1
|
Karayel O, Soung A, Gurung H, Schubert AF, Klaeger S, Kschonsak M, Al-Maraghi A, Bhat AA, Alshabeeb Akil AS, Dugger DL, Webster JD, French DM, Anand D, Soni N, Fakhro KA, Rose CM, Harris SF, Ndoja A, Newton K, Dixit VM. Impairment of DET1 causes neurological defects and lethality in mice and humans. Proc Natl Acad Sci U S A 2025; 122:e2422631122. [PMID: 39937864 PMCID: PMC11848315 DOI: 10.1073/pnas.2422631122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
COP1 and DET1 are components of an E3 ubiquitin ligase that is conserved from plants to humans. Mammalian COP1 binds to DET1 and is a substrate adaptor for the CUL4A-DDB1-RBX1 RING E3 ligase. Transcription factor substrates, including c-Jun, ETV4, and ETV5, are targeted for proteasomal degradation to effect rapid transcriptional changes in response to cues such as growth factor deprivation. Here, we link a homozygous DET1R26W mutation to lethal developmental abnormalities in humans. Experimental cryo-electron microscopy of the DET1 complex with DDB1 and DDA1, as well as co-immunoprecipitation experiments, revealed that DET1R26W impairs binding to DDB1, thereby compromising E3 ligase function. Accordingly, human-induced pluripotent stem cells homozygous for DET1R26W expressed ETV4 and ETV5 highly, and exhibited defective mitochondrial homeostasis and aberrant caspase-dependent cell death when differentiated into neurons. Neuronal cell death was increased further in the presence of Det1-deficient microglia as compared to WT microglia, indicating that the deleterious effects of the DET1 p.R26W mutation may stem from the dysregulation of multiple cell types. Mice lacking Det1 died during embryogenesis, while Det1 deletion just in neural stem cells elicited hydrocephalus, cerebellar dysplasia, and neonatal lethality. Our findings highlight an important role for DET1 in the neurological development of mice and humans.
Collapse
Affiliation(s)
- Ozge Karayel
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| | - Allison Soung
- Department of Neuroscience, Genentech, South San Francisco, CA94080
| | - Hem Gurung
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA94080
| | | | - Susan Klaeger
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA94080
| | - Marc Kschonsak
- Department of Structural Biology, Genentech, South San Francisco, CA94080
| | | | - Ajaz A. Bhat
- Department of Human Genetics, Sidra Medicine, Doha26999, Qatar
| | | | - Debra L. Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| | | | | | | | - Naharmal Soni
- Division of Neonatology, Sidra Medicine, Doha26999, Qatar
| | - Khalid A. Fakhro
- Department of Human Genetics, Sidra Medicine, Doha26999, Qatar
- Genomics, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha24144, Qatar
| | - Christopher M. Rose
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA94080
| | - Seth F. Harris
- Department of Structural Biology, Genentech, South San Francisco, CA94080
| | - Ada Ndoja
- Department of Neuroscience, Genentech, South San Francisco, CA94080
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| |
Collapse
|
2
|
Zhang X, Simon GM, Cravatt BF. Implications of frequent hitter E3 ligases in targeted protein degradation screens. Nat Chem Biol 2025:10.1038/s41589-024-01821-z. [PMID: 39870762 DOI: 10.1038/s41589-024-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications. This perspective discusses recent strategies to expand the scope of TPD and the surprising convergence of these diverse screening efforts on a handful of E3 ligases, specifically DCAF16, DCAF11 and FBXO22. We speculate that a combination of properties, including superficial ligandability, potential for promiscuous substrate interactions and high occupancy in Cullin-RING complexes, may position these E3 ligases as 'low-hanging fruit' in TPD screens. We also discuss complementary approaches that might further expand the E3 ligase landscape supporting TPD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | | | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Yang ZZ, Yang B, Yan H, Ma X, Tian B, Zheng B, Chen YX, Dong YM, Deng J, Zhan Z, Shi Y, Zhang JY, Lu D, He JH, Zhang Y, Hu K, Zhu S, Zhou K, Zhang YC, Zheng Y, Yin D, Liao JY. DCAF13-mediated K63-linked ubiquitination of RNA polymerase I promotes uncontrolled proliferation in Breast Cancer. Nat Commun 2025; 16:557. [PMID: 39788980 PMCID: PMC11718263 DOI: 10.1038/s41467-025-55851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Hyperactivation of ribosome biogenesis (RiBi) drives cancer progression, yet the role of RiBi-associated proteins (RiBPs) in breast cancer (BC) is underexplored. In this study, we perform a comprehensive multi-omics analysis and reveal that assembly and maturation factors (AMFs), a subclass of RiBPs, are upregulated at both RNA and protein levels in BC, correlating with poor patient outcomes. In contrast, ribosomal proteins (RPs) do not show systematic upregulation across various cancers, including BC. We further demonstrate that the oncogenic activation of a top AMF candidate in BC, DCAF13, enhances Pol I transcription and promotes proliferation in BC cells both in vitro and in vivo. Mechanistically, DCAF13 promotes Pol I transcription activity by facilitating the K63-linked ubiquitination of RPA194. This process stimulates global protein synthesis and cell growth. Our findings uncover a modification of RPA194 that regulates Pol I activity; this modification is dysregulated in BC, contributing to cancer progression.
Collapse
Affiliation(s)
- Zhi-Zhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bin Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bingqi Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yong-Xian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yi-Ming Dong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jinsi Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Ziling Zhan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yanmei Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jing Yuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - KaiShun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Shuang Zhu
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Keda Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, PR China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yiqing Zheng
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China.
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, 510120, PR China.
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, 510120, PR China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China.
| |
Collapse
|
4
|
Pawar AS, Somers P, Alex A, George SS, Antony C, Verner R, White-Brown SK, Khera M, Mendoza-Figueroa MS, Liu KF, Morrissette JJD, Paralkar VR. Leukemia-mutated proteins PHF6 and PHIP form a chromatin complex that represses acute myeloid leukemia stemness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625909. [PMID: 39677666 PMCID: PMC11642813 DOI: 10.1101/2024.11.29.625909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Myeloid leukemias are heterogeneous cancers with diverse mutations, sometimes in genes with unclear roles and unknown functional partners. PHF6 and PHIP are two poorly-understood chromatin-binding proteins recurrently mutated in acute myeloid leukemia (AML). PHF6 mutations are associated with poorer outcomes, while PHIP was recently identified as the most common selective mutation in Black patients in AML. Here, we show that PHF6 is a transcriptional repressor that suppresses a stemness gene network, and that PHF6 missense mutations, classified by current clinical algorithms as variants of unknown significance, produce unstable or non-functional protein. We present multiple lines of evidence converging on a critical mechanistic connection between PHF6 and PHIP. We show that PHIP loss phenocopies PHF6 loss, and that PHF6 requires PHIP to occupy chromatin and exert its downstream transcriptional program. Our work unifies PHF6 and PHIP, two disparate leukemia-mutated proteins, into a common functional complex that suppresses AML stemness.
Collapse
Affiliation(s)
- Aishwarya S Pawar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biomedical Graduate Studies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Patrick Somers
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aleena Alex
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roman Verner
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sanese K White-Brown
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mohit Khera
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - María Saraí Mendoza-Figueroa
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Hu Y, Yan Y, Wang J, Hou J, Lin Q. Molecular glue degrader for tumor treatment. Front Oncol 2024; 14:1512666. [PMID: 39759140 PMCID: PMC11697593 DOI: 10.3389/fonc.2024.1512666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Targeted Protein Degradation (TPD) represented by Proteolysis-Targeting Chimeras (PROTAC) is the frontier field in the research and development of antitumor therapy, in which oral drug HP518 Receives FDA Proceed Authorization for its IND Application for Prostate Cancer Treatment. Recently, molecular glue, functioning via degradation of the target protein is emerging as a promising modality for the development of therapeutic agents, while exhibits greater advantages over PROTAC, including improved efficiency, resistance-free properties, and the capacity to selectively target "undruggable" proteins. This marks a revolutionary advancement in the landscape of small molecule drugs. Given that molecular glue research is still in its early stage, we summarized the mechanisms of molecular glue, the promising drugs in clinical trials and diverse feasible design strategies for molecular glue therapeutics.
Collapse
Affiliation(s)
- Yuhan Hu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yan Yan
- Department of Infectious Diseases, Zhoukou Central Hospital, Zhoukou, China
| | - Jiehao Wang
- Department of Gastroenterology, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Jiangxue Hou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Ma R, Liang S, Zeng W, Li J, Lai Y, Yang X, Diao F. Single-cell RNA sequencing reveals the important role of Dcaf17 in spermatogenesis of golden hamsters†. Biol Reprod 2024; 111:1326-1340. [PMID: 39239833 DOI: 10.1093/biolre/ioae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dcaf17, also known as DDB1- and CUL4-associated factor 17, is a member of the DCAF family and acts as the receptor for the CRL4 ubiquitin E3 ligase complex. Several previous studies have reported that mutations in Dcaf17 cause Woodhouse-Sakati syndrome, which results in oligoasthenoteratozoospermia and male infertility. As a model to explore the role of Dcaf17 in the male reproductive system, we created Dcaf17-deficient male golden hamsters using CRISPR-Cas9 technology; the results of which demonstrate that deletion of Dcaf17 led to abnormal spermatogenesis and infertility. To uncover the underlying molecular mechanisms involved, we conducted single cell Ribonucleic Acid sequencing analysis to evaluate the effect of Dcaf17 deficiency on transcriptional levels in spermatogenic cells during various stages of spermatogenesis. These data emphasize the significant regulatory role played by Dcaf17 in early spermatogenic cells, with many biological processes being affected, including spermatogenesis and protein degradation. Dysregulation of genes associated with these functions ultimately leads to abnormalities. In summary, our findings highlight the critical function of Dcaf17 in spermatogenesis and clarify the specific stage at which Dcaf17 exerts its effects, while simultaneously providing a novel animal model for the study of Dcaf17.
Collapse
Affiliation(s)
- Rongzhu Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, China
| | - Shuang Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Wentao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Jianmin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Yana Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
7
|
Park JU, Jo JH, Kim S, Redon CE, Aladjem MI, Seo Y, Jang SJ, Jang SM. RepID as a potential biomarker and therapeutic target for lung neuroendocrine tumor. Sci Rep 2024; 14:27487. [PMID: 39523440 PMCID: PMC11551140 DOI: 10.1038/s41598-024-79104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroendocrine tumor (NET) is a rare malignant tumor, notably small cell lung cancer (SCLC), a type of lung neuroendocrine tumor, which has a survival rate of less than 7%. Although various biomarkers including CHGA (Chromogranin A), INSM1 (Insulinoma-associated protein 1), and SYP (Synaptophysin) are extensively used for the diagnostic testing of NET, their diverse specificities and sensitivities are acknowledged as limitations. Here, we demonstrate that RepID (Replication initiation determinant protein), a component of CRL4 (Cullin-RING ubiquitin E3 ligase 4), holds promise as a biomarker for identifying NET and SCLC. Analysis of the Cancer Cell Line Encyclopedia (CCLE) via the CellMinerCDB portal reveals a high correlation between RepID transcript levels and mRNA expression of NE signature genes. Additionally, RepID protein is highly expressed in SCLC patient tissues and a subset of SCLC cell lines. Viability analysis following treatment with pevonedistat and SZL-P1-41 in SCLC cell lines and human SCLC-organoid models indicates that RepID expression determines the sensitivity to CRL-targeting anti-cancer drugs. These findings suggest that RepID represents a novel biomarker for NET and SCLC, and insights from RepID research in these cancers could lead to innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jong-Uk Park
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jae-Hyun Jo
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Yuri Seo
- SG Medical Inc., 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, Republic of Korea
| | - Se Jin Jang
- SG Medical Inc., 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan Medical College, Seoul, Republic of Korea
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Sampath R, Vaeth K, Mikalayeva V, Skeberdis VA, Prekeris R, Han KJ. Rab40 GTPases regulate AMBRA1-mediated transcription and cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622540. [PMID: 39574679 PMCID: PMC11580987 DOI: 10.1101/2024.11.07.622540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The Rab40 subfamily are unique small monomeric GTPases that form CRL5-based ubiquitin E3 ligase complex and regulate ubiquitylation of specific target proteins. Recent studies have shown that Rab40s play an important role in regulating cell migration, but the underlying mechanisms of Rab40/CRL5 complex function are still not fully understood. In this study we identified AMBRA1 as a novel binding partner of Rab40 GTPases and showed that this interaction mediates a bi-directional crosstalk between CRL4 and CRL5 E3 ligases. Importantly, we found that Rab40/CRL5 ubiquitylates AMBRA1, which does not result in AMBRA1 degradation, but instead it seems to induce AMBRA1-dependent regulation of gene transcription. The global transcriptional profiles identified by RNA-seq showed that AMBRA1 regulates transcription of genes related to cell adhesion and migration. Additionally, we have shown that AMBRA1-dependent transcription regulation does not require the enzymatic activity of AMBRA1/CRL4, and that Rab40-induced AMBRA1 ubiquitylation leads to dissociation of AMBRA1/CRL4 complex. Taken together, our findings reveal a novel function of Rab40/CRL5 complex as an important regulator for AMBRA1-dependent transcription of genes involved in cell migration.
Collapse
Affiliation(s)
- Revathi Sampath
- Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katherine Vaeth
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Xuan X, Cao J, Chen L, Zhang J, Qian Y, Huang C. DTL promotes the growth and migration of melanoma cells through the ERK/E2F1/BUB1 axis. Sci Rep 2024; 14:26288. [PMID: 39487277 PMCID: PMC11530538 DOI: 10.1038/s41598-024-76477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Melanoma is the most dangerous form of skin cancer. Hence, a better understanding of molecular mechanisms in melanoma pathogenesis is urgently needed, which provides a new insight into the therapy of melanoma. DTL gene is screened out in melanoma pathogenesis by integrated bioinformatics analysis, and its expression is validated in the tissue and cell samples of melanoma. Forced DTL expression facilitates the proliferation, invasion, migration and EMT of melanoma cells, while DTL knockdown suppresses the biological behavior of melanoma cells. In addition, DTL promotes the malignancy of melanoma in vivo. Mechanistically, BUB1 is the crucial downstream target of DTL. Reduced DTL expression suppresses BUB1 expression, while enhanced DTL expression induces BUB1 upregulation. Rescue experiments showed that growing and migrating of melanoma cells induced by DTL are partially impaired by BUB1 inhibition. In addition, the expression of phosphorylated ERK (p-ERK) and the downstream transcription factor E2F1 are reduced when DTL expression is blocked. Meanwhile, BUB1 levels are decreased when the expression of p-ERK or E2F1 is repressed. Notably, the growth and migration of melanoma cells by inhibition of ERK and knockdown of E2F1 was rescued by overexpressing BUB1. DTL gene may be a prognosis marker and represent a unique potential target for melanoma patients. DTL supports the biologically malignant activity of melanoma cells via the ERK/E2F1/BUB1 axis.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Department of Dermatology, The First Affiliated Hospital, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Li Chen
- Department of Dermatology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430015, Hubei, China
| | - Jing Zhang
- Department of Dermatology, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China.
| | - Yue Qian
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
10
|
Chen ZX, Mu MY, Yang G, Qi H, Fu XB, Wang GS, Jiang WW, Huang BJ, Gao F. Hypoxia-induced DTL promotes the proliferation, metastasis, and sorafenib resistance of hepatocellular carcinoma through ubiquitin-mediated degradation of SLTM and subsequent Notch pathway activation. Cell Death Dis 2024; 15:734. [PMID: 39384740 PMCID: PMC11464529 DOI: 10.1038/s41419-024-07089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Denticleless E3 ubiquitin protein ligase homolog (DTL), the substrate receptor of the CRL4A complex, plays a central role in genome stability. Even though the oncogenic function of DTL has been investigated in several cancers, its specific role in hepatocellular carcinoma (HCC) still needs further elucidation. Data from a clinical cohort (n = 209), RNA-sequencing, and public database (TCGA and GEO) were analyzed, indicating that DTL is closely related to patient prognosis and could serve as a promising prognostic indicator in HCC. Functionally, DTL promoted the proliferation, metastasis, and sorafenib resistance of HCC in vitro. In the orthotopic tumor transplantation and tail vein injection model, DTL promoted the growth and metastasis of HCC in vivo. Mechanically, we revealed for the first time that DTL was transcriptionally activated by hypoxia-inducible factor 1α (HIF-1α) under hypoxia and functioned as a downstream effector molecule of HIF-1α. DTL promotes the ubiquitination of SAFB-like transcription modulator (SLTM) and subsequently relieves the transcriptional repression of Notch1. These results suggested that DTL may be a potential biomarker and therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Cell Proliferation/drug effects
- Animals
- Drug Resistance, Neoplasm/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Mice
- Signal Transduction/drug effects
- Mice, Nude
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Cell Line, Tumor
- Ubiquitination
- Neoplasm Metastasis
- Ubiquitin/metabolism
- Receptors, Notch/metabolism
- Mice, Inbred BALB C
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Hypoxia
Collapse
Affiliation(s)
- Zi-Xiong Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Mao-Yuan Mu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Bo Fu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Gui-Song Wang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wei-Wei Jiang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Fei Gao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
11
|
Dugied G, Douche T, Dos Santos M, Giai Gianetto Q Q, Cassonnet C, Vuillier F, Cassonnet P, Jacob Y, van der Werf S, Komarova A, Matondo M, Karim M, Demeret C. Profiling Cullin4-E3 Ligases Interactomes and Their Rewiring in Influenza A Virus Infection. Mol Cell Proteomics 2024; 23:100856. [PMID: 39383947 DOI: 10.1016/j.mcpro.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A virus (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two substrate recognition factors, DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume Dugied
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Melanie Dos Santos
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Quentin Giai Gianetto Q
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France; Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Camille Cassonnet
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France
| | - Françoise Vuillier
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France
| | - Patricia Cassonnet
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Yves Jacob
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | | | - Anastassia Komarova
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Marwah Karim
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France.
| | - Caroline Demeret
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France.
| |
Collapse
|
12
|
Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, Antonioli M, Fimia GM, Dengjel J. The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep 2024; 43:114689. [PMID: 39207901 DOI: 10.1016/j.celrep.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.
Collapse
Affiliation(s)
| | | | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sebastian Favre
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lais de Oliveira Marchioro
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo CEP 05508-000, Brazil
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jianwen Zhou
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Werner Josef Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Molecular Medicine, University of Rome "Sapienza", 00185 Rome, Italy
| | - Jӧrn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
13
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
14
|
de Fallois J, Sieckmann T, Schönauer R, Petzold F, Münch J, Pauly M, Vasileiou G, Findeisen C, Kampmeier A, Kuechler A, Reis A, Decker E, Bergmann C, Platzer K, Tasic V, Kirschner KM, Shril S, Hildebrandt F, Chung WK, Halbritter J. Pathogenic PHIP Variants are Variably Associated With CAKUT. Kidney Int Rep 2024; 9:2484-2497. [PMID: 39156152 PMCID: PMC11328576 DOI: 10.1016/j.ekir.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Sieckmann
- Institute of Translational Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Findeisen
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Kampmeier
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Decker
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Hawkins LM, Wang C, Chaput D, Batra M, Marsilia C, Awshah D, Suvorova ES. The Crk4-Cyc4 complex regulates G 2/M transition in Toxoplasma gondii. EMBO J 2024; 43:2094-2126. [PMID: 38600241 PMCID: PMC11148040 DOI: 10.1038/s44318-024-00095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.
Collapse
Affiliation(s)
- Lauren M Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, FL, 33612, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Clem Marsilia
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Danya Awshah
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Elena S Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MJH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, van Haelst MM. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes. Hum Genet 2024; 143:761-773. [PMID: 38787418 PMCID: PMC11186873 DOI: 10.1007/s00439-024-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Collapse
Affiliation(s)
- Niels Vos
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Perle K M Russel
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariet W Elting
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lynne Rumping
- Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Danielle G M Bosch
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonio Vitobello
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Aurore Garde
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Marjolaine Willems
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - David Genevieve
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - Gaël Nicolas
- Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Univ Rouen Normandie, 76000, Rouen, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | - Annick Toutain
- Genetics Department, University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Marion Gérard
- APHP, Department of Genetics, Robert Debré Hospital, 75019, Paris, France
| | - Varoona Bizaoui
- Clinical Genetics and Neurodevelopmental Disorders, Centre Hospitalier de L'Estran, 50170, Pontorson, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Maria Accadia
- Servizio di Genetica Medica, Ospedale Cardinale G. Panico, Tricase, LE, Italy
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Katrin Ounap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, ON, M2K 1E1, Canada
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Unit of Medical Genetics, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, Turin, Italy
| | | | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA
- Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Jansen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Laura Donker-Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Paediatrics, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Rivard RS, Chang YC, Ragland RL, Thu YM, Kassab M, Mandal RS, Van Riper SK, Kulej K, Higgins L, Markowski TM, Shang D, Hedberg J, Erber L, Garcia B, Chen Y, Bielinsky AK, Brown EJ. Improved detection of DNA replication fork-associated proteins. Cell Rep 2024; 43:114178. [PMID: 38703364 DOI: 10.1016/j.celrep.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Innovative methods to retrieve proteins associated with actively replicating DNA have provided a glimpse into the molecular dynamics of replication fork stalling. We report that a combination of density-based replisome enrichment by isolating proteins on nascent DNA (iPOND2) and label-free quantitative mass spectrometry (iPOND2-DRIPPER) substantially increases both replication factor yields and the dynamic range of protein quantification. Replication protein abundance in retrieved nascent DNA is elevated up to 300-fold over post-replicative controls, and recruitment of replication stress factors upon fork stalling is observed at similar levels. The increased sensitivity of iPOND2-DRIPPER permits direct measurement of ubiquitination events without intervening retrieval of diglycine tryptic fragments of ubiquitin. Using this approach, we find that stalled replisomes stimulate the recruitment of a diverse cohort of DNA repair factors, including those associated with poly-K63-ubiquitination. Finally, we uncover the temporally controlled association of stalled replisomes with nuclear pore complex components and nuclear cytoskeleton networks.
Collapse
Affiliation(s)
- Rebecca S Rivard
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan L Ragland
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Mon Thu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Muzaffer Kassab
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Shubhra Mandal
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan K Van Riper
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna Kulej
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Todd M Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David Shang
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Eric J Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
19
|
Park JE, Kim TS, Zeng Y, Mikolaj M, Il Ahn J, Alam MS, Monnie CM, Shi V, Zhou M, Chun TW, Maldarelli F, Narayan K, Ahn J, Ashwell JD, Strebel K, Lee KS. Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 + T cells. Nat Commun 2024; 15:2017. [PMID: 38443376 PMCID: PMC10914751 DOI: 10.1038/s41467-024-46306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observe that approximately 1-5% of CD4+ T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cellular analyses, we discover that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr forms a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhances Plk4's functionality by promoting its relocalization to the procentriole assembly and induces centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogates Vpr's capacity to induce these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induces multiple centrosomes and aneuploidy in human primary CD4+ T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tae-Sung Kim
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melissa Mikolaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christina M Monnie
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Sudnawa KK, Calamia S, Geltzeiler A, Chung WK. Clinical phenotypes of individuals with Chung-Jansen syndrome across age groups. Am J Med Genet A 2024; 194:e63471. [PMID: 37961033 DOI: 10.1002/ajmg.a.63471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Pathogenic variants in pleckstrin homology domain interacting protein (PHIP) are associated with Chung-Jansen syndrome characterized by developmental delay, intellectual disability, behavioral challenges, hypotonia, obesity, and dysmorphic features. We report phenotypes and genotypes of 47 individuals with likely pathogenic/pathogenic PHIP variants. Variants were de novo in 61.7%, unknown inheritance in 29.8%, and inherited in 8.5%. The median age of the individuals was 10.9 years, approximately equally divided by sex. Individuals in this cohort frequently had a history of developmental delay (85.1%), attention-deficit/hyperactivity disorder (51.1%), anxiety (46.8%), depression (27.7%), and sleep difficulties (42.6%). Depression was significantly higher in the older age group (>12 years old). Most individuals had moderately low adaptive functioning based on the Vineland-3 (mean = 76.8, standard deviation = 12.0). Overall, 55.8% of individuals were obese/overweight. The percentage of obese individuals was greater in the older age group (>12 years old) and evolves over time. Other common symptoms were hypotonia (78.7%), constipation (48.9%), visual problems (66%), and cryptorchidism (39.1% of males). Our findings provide additional natural history data for Chung-Jansen syndrome and provide opportunities for early intervention of healthy eating habits and awareness of developing mood and behavioral challenges over the life course.
Collapse
Affiliation(s)
- Khemika K Sudnawa
- Department of Pediatrics, Columbia University, New York, New York, USA
- Department of Pediatrics, Pramongkutklao Hospital and Pramongkutklao College of Medicine, Bangkok, Thailand
| | - Sean Calamia
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Alexa Geltzeiler
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, New York, USA
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Sun H, Zhang H. Lysine Methylation-Dependent Proteolysis by the Malignant Brain Tumor (MBT) Domain Proteins. Int J Mol Sci 2024; 25:2248. [PMID: 38396925 PMCID: PMC10889763 DOI: 10.3390/ijms25042248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Lysine methylation is a major post-translational protein modification that occurs in both histones and non-histone proteins. Emerging studies show that the methylated lysine residues in non-histone proteins provide a proteolytic signal for ubiquitin-dependent proteolysis. The SET7 (SETD7) methyltransferase specifically transfers a methyl group from S-Adenosyl methionine to a specific lysine residue located in a methylation degron motif of a protein substrate to mark the methylated protein for ubiquitin-dependent proteolysis. LSD1 (Kdm1a) serves as a demethylase to dynamically remove the methyl group from the modified protein. The methylated lysine residue is specifically recognized by L3MBTL3, a methyl-lysine reader that contains the malignant brain tumor domain, to target the methylated proteins for proteolysis by the CRL4DCAF5 ubiquitin ligase complex. The methylated lysine residues are also recognized by PHF20L1 to protect the methylated proteins from proteolysis. The lysine methylation-mediated proteolysis regulates embryonic development, maintains pluripotency and self-renewal of embryonic stem cells and other stem cells such as neural stem cells and hematopoietic stem cells, and controls other biological processes. Dysregulation of the lysine methylation-dependent proteolysis is associated with various diseases, including cancers. Characterization of lysine methylation should reveal novel insights into how development and related diseases are regulated.
Collapse
Affiliation(s)
| | - Hui Zhang
- Department of Chemistry and Biochemistry, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, P.O. Box 454003, Las Vegas, NV 89154-4003, USA;
| |
Collapse
|
22
|
Pinsky M, Kornitzer D. Genetic Analysis of Candida albicans Filamentation by the Iron Chelator BPS Reveals a Role for a Conserved Kinase-WD40 Protein Pair. J Fungi (Basel) 2024; 10:83. [PMID: 38276029 PMCID: PMC10820326 DOI: 10.3390/jof10010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Candida albicans is a major human pathogenic fungus that is distinguished by its capability to switch from a yeast to a hyphal morphology under different conditions. Here, we analyze the cellular effects of high concentrations of the iron chelator bathophenanthroline disulfonate (BPS). BPS inhibits cellular growth by withholding iron, but when iron chelation is overcome by the addition of hemoglobin as an iron source, the cells resume growth as hyphae. The BPS hyphal induction pathway was characterized by identifying the hyphal-specific transcription factors that it requires and by a forward genetic screen for mutants that fail to form hyphae in BPS using a transposon library generated in a haploid strain. Among the mutants identified are the DYRK1-like kinase Yak1 and Orf19.384, a homolog of the DYRK1-associated protein WDR68/DCAF7. Orf19.384 nuclear localization depends on Yak1, similar to their mammalian counterparts. We identified the hyphal suppressor transcription factor Sfl1 as a candidate target of Yak1-Orf19.384 and show that Sfl1 modification is similarly affected in the yak1 and orf19.384 mutant strains. These results suggest that DYRK1/Yak1 and WDR68/Orf19.384 represent a conserved protein pair that regulates cell differentiation from fungi to animals.
Collapse
Affiliation(s)
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion—I.I.T., Haifa 31096, Israel;
| |
Collapse
|
23
|
Xu MJ, Jordan PW. SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome. Int J Mol Sci 2024; 25:952. [PMID: 38256025 PMCID: PMC10815603 DOI: 10.3390/ijms25020952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated.
Collapse
Affiliation(s)
- Michelle J. Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
24
|
Tirado-Class N, Hathaway C, Nelligan A, Nguyen T, Dungrawala H. DCAF14 regulates CDT2 to promote SET8-dependent replication fork protection. Life Sci Alliance 2024; 7:e202302230. [PMID: 37940188 PMCID: PMC10631547 DOI: 10.26508/lsa.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
DDB1- and CUL4-associated factors (DCAFs) CDT2 and DCAF14 are substrate receptors for Cullin4-RING E3 ubiquitin ligase (CRL4) complexes. CDT2 is responsible for PCNA-coupled proteolysis of substrates CDT1, p21, and SET8 during S-phase of cell cycle. DCAF14 functions at stalled replication forks to promote genome stability, but the mechanism is unknown. We find that DCAF14 mediates replication fork protection by regulating CRL4CDT2 activity. Absence of DCAF14 causes increased proteasomal degradation of CDT2 substrates. When forks are challenged with replication stress, increased CDT2 function causes stalled fork collapse and impairs fork recovery in DCAF14-deficient conditions. We further show that stalled fork protection is dependent on CDT2 substrate SET8 and does not involve p21 and CDT1. Like DCAF14, SET8 blocks nuclease-mediated digestion of nascent DNA at remodeled replication forks. Thus, unregulated CDT2-mediated turnover of SET8 triggers nascent strand degradation when DCAF14 is absent. We propose that DCAF14 controls CDT2 activity at stalled replication forks to facilitate SET8 function in safeguarding genomic integrity.
Collapse
Affiliation(s)
- Neysha Tirado-Class
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Thuan Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
25
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
26
|
Zemke NR, Hsu E, Barshop WD, Sha J, Wohlschlegel JA, Berk AJ. Adenovirus E1A binding to DCAF10 targets proteasomal degradation of RUVBL1/2 AAA+ ATPases required for quaternary assembly of multiprotein machines, innate immunity, and responses to metabolic stress. J Virol 2023; 97:e0099323. [PMID: 37962355 PMCID: PMC10734532 DOI: 10.1128/jvi.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Inactivation of EP300/CREBB paralogous cellular lysine acetyltransferases (KATs) during the early phase of infection is a consistent feature of DNA viruses. The cell responds by stabilizing transcription factor IRF3 which activates transcription of scores of interferon-stimulated genes (ISGs), inhibiting viral replication. Human respiratory adenoviruses counter this by assembling a CUL4-based ubiquitin ligase complex that polyubiquitinylates RUVBL1 and 2 inducing their proteasomal degradation. This inhibits accumulation of active IRF3 and the expression of anti-viral ISGs, allowing replication of the respiratory HAdVs in the face of inhibition of EP300/CBEBBP KAT activity by the N-terminal region of E1A.
Collapse
Affiliation(s)
- Nathan R. Zemke
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Emily Hsu
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - William D. Barshop
- Thermo Fisher Scientific, San Jose, California, USA
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Jihui Sha
- Thermo Fisher Scientific, San Jose, California, USA
| | - James A. Wohlschlegel
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Thermo Fisher Scientific, San Jose, California, USA
| | - Arnold J. Berk
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
27
|
Liu ZY, Li YH, Zhang QK, Li BW, Xin L. Development and validation of a ubiquitin-proteasome system gene signature for prognostic prediction and immune microenvironment evaluation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13363-13382. [PMID: 37490101 DOI: 10.1007/s00432-023-05189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The ubiquitin proteasome has a major role in the development of many tumors. However, the prognostic importance of ubiquitin proteasome-system genes (UPSGs) in hepatocellular carcinoma (HCC) is not fully defined. METHODS The TCGA and ICGC datasets were utilized to obtain transcriptional profiling data as well as clinicopathological information about HCC. The 3-UPSGs signature for the TCGA cohort was developed via univariate and LASSO Cox regression analyses. Differential expression of genes was demonstrated by qRT-PCR and immunohistochemistry (IHC). Biological pathways were studied using GSVA and GSEA. Six algorithms were used to compare immune infiltration between the two risk groups. Furthermore, drug sensitivity was measured using the "pRRophetic" R package. The predictive capacity of the 3-UPSGs signature for sensitivity to immunotherapy was also explored. Moreover, we performed a pan-cancer analysis of the 3-UPSGs signature. RESULTS A risk model containing 3 UPSGs (DCAF13, CDC20 and PSMB5) was developed. IHC and qRT-PCR results showed that signature genes were significantly overexpressed in HCC tissues. The high-risk group had a worse prognosis, with a higher clinicopathological grade, higher levels of tumor mutation burden (TMB), elevated levels of immune checkpoint (IC) expression, as well as increased sensitivity to immunotherapy. The two risk groups also differ in their sensitivity to chemotherapeutic drugs. Furthermore, the three UPSGs may play crucial roles in the progression of multiple types of cancers. CONCLUSION We created a 3-UPSGs signature to estimate the prognosis of HCC and to assist in individualized treatment.
Collapse
Affiliation(s)
- Zhi-Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yi-He Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing-Kun Zhang
- Department of Otorhinolaryngology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo-Wen Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
28
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
29
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
30
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
31
|
Raisch J, Dubois ML, Groleau M, Lévesque D, Burger T, Jurkovic CM, Brailly R, Marbach G, McKenna A, Barrette C, Jacques PÉ, Boisvert FM. Pulse-SILAC and Interactomics Reveal Distinct DDB1-CUL4-Associated Factors, Cellular Functions, and Protein Substrates. Mol Cell Proteomics 2023; 22:100644. [PMID: 37689310 PMCID: PMC10565876 DOI: 10.1016/j.mcpro.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cullin-RING finger ligases represent the largest family of ubiquitin ligases. They are responsible for the ubiquitination of ∼20% of cellular proteins degraded through the proteasome, by catalyzing the transfer of E2-loaded ubiquitin to a substrate. Seven cullins are described in vertebrates. Among them, cullin 4 (CUL4) associates with DNA damage-binding protein 1 (DDB1) to form the CUL4-DDB1 ubiquitin ligase complex, which is involved in protein ubiquitination and in the regulation of many cellular processes. Substrate recognition adaptors named DDB1/CUL4-associated factors (DCAFs) mediate the specificity of CUL4-DDB1 and have a short structural motif of approximately forty amino acids terminating in tryptophan (W)-aspartic acid (D) dipeptide, called the WD40 domain. Using different approaches (bioinformatics/structural analyses), independent studies suggested that at least sixty WD40-containing proteins could act as adaptors for the DDB1/CUL4 complex. To better define this association and classification, the interaction of each DCAFs with DDB1 was determined, and new partners and potential substrates were identified. Using BioID and affinity purification-mass spectrometry approaches, we demonstrated that seven WD40 proteins can be considered DCAFs with a high confidence level. Identifying protein interactions does not always lead to identifying protein substrates for E3-ubiquitin ligases, so we measured changes in protein stability or degradation by pulse-stable isotope labeling with amino acids in cell culture to identify changes in protein degradation, following the expression of each DCAF. In conclusion, these results provide new insights into the roles of DCAFs in regulating the activity of the DDB1-CUL4 complex, in protein targeting, and characterized the cellular processes involved.
Collapse
Affiliation(s)
- Jennifer Raisch
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Line Dubois
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marika Groleau
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Burger
- CNRS, INSERM, Université Grenoble Alpes, Grenoble, France
| | - Carla-Marie Jurkovic
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Romain Brailly
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gwendoline Marbach
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alyson McKenna
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Barrette
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Michel Boisvert
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
32
|
Han D, Schaffner SH, Davies JP, Benton ML, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. Proc Natl Acad Sci U S A 2023; 120:e2305092120. [PMID: 37722046 PMCID: PMC10523488 DOI: 10.1073/pnas.2305092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3 (Bromodomain and WD repeat-containing protein 3), a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased H3K4me1 (H3 lysine 4 monomethylation) levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels but also causes a decrease in H3K4me3 (H3 lysine 4 trimethylation) levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific lysine demethylase 5 (KDM5/Lid), an enzyme that removes tri- and dimethyl marks from H3K4. Moreover, analysis of ChIP-seq (chromatin immunoprecipitation sequencing) data revealed that BRWD3 and KDM5 are significantly colocalized throughout the genome and H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
- Department of Chemistry, Vanderbilt University, Nashville, TN37212
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| |
Collapse
|
33
|
Stier A, Gilberto S, Mohamed WI, Royall LN, Helenius J, Mikicic I, Sajic T, Beli P, Müller DJ, Jessberger S, Peter M. The CUL4B-based E3 ubiquitin ligase regulates mitosis and brain development by recruiting phospho-specific DCAFs. EMBO J 2023; 42:e112847. [PMID: 37365982 PMCID: PMC10476281 DOI: 10.15252/embj.2022112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Anna Stier
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Samuel Gilberto
- Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Monte Rosa TherapeuticsBaselSwitzerland
| | | | - Lars N Royall
- Brain Research InstituteUniversity of ZurichZurichSwitzerland
| | - Jonne Helenius
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | - Tatjana Sajic
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Present address:
Faculty Unit of Toxicology, CURML, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Petra Beli
- Institute of Molecular BiologyMainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversityMainzGermany
| | - Daniel J Müller
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | | |
Collapse
|
34
|
Jo JH, Park JU, Kim YM, Ok SM, Kim DK, Jung DH, Kim HJ, Seong HA, Cho HJ, Nah J, Kim S, Fu H, Redon CE, Aladjem MI, Jang SM. RepID represses megakaryocytic differentiation by recruiting CRL4A-JARID1A at DAB2 promoter. Cell Commun Signal 2023; 21:219. [PMID: 37612584 PMCID: PMC10463337 DOI: 10.1186/s12964-023-01246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication initiation determinant protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING E3 ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. METHODS The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. RESULTS RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. CONCLUSION This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production. Video Abstract.
Collapse
Affiliation(s)
- Jae-Hyun Jo
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jong-Uk Park
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeong-Mu Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seon-Mi Ok
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dong-Kyu Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dong-Hyun Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hye-Ji Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyun-A Seong
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyo Je Cho
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jihoon Nah
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
35
|
Sainova I, Kolyovska V, Ilieva I, Markova T, Dimitrova-Dikanarova D, Hadjiolova R. The Development of Methods for the Production of New Molecular Vaccines and Appropriate RNA Fragments to Counteract Unwanted Genes: A Pilot Study. Vaccines (Basel) 2023; 11:1226. [PMID: 37515042 PMCID: PMC10386085 DOI: 10.3390/vaccines11071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of viruses as appropriate vectors for the development of new therapeutic strategies, as well as for the design of molecular (DNA, RNA, and/or protein) vaccines via substitution of nucleotide sequences, has been proven. Among the most appropriate DNA and/or RNA fragments, members belonging to families Parvoviridae (particularly adeno-associated virus, AAV) and Poxviridae have frequently been suggested for this purpose. In previous studies, the vaccine avipoxvirus strains FK (fowl) and Dessau (pigeon) have been proven able to infect mammalian cells (as well as avian cells), and to replicate productively in a small number of them; thus, we may be able to adapt them using incubation, and in these conditions. Additionally, we have previously proved, based on AAV recombinant DNA vectors, that it is possible to transfer appropriate genes of interest via mouse embryonic stem cells (mESCs). In the current study, we develop methods for the application of the same vaccine avipoxviral strains, based on the AAV DNA genome recombinant constructs, to be used for gene transfer in cells, for the transfer of DNA and/or RNA fragments (for the suppression of unwanted viral and/or cellular genes), and for the production of molecular (DNA, RNA, and/or protein) anti-cancer and anti-viral vaccines. To this end, sub-populations of embryonic mammalian cells infected with the two forms of both vaccine avipoxviral strains were frozen in the presence of cryo-protector dimethylsulfoxide (DMSO), subsequently thawed, and re-incubated. In most cases, the titers of the intra-cellular forms of the two strains were higher than those of their extra-cellular forms. These data were explained by the probable existence of the intra-cellular forms as different sub-forms, including those integrated in the cellular genome proviruses at a given stage of the cellular infection, and suggest the possibility of transferring nucleotide (DNA and/or RNA) fragments between cellular and viral genomes; this is due to the influence of activated fusion processes on DMSO, as well as drastic temperature variations.
Collapse
Affiliation(s)
- Iskra Sainova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Iliana Ilieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Tzvetanka Markova
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | | - Radka Hadjiolova
- Department of Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
36
|
Jo JH, Ok SM, Kim DK, Kim YM, Park JU, Jung DH, Kim HJ, Seong HA, Cho HJ, Nah J, Kim S, Fu H, Redon CE, Aladjem MI, Jang SM. RepID represses megakaryocytic differentiation by recruiting CRL4A-JARID1A at DAB2 promoter. RESEARCH SQUARE 2023:rs.3.rs-3045396. [PMID: 37461562 PMCID: PMC10350187 DOI: 10.21203/rs.3.rs-3045396/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication origin binding protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. Methods The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. Results RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. Conclusion This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production.
Collapse
|
37
|
Manzoor H, Zahid H, Emerling CA, Kumar KR, Hussain HMJ, Seo GH, Wajid M, Naz S. A biallelic variant of DCAF13 implicated in a neuromuscular disorder in humans. Eur J Hum Genet 2023; 31:629-637. [PMID: 36797467 PMCID: PMC10250411 DOI: 10.1038/s41431-023-01319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Neuromuscular disorders encompass a broad range of phenotypes and genetic causes. We investigated a consanguineous family in which multiple patients had a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. Exome sequencing was completed on the DNA of three of the four patients. We identified a novel missense variant in DCAF13, ENST00000612750.5, NM_015420.7, c.907 G > A;p.(Asp303Asn), ENST00000616836.4, NM_015420.6, c.1363 G > A:p.(Asp455Asn) (rs1209794872) segregating with this phenotype; being homozygous in all four affected patients and heterozygous in the unaffected individuals. The variant was extremely rare in the public databases (gnomAD allele frequency 0.000007081); was absent from the DNA of 300 ethnically matched controls and affected an amino acid which has been conserved across 1-2 billion years of evolution in eukaryotes. DCAF13 contains three WD40 domains and is hypothesized to have roles in both rRNA processing and in ubiquitination of proteins. Analysis of DCAF13 with the p.(Asp455Asn) variant predicted that the amino acid change is deleterious and affects a β-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Previously, a heterozygous variant of DCAF13 NM_015420.6, c.20 G > C:p.(Trp7Ser) with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Our study indicates a potential role of biallelic DCAF13 variants in neuromuscular disorders. Screening of additional patients with similar phenotype may broaden the allelic and phenotypic spectrum due to DCAF13 variants.
Collapse
Affiliation(s)
- Humera Manzoor
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafsa Zahid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | - Muhammad Wajid
- Department of Zoology, University of Okara, Punjab, Pakistan
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
38
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
39
|
Li AM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, Mamai A, Hoffer L, Guilinger JP, Zhang Y, von Rechenberg M, Disch JS, Mulhern CJ, Slakman BL, Cuozzo JW, Dong A, Poda G, Mohammed M, Saraon P, Mittal M, Modh P, Rathod V, Patel B, Ackloo S, Santhakumar V, Szewczyk MM, Barsyte-Lovejoy D, Arrowsmith CH, Marcellus R, Guié MA, Keefe AD, Brown PJ, Halabelian L, Al-awar R, Vedadi M. Discovery of Nanomolar DCAF1 Small Molecule Ligands. J Med Chem 2023; 66:5041-5060. [PMID: 36948210 PMCID: PMC10108359 DOI: 10.1021/acs.jmedchem.2c02132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 03/24/2023]
Abstract
DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 μM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 μM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.
Collapse
Affiliation(s)
- Alice
Shi Ming Li
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Serah Kimani
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario M5G 2C1, Canada
| | - Brian Wilson
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Mahmoud Noureldin
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Héctor González-Álvarez
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Mamai
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Laurent Hoffer
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | - Ying Zhang
- X-Chem
Inc., Waltham, Massachusetts 02453, United States
| | | | - Jeremy S. Disch
- Relay Therapeutics, Cambridge, Massachusetts 02139, United States
| | | | | | - John W. Cuozzo
- Relay Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Aiping Dong
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gennady Poda
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mohammed Mohammed
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Punit Saraon
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Manish Mittal
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Pratik Modh
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Vaibhavi Rathod
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Bhashant Patel
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India
| | - Suzanne Ackloo
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Magdalena M Szewczyk
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Centre, University Health
Network, Toronto, Ontario M5G 2C1, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Richard Marcellus
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | | | - Peter J. Brown
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rima Al-awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Masoud Vedadi
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
40
|
Tang Y, Lei Y, Gao P, Jia J, Du H, Wang Q, Yan Z, Zhang C, Liang G, Wang Y, Ma W, Xing N, Cheng L, Ren L. Pan-cancer analysis and experimental validation of DTL as a potential diagnosis, prognosis and immunotherapy biomarker. BMC Cancer 2023; 23:328. [PMID: 37038185 PMCID: PMC10088150 DOI: 10.1186/s12885-023-10755-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND DTL has been found to be related with multiple cancers. However, comprehensive analyses, which identify the prediction value of DTL in diagnosis, prognosis, immune infiltration and treatment, have rarely been reported so far. METHODS Combined with the data online databases, the gene expression, gene mutation, function enrichment and the correlations with the immunity status and clinical indexes of DTL were analyzed. Expression of DTL and the degree of immune cell infiltration were examined by immunofluorescence (IF) and immunohistochemistry (IHC) and analyzed by statistical analysis. Furthermore, the influences of DTL on the cell cycle, cell proliferation and apoptosis were detected by live cell imaging, IF and flow cytometric (FC) analysis. Genomic stability assays were conducted by chromosome slide preparation. RESULTS DTL was widely expressed in various cells and tissues, while it was overexpressed in tumor tissues except acute myeloid leukemia (LAML). Pan-cancer bioinformatics analysis showed that the expression of DTL was correlated with the prognosis, immunotherapy, and clinical indexes in various cancers. In addition, gene set enrichment analysis (GSEA) uncovered that DTL was enriched in oocyte meiosis, pyrimidine metabolism, the cell cycle, the G2M checkpoint, mTORC1 signaling and E2F targets. Furthermore, the overexpression of DTL, and its association with immune cell infiltration and clinical indexes in liver hepatocellular carcinoma (LIHC), bladder urothelial carcinoma (BLCA) and stomach adenocarcinoma (STAD) were verified in our study. It was also verified that overexpression of DTL could regulate the cell cycle, promote cell proliferation and cause genomic instability in cultured cells, which may be the reason why DTL plays a role in the occurrence, progression and treatment of cancer. CONCLUSIONS Collectively, this study suggested that DTL is of clinical value in the diagnosis, prognosis and treatment of various cancers, and may be a potential biomarker in certain cancers.
Collapse
Affiliation(s)
- Yumei Tang
- School of Basic Medical Sciences, Dali University, Dali, 671000, P.R. China
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
- Shanxi Keda Research Institute, Taiyaun, 030000, P.R. China
| | - Ye Lei
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
- Department of Urology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Peng Gao
- BGI-Shenzhen, Shenzhen, 518083, P.R. China
| | - Junting Jia
- Department of Pharmacy, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Huijun Du
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Qitong Wang
- School of Basic Medical Sciences, Dali University, Dali, 671000, P.R. China
| | - Zhixin Yan
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Chen Zhang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Guojun Liang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Yanfeng Wang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Weijun Ma
- Shanxi Beike Biotechnology Co., Ltd, Taiyuan, 030000, P.R. China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China.
- Department of Urology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China.
| | - Le Cheng
- BGI-Yunnan, Kunming, Yunnan, 650106, P.R. China.
| | - Laifeng Ren
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China.
| |
Collapse
|
41
|
Wei S, Lu K, Xing J, Yu W. A multidimensional pan-cancer analysis of DCAF13 and its protumorigenic effect in lung adenocarcinoma. FASEB J 2023; 37:e22849. [PMID: 36884358 DOI: 10.1096/fj.202201022rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
DCAF13 is a substrate recognition protein in the ubiquitin-proteasome system with oncogenic effects in several malignant tumors. However, it is unclear that the relationship between DCAF13 expression pattern and prognosis across different cancer types. Also unknown is the biological function or effects on the immune microenvironment of DCAF13. In this study, we parsed multiple public databases to explore the potential tumorigenic actions of DCAF13, including correlations with prognosis, microsatellite instability (MSI), tumor mutational burden (TMB), immune checkpoint genes, immune cell infiltration, and immunotherapy response in pan-cancer. Moreover, we validated DCAF13 expression in a tissue microarray by immunohistochemistry and investigate its effects in vitro and in vivo. The results showed that DCAF13 was upregulated in 17 cancer types and correlated with poor prognosis in many cancers. Also, the correlation between DCAF13 and TMB was found in 14 cancers as well as MSI in nine. The expression level of DCAF13 was found to be notably correlated with immune cell infiltration, showing a negative correlation with CD4 T cell infiltration and a positive correlation with neutrophil infiltration. The oncogene DCAF13 expression was shown to have a positive correlation with CD274 or ADORA2A and negative correlation with VSIR, TNFRSF4, or TNFRSF14 across large subsets of human cancers. Finally, we observed that DCAF13 was highly expressed in a tissue microarray of lung cancer. In immunocompromised mouse models, xenograft growth of human lung cancer cells was significantly inhibited by DCAF13 knockdown. Our results highlighted the value of DCAF13 as a promising independent predictor of poor prognosis through numerous biological processes. High DCAF13 expression often predicts suppressive immune microenvironment and immunotherapy resistance in a pan-cancer context.
Collapse
Affiliation(s)
- Shan Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), Ningbo, People's Republic of China
| | - Kaining Lu
- Department of Urology, Ningbo First Hospital, Ningbo, People's Republic of China
| | - Jing Xing
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), Ningbo, People's Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), Ningbo, People's Republic of China
| |
Collapse
|
42
|
Han D, Schaffner SH, Davies JP, Lauren Benton M, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534572. [PMID: 37034668 PMCID: PMC10081218 DOI: 10.1101/2023.03.28.534572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3, a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased in H3K4me1 levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels, but also causes a decrease in H3K4me3 levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific demethylase 5 (KDM5/Lid), an enzyme that removes tri- and di- methyl marks from H3K4. Moreover, analysis of ChIP-seq data revealed that BRWD3 and KDM5 are significantly co- localized throughout the genome and that sites of H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
43
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
44
|
Geng Z, Wang Q, Miao W, Wolf T, Chavez J, Giddings E, Hobbs R, DeGraff DJ, Wang Y, Stafford J, Gao Z. AUTS2 Controls Neuronal Lineage Choice Through a Novel PRC1-Independent Complex and BMP Inhibition. Stem Cell Rev Rep 2023; 19:531-549. [PMID: 36258139 PMCID: PMC9905272 DOI: 10.1007/s12015-022-10459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Despite a prominent risk factor for Neurodevelopmental disorders (NDD), it remains unclear how Autism Susceptibility Candidate 2 (AUTS2) controls the neurodevelopmental program. Our studies investigated the role of AUTS2 in neuronal differentiation and discovered that AUTS2, together with WDR68 and SKI, forms a novel protein complex (AWS) specifically in neuronal progenitors and promotes neuronal differentiation through inhibiting BMP signaling. Genomic and biochemical analyses demonstrated that the AWS complex achieves this effect by recruiting the CUL4 E3 ubiquitin ligase complex to mediate poly-ubiquitination and subsequent proteasomal degradation of phosphorylated SMAD1/5/9. Furthermore, using primary cortical neurons, we observed aberrant BMP signaling and dysregulated expression of neuronal genes upon manipulating the AWS complex, indicating that the AWS-CUL4-BMP axis plays a role in regulating neuronal lineage specification in vivo. Thus, our findings uncover a sophisticated cellular signaling network mobilized by a prominent NDD risk factor, presenting multiple potential therapeutic targets for NDD.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Qiang Wang
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Weili Miao
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Trevor Wolf
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jessenia Chavez
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Emily Giddings
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Ryan Hobbs
- Department of Dermatology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - James Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA.
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
45
|
Jevitt AM, Rankin BD, Chen J, Rankin S. The cohesin modifier ESCO2 is stable during DNA replication. Chromosome Res 2023; 31:6. [PMID: 36708487 PMCID: PMC9884251 DOI: 10.1007/s10577-023-09711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 01/29/2023]
Abstract
Cohesion between sister chromatids by the cohesin protein complex ensures accurate chromosome segregation and enables recombinational DNA repair. Sister chromatid cohesion is promoted by acetylation of the SMC3 subunit of cohesin by the ESCO2 acetyltransferase, inhibiting cohesin release from chromatin. The interaction of ESCO2 with the DNA replication machinery, in part through PCNA-interacting protein (PIP) motifs in ESCO2, is required for full cohesion establishment. Recent reports have suggested that Cul4-dependent degradation regulates the level of ESCO2 protein following replication. To follow up on these observations, we have characterized ESCO2 stability in Xenopus egg extracts, a cell-free system that recapitulates cohesion establishment in vitro. We found that ESCO2 was stable during DNA replication in this system. Indeed, further challenging the system by inducing DNA damage signaling or increasing the number of nuclei undergoing DNA replication had no significant impact on the stability of ESCO2. In transgenic somatic cell lines, we also did not see evidence of GFP-ESCO2 degradation during S phase of the cell cycle using both flow cytometry and live-cell imaging. We conclude that ESCO2 is stable during DNA replication in both embryonic and somatic cells.
Collapse
Affiliation(s)
- Allison M Jevitt
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Brooke D Rankin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jingrong Chen
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
46
|
Liu Y, Song Y, Xu Y, Jiang M, Lu H. Design, synthesis, and biological evaluation of a novel series of 2-(2,6-dioxopiperidin-3-yl)isoquinoline-1,3(2 H,4 H)-dione derivatives as cereblon modulators. J Enzyme Inhib Med Chem 2022; 37:1715-1723. [PMID: 35698881 PMCID: PMC9225785 DOI: 10.1080/14756366.2022.2087219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the current study, we designed and synthesised a novel series of 2-(2,6-dioxopiperidin-3-yl)isoquinoline-1,3(2H,4H)-dione derivatives as cereblon (CRBN) modulators. The results of the CCK8 assay revealed potent antiproliferative activity for the selected compound 10a against NCI-H929 (IC50=2.25 µM) and U239 (IC50=5.86 µM) cell lines. Compound 10a also can inhibit the TNF-α level (IC50=0.76 µM) in LPS stimulated PMBC and showed nearly no toxicity to this normal human cell line. The TR-FRET assay showed compound 10a having potent inhibitory activity against CRBN (IC50=4.83 µM), and the docking study confirmed a nice fitting of 10a into the active sites of CRBN. Further biology studies revealed compound 10a can increase the apoptotic events, arrest the NCI-H929 cells at G0/G1 cell cycle, and induce the ubiquitination degradation of IKZF1 and IKZF3 proteins by CRL4CRBN. These preliminary results suggested that compound 10a could serve as a potential antitumor drug and worthy of further investigation.
Collapse
Affiliation(s)
- Yilin Liu
- College of Pharmacy, Jilin University, Changchun, China
| | - Yuming Song
- Department of VIP Unit, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingju Xu
- College of Pharmacy, Jilin University, Changchun, China
| | - Meixu Jiang
- College of Pharmacy, Jilin University, Changchun, China
| | - Haibin Lu
- College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
47
|
Differential dynamics of cullin deneddylation via COP9 signalosome subunit 5 interaction. Biochem Biophys Res Commun 2022; 637:341-347. [DOI: 10.1016/j.bbrc.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
48
|
Kumari R, Holla VV, Phulpagar P, Sriram N, Hegde AG, Vengalil S, Kamble N, Saini J, Yadav R, Pal PK, Muthusamy B. Whole exome sequencing and transcript analysis discover a novel pathogenic splice site mutation in DCAF17 gene underlying Woodhouse-Sakati syndrome. J Neuroendocrinol 2022; 34:e13185. [PMID: 35876063 DOI: 10.1111/jne.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Woodhouse-Sakati syndrome (WSS) is an extremely rare multisystemic disorder with neuroendocrine dysfunctions. It is characterized by hypogonadism, alopecia, diabetes mellitus, intellectual disability and progressive extrapyramidal syndrome along with radiological features of small pituitary gland, progressive frontoparietal white matter changes and abnormal accumulation of iron on globus pallidus. WSS is caused by mutations in DCAF17 gene that encodes for DDB1 and CUL4 associated factor 17. In this study, we report a 17-year-old boy with clinical and radiological features of WSS including mild global developmental delay, mild intellectual disability, sensorineural hearing loss, progressive extrapyramidal syndrome, alopecia, hypogonadotropic hypogonadism and dysmorphic features. Whole exome sequencing analysis revealed a novel potentially pathogenic splice donor site variant (c.458+1G>T) on the intron 4 of DCAF17 gene. Transcript analysis revealed splicing ablation resulting in aberrant splicing of exons 3 and 5 and skipping of exon 4 (c.322_458del). This results in a frameshift and is predicted to cause premature termination of protein synthesis resulting in a protein product of length 120 amino acids (p.[Gly108Ilefs*14]). Our study identified a novel pathogenic variant causing WSS in a patient and expands the spectrum of clinical and genetic characteristics of patients with WSS.
Collapse
Affiliation(s)
- Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Aditya G Hegde
- Department of Endocrinology, Manipal Hospitals, Bangalore, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- Departement of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
49
|
Wick ET, Treadway CJ, Li Z, Nicely NI, Ren Z, Baldwin AS, Xiong Y, Harrison JS, Brown NG. Insight into Viral Hijacking of CRL4 Ubiquitin Ligase through Structural Analysis of the pUL145-DDB1 Complex. J Virol 2022; 96:e0082622. [PMID: 35938868 PMCID: PMC9472758 DOI: 10.1128/jvi.00826-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/21/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses evolve mechanisms to exploit cellular pathways that increase viral fitness, e.g., enhance viral replication or evade the host cell immune response. The ubiquitin-proteosome system, a fundamental pathway-regulating protein fate in eukaryotes, is hijacked by all seven classes of viruses. Members of the Cullin-RING family of ubiquitin (Ub) ligases are frequently co-opted by divergent viruses because they can target a broad array of substrates by forming multisubunit assemblies comprised of a variety of adapters and substrate receptors. For example, the linker subunit DDB1 in the cullin 4-RING (CRL4)-DDB1 Ub ligase (CRL4DDB1) interacts with an H-box motif found in several unrelated viral proteins, including the V protein of simian virus 5 (SV5-V), the HBx protein of hepatitis B virus (HBV), and the recently identified pUL145 protein of human cytomegalovirus (HCMV). In HCMV-infected cells, pUL145 repurposes CRL4DDB1 to target STAT2, a protein vital to the antiviral immune response. However, the details of how these divergent viral sequences hijack DDB1 is not well understood. Here, we use a combination of binding assays, X-ray crystallography, alanine scanning, cell-based assays, and computational analysis to reveal that viral H-box motifs appear to bind to DDB1 with a higher affinity than the H-box motifs from host proteins DCAF1 and DDB2. This analysis reveals that viruses maintain native hot-spot residues in the H-box motif of host DCAFs and also acquire favorable interactions at neighboring residues within the H-box. Overall, these studies reveal how viruses evolve strategies to produce high-affinity binding and quality interactions with DDB1 to repurpose its Ub ligase machinery. IMPORTANCE Many different viruses modulate the protein machinery required for ubiquitination to enhance viral fitness. Specifically, several viruses hijack the cullin-RING ligase CRL4DDB1 to degrade host resistance factors. Human cytomegalovirus (HCMV) encodes pUL145 that redirects CRL4DDB1 to evade the immune system through the targeted degradation of the antiviral immune response protein STAT2. However, it is unclear why several viruses bind specific surfaces on ubiquitin ligases to repurpose their activity. We demonstrate that viruses have optimized H-box motifs that bind DDB1 with higher affinity than the H-box of native binders. For viral H-boxes, native interactions are maintained, but additional interactions that are absent in host cell H-boxes are formed, indicating that rewiring CRL4DDB1 creates a selective advantage for the virus. The DDB1-pUL145 peptide structure reveals that water-mediated interactions are critical to the higher affinity. Together, our data present an interesting example of how viral evolution can exploit a weakness in the ubiquitination machinery.
Collapse
Affiliation(s)
- Elizaveta T. Wick
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Colton J. Treadway
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhijun Li
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan I. Nicely
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhizhong Ren
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yue Xiong
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S. Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Teranishi H, Tabata K, Saeki M, Umemoto T, Hatta T, Otomo T, Yamamoto K, Natsume T, Yoshimori T, Hamasaki M. Identification of CUL4A-DDB1-WDFY1 as an E3 ubiquitin ligase complex involved in initiation of lysophagy. Cell Rep 2022; 40:111349. [PMID: 36103833 DOI: 10.1016/j.celrep.2022.111349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy is a bulk degradation system in which double membrane-bound structures called autophagosomes to deliver cytosolic materials to lysosomes. Autophagy promotes cellular homeostasis by selectively recognizing and sequestering specific targets, such as damaged organelles, protein aggregates, and invading bacteria, termed selective autophagy. We previously reported a type of selective autophagy, lysophagy, which helps clear damaged lysosomes. Damaged lysosomes become ubiquitinated and recruit autophagic machinery. Proteomic studies using transfection reagent-coated beads and further evaluations reveal that a CUL4A-DDB1-WDFY1 E3 ubiquitin ligase complex is essential to initiate lysophagy and clear damaged lysosomes. Moreover, we show that LAMP2 is ubiquitinated by the CUL4A E3 ligase complex as a substrate on damaged lysosomes. These results reveal how cells selectively tag damaged lysosomes to initiate autophagy for the clearance of lysosomes.
Collapse
Affiliation(s)
- Hirofumi Teranishi
- JT Pharmaceutical Frontier Research Laboratory, Yokohama 236-0004, Japan
| | - Keisuke Tabata
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan
| | - Marika Saeki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan
| | - Tetsuo Umemoto
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, AIST, Tokyo 135-0064, Japan
| | - Takanobu Otomo
- Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan
| | - Kentaro Yamamoto
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan
| | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery, AIST, Tokyo 135-0064, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan.
| | - Maho Hamasaki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka 565-0871, Japan; Department of Genetics, Graduate School of Medicine Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|