s Hospital of Qu Jing, Qu Jing,
Yuannan Province 655000, China
| | - Ming-Ming Wei
- Division of Molecular Carcinogenesis
and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane
and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049,
China
| | - Zi Liu
- Division of Molecular Carcinogenesis
and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane
and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049,
China
| | - Sheng Jiang
- Guangzhou Institute
of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guang-Biao Zhou
- Division of Molecular Carcinogenesis
and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane
and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
45
|
Donley C, McClelland K, McKeen HD, Nelson L, Yakkundi A, Jithesh PV, Burrows J, McClements L, Valentine A, Prise KM, McCarthy HO, Robson T. Identification of RBCK1 as a novel regulator of FKBPL: implications for tumor growth and response to tamoxifen. Oncogene 2013; 33:3441-50. [PMID: 23912458 DOI: 10.1038/onc.2013.306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 01/03/2023]
Abstract
FKBPL has been implicated in processes associated with cancer, including regulation of tumor growth and angiogenesis with high levels of FKBPL prognosticating for improved patient survival. Understanding how FKBPL levels are controlled within the cell is therefore critical. We have identified a novel role for RBCK1 as an FKBPL-interacting protein, which regulates FKBPL stability at the post-translational level via ubiquitination. Both RBCK1 and FKBPL are upregulated by 17-β-estradiol and interact within heat shock protein 90 chaperone complexes, together with estrogen receptor-α (ERα). Furthermore, FKBPL and RBCK1 associate with ERα at the promoter of the estrogen responsive gene, pS2, and regulate pS2 levels. MCF-7 clones stably overexpressing RBCK1 were shown to have reduced proliferation and increased levels of FKBPL and p21. Furthermore, these clones were resistant to tamoxifen therapy, suggesting that RBCK1 could be a predictive marker of response to endocrine therapy. RBCK1 knockdown using targeted small interfering RNA resulted in increased proliferation and increased sensitivity to tamoxifen treatment. Moreover, in support of our in vitro data, analysis of mRNA microarray data sets demonstrated that high levels of FKBPL and RBCK1 correlated with increased patient survival, whereas high RBCK1 predicted for a poor response to tamoxifen. Our findings support a role for RBCK1 in the regulation of FKBPL with important implications for estrogen receptor signaling, cell proliferation and response to endocrine therapy.
Collapse
Affiliation(s)
- C Donley
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - K McClelland
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - H D McKeen
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - L Nelson
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - A Yakkundi
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - P V Jithesh
- Liverpool Cancer Research UK Centre, University of Liverpool, Liverpool, UK
| | - J Burrows
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - L McClements
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - A Valentine
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - K M Prise
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland
| | - H O McCarthy
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| | - T Robson
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
46
|
McClements L, Yakkundi A, Papaspyropoulos A, Harrison H, Ablett MP, Jithesh PV, McKeen HD, Bennett R, Donley C, Kissenpfennig A, McIntosh S, McCarthy HO, O'Neill E, Clarke RB, Robson T. Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clin Cancer Res 2013; 19:3881-93. [PMID: 23741069 DOI: 10.1158/1078-0432.ccr-13-0595] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE FK506-binding protein like (FKBPL) and its peptide derivative, AD-01, have already shown tumor growth inhibition and CD44-dependent antiangiogenic activity. Here, we explore the ability of AD-01 to target CD44-positive breast cancer stem cells (BCSC). EXPERIMENTAL DESIGN Mammosphere assays and flow cytometry were used to analyze the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anticancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples, and xenografts. Delays in tumor initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, quantitative PCR (qPCR), and immunofluorescence. RESULTS AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere-forming efficiency and ESA(+)/CD44(+)/CD24(-) or aldehyde dehydrogenase (ALDH)(+) cell subpopulations in vitro and tumor initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism seems to be due to AD-01-mediated BCSC differentiation shown by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4, and Sox2, were also significantly reduced. Furthermore, we showed additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy-induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signaling. CONCLUSIONS AD-01 has dual antiangiogenic and anti-BCSC activity, which will be advantageous as this agent enters clinical trial.
Collapse
Affiliation(s)
- Lana McClements
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review provides an overview of the structure, regulation and physiological functions of p21, the product of the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene, with a focus on its dual role in promoting and repressing biological processes that are hallmarks of tumourigenesis. RECENT FINDINGS Recent work has provided a better understanding of the molecular mechanisms of how oncogenic signalling pathways influence p21 expression. In response to cellular stimuli, p21 expression is tightly regulated at transcriptional and post-translational levels through mechanisms involving RNA stabilization, phosphorylation and ubiquitination. As a result, growing evidence reveals that several important tumour suppressor and oncogenic signalling pathways alter p21 expression to elicit their effects on cell cycle progression and survival. Thus, p21 expression can both promote and inhibit tumourigenic processes, depending on the cellular context. SUMMARY Since its discovery, it has become increasingly clear that p21 can function as both a classical tumour suppressor and an oncogene. In order to effectively utilize p21 as a therapeutic target, it will be necessary to design therapeutic strategies that preferentially block the ability of p21 to promote senescence, stem cell renewal and cyclin/CDK activation, while leaving its tumour suppressive functions intact.
Collapse
|
48
|
Han J, Kim YL, Lee KW, Her NG, Ha TK, Yoon S, Jeong SI, Lee JH, Kang MJ, Lee MG, Ryu BK, Baik JH, Chi SG. ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.). Cell Death Differ 2013; 20:1055-67. [PMID: 23645206 DOI: 10.1038/cdd.2013.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 02/02/2023] Open
Abstract
ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21(WAF1). ZNF313 ubiquitinates p21(WAF1) and also destabilizes p27(KIP1) and p57(KIP2), three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16(INK4A) and p15(INK4B). ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21(WAF1)-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21(WAF1), whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.
Collapse
Affiliation(s)
- J Han
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yakkundi A, McCallum L, O’Kane A, Dyer H, Worthington J, McKeen HD, McClements L, Elliott C, McCarthy HO, Hirst DG, Robson T. The anti-migratory effects of FKBPL and its peptide derivative, AD-01: regulation of CD44 and the cytoskeletal pathway. PLoS One 2013; 8:e55075. [PMID: 23457460 PMCID: PMC3574160 DOI: 10.1371/journal.pone.0055075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
FK506 binding protein-like (FKBPL) and its peptide derivatives exert potent anti-angiogenic activity in vitro and in vivo and control tumour growth in xenograft models, when administered exogenously. However, the role of endogenous FKBPL in angiogenesis is not well characterised. Here we investigated the molecular effects of the endogenous protein and its peptide derivative, AD-01, leading to their anti-migratory activity. Inhibition of secreted FKBPL using a blocking antibody or siRNA-mediated knockdown of FKBPL accelerated the migration of human microvascular endothelial cells (HMEC-1). Furthermore, MDA-MB-231 tumour cells stably overexpressing FKBPL inhibited tumour vascular development in vivo suggesting that FKBPL secreted from tumour cells could inhibit angiogenesis. Whilst FKBPL and AD-01 target CD44, the nature of this interaction is not known and here we have further interrogated this aspect. We have demonstrated that FKBPL and AD-01 bind to the CD44 receptor and inhibit tumour cell migration in a CD44 dependant manner; CD44 knockdown abrogated AD-01 binding as well as its anti-migratory activity. Interestingly, FKBPL overexpression and knockdown or treatment with AD-01, regulated CD44 expression, suggesting a co-regulatory pathway for these two proteins. Downstream of CD44, alterations in the actin cytoskeleton, indicated by intense cortical actin staining and a lack of cell spreading and communication were observed following treatment with AD-01, explaining the anti-migratory phenotype. Concomitantly, AD-01 inhibited Rac-1 activity, up-regulated RhoA and the actin binding proteins, profilin and vinculin. Thus the anti-angiogenic protein, FKBPL, and AD-01, offer a promising and alternative approach for targeting both CD44 positive tumours and vasculature networks.
Collapse
Affiliation(s)
- Anita Yakkundi
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lynn McCallum
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Anthony O’Kane
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Hayder Dyer
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Jenny Worthington
- Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Hayley D. McKeen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lana McClements
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - David G. Hirst
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Tracy Robson
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
TRIM39 regulates cell cycle progression and DNA damage responses via stabilizing p21. Proc Natl Acad Sci U S A 2012; 109:20937-42. [PMID: 23213251 DOI: 10.1073/pnas.1214156110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological function of Tripartite Motif 39 (TRIM39) remains largely unknown. In this study, we report that TRIM39 regulates the steady-state levels of p21 and is a pivotal determinant of cell fate. Ablation of TRIM39 leads to destabilization of p21 and increased G1/S transition in unperturbed cells. Furthermore, DNA damage-induced p21 accumulation is completely abolished in cells with depleted TRIM39. As a result, silencing of TRIM39 abrogates the G2 checkpoint induced by genotoxic stress, leading to increased mitotic entry and, ultimately, apoptosis. Importantly, we show p21 is a crucial downstream effector of TRIM39 mediating G1/S transition and DNA damage-induced G2 arrest. Mechanistically, TRIM39 interacts with p21, which subsequently prevents Cdt2 from binding to p21, therefore blocking ubiquitylation and proteasomal degradation of p21 mediated by CRL4(Cdt2) E3 ligase. Strikingly, we found a significant correlation between p21 abundance and TRIM39 expression levels in human hepatocellular carcinoma samples. Our findings identify a causal role for TRIM39 in regulating cell cycle progression and the balance between cytostasis and apoptosis after DNA damage via stabilizing p21.
Collapse
|