1
|
Holst-Hansen T, Nielsen PY, Jensen MH, Mandrup-Poulsen T, Trusina A. Tipping-point transition from transient to persistent inflammation in pancreatic islets. NPJ Syst Biol Appl 2024; 10:102. [PMID: 39266581 PMCID: PMC11393080 DOI: 10.1038/s41540-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with a systemic increase in the pro-inflammatory cytokine IL-1β. While transient exposure to low IL-1β concentrations improves insulin secretion and β-cell proliferation in pancreatic islets, prolonged exposure leads to impaired insulin secretion and collective β-cell death. IL-1 is secreted locally by islet-resident macrophages and β-cells; however, it is unknown if and how the two opposing modes may emerge at single islet level. We investigated the duality of IL-1β with a quantitative in silico model of the IL-1 regulatory network in pancreatic islets. We find that the network can produce either transient or persistent IL-1 responses when induced by pro-inflammatory and metabolic cues. This suggests that the duality of IL-1 may be regulated at the single islet level. We use two core feedbacks in the IL-1 regulation to explain both modes: First, a fast positive feedback in which IL-1 induces its own production through the IL-1R/IKK/NF-κB pathway. Second, a slow negative feedback where NF-κB upregulates inhibitors acting at different levels along the IL-1R/IKK/NF-κB pathway-IL-1 receptor antagonist and A20, among others. A transient response ensues when the two feedbacks are balanced. When the positive feedback dominates over the negative, islets transit into the persistent inflammation mode. Consistent with several observations, where the size of islets was implicated in its inflammatory state, we find that large islets and islets with high density of IL-1β amplifying cells are more prone to transit into persistent IL-1β mode. Our results are likely not limited to IL-1β but are general for the combined effect of multiple pro-inflammatory cytokines and chemokines. Generalizing complex regulations in terms of two feedback mechanisms of opposing nature and acting on different time scales provides a number of testable predictions. Taking islet architecture and cellular heterogeneity into consideration, further dynamic monitoring and experimental validation in actual islet samples will be crucial to verify the model predictions and enhance its utility in clinical applications.
Collapse
Affiliation(s)
| | - Pernille Yde Nielsen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Cumming T, Levayer R. Toward a predictive understanding of epithelial cell death. Semin Cell Dev Biol 2024; 156:44-57. [PMID: 37400292 DOI: 10.1016/j.semcdb.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Epithelial cell death is highly prevalent during development and tissue homeostasis. While we have a rather good understanding of the molecular regulators of programmed cell death, especially for apoptosis, we still fail to predict when, where, how many and which specific cells will die in a tissue. This likely relies on the much more complex picture of apoptosis regulation in a tissular and epithelial context, which entails cell autonomous but also non-cell autonomous factors, diverse feedback and multiple layers of regulation of the commitment to apoptosis. In this review, we illustrate this complexity of epithelial apoptosis regulation by describing these different layers of control, all demonstrating that local cell death probability is a complex emerging feature. We first focus on non-cell autonomous factors that can locally modulate the rate of cell death, including cell competition, mechanical input and geometry as well as systemic effects. We then describe the multiple feedback mechanisms generated by cell death itself. We also outline the multiple layers of regulation of epithelial cell death, including the coordination of extrusion and regulation occurring downstream of effector caspases. Eventually, we propose a roadmap to reach a more predictive understanding of cell death regulation in an epithelial context.
Collapse
Affiliation(s)
- Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
4
|
Sun G. Death and survival from executioner caspase activation. Semin Cell Dev Biol 2024; 156:66-73. [PMID: 37468421 DOI: 10.1016/j.semcdb.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Executioner caspases are evolutionarily conserved regulators of cell death under apoptotic stress. Activated executioner caspases drive apoptotic cell death through cleavage of diverse protein substrates or pyroptotic cell death in the presence of gasdermin E. On the other hand, activation of executioner caspases can also trigger pro-survival and pro-proliferation signals. In recent years, a growing body of studies have demonstrated that cells can survive from executioner caspase activation in response to stress and that the survivors undergo molecular and phenotypic alterations. This review focuses on death and survival from executioner caspase activation, summarizing the role of executioner caspases in apoptotic and pyroptotic cell death and discussing the potential mechanism and consequences of survival from stress-induced executioner caspase activation.
Collapse
Affiliation(s)
- Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Xu FX, Wu R, Hu K, Fu D. Measuring Drug Response with Single-Cell Growth Rate Quantification. Anal Chem 2023; 95:18114-18121. [PMID: 38016067 PMCID: PMC11016461 DOI: 10.1021/acs.analchem.3c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Intratumoral heterogeneity is a substantial cause of drug resistance development during chemotherapy or other drug treatments for cancer. Therefore, monitoring and measuring cell exposure and response to drugs at the single-cell level are crucial. Previous research suggested that the single-cell growth rate can be used to investigate drug-cell interactions. However, currently established methods for quantifying single-cell growth are limited to isolated or monolayer cells. Here, we introduce a technique that accurately measures both 2D and 3D cell growth rates using label-free ratiometric stimulated Raman scattering (SRS) microscopy. We use deuterated amino acids, leucine, isoleucine, and valine, as tracers and measure the C-D SRS signal from deuterium-labeled proteins and the C-H SRS signal from unlabeled proteins simultaneously to determine the cell growth rate at the single-cell level. The technique offers single-cell level drug sensitivity measurement with a shorter turnaround time (within 12 h) than most traditional assays. The submicrometer resolution of the imaging technique allows us to examine the effects of chemotherapeutic drugs, including kinase inhibitors, mitotic inhibitors, and topoisomerase II inhibitors, on both the cell growth rate and morphology. The capability of quantifying 3D cell growth rates provides insight into a deeper understanding of the cell-drug interaction in the actual tumor environment.
Collapse
Affiliation(s)
- Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ruibing Wu
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Kailun Hu
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
6
|
Pu Y, Li L, Peng H, Liu L, Heymann D, Robert C, Vallette F, Shen S. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat Rev Clin Oncol 2023; 20:799-813. [PMID: 37749382 DOI: 10.1038/s41571-023-00815-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Drug-tolerant persister (DTP) cell populations were originally discovered in antibiotic-resistant bacterial biofilms. Similar populations with comparable features have since been identified among cancer cells and have been linked with treatment resistance that lacks an underlying genomic alteration. Research over the past decade has improved our understanding of the biological roles of DTP cells in cancer, although clinical knowledge of the role of these cells in treatment resistance remains limited. Nonetheless, targeting this population is anticipated to provide new treatment opportunities. In this Perspective, we aim to provide a clear definition of the DTP phenotype, discuss the underlying characteristics of these cells, their biomarkers and vulnerabilities, and encourage further research on DTP cells that might improve our understanding and enable the development of more effective anticancer therapies.
Collapse
Affiliation(s)
- Yi Pu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Lung Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Haoning Peng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - François Vallette
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France.
- Nantes Université, INSERM, U1307, CRCI2NA, Nantes, France.
| | - Shensi Shen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
You W, Zhou T, Knoops K, Berendschot TTJM, van Zandvoort MAMJ, Germeraad WTV, Benedikter B, Webers CAB, Reutelingsperger CPM, Gorgels TGMF. Stressed neuronal cells can recover from profound membrane blebbing, nuclear condensation and mitochondrial fragmentation, but not from cytochrome c release. Sci Rep 2023; 13:11045. [PMID: 37422517 PMCID: PMC10329692 DOI: 10.1038/s41598-023-38210-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Loss of neurons in chronic neurodegenerative diseases may occur over a period of many years. Once initiated, neuronal cell death is accompanied by distinct phenotypic changes including cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing and phosphatidylserine (PS) exposure at the plasma membrane. It is still poorly understood which events mark the point of no return for dying neurons. Here we analyzed the neuronal cell line SH-SY5Y expressing cytochrome C (Cyto.C)-GFP. Cells were exposed temporarily to ethanol (EtOH) and tracked longitudinally in time by light and fluorescent microscopy. Exposure to EtOH induced elevation of intracellular Ca2+ and reactive oxygen species, cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing, PS exposure and Cyto.C release into the cytosol. Removing EtOH at predetermined time points revealed that all phenomena except Cyto.C release occurred in a phase of neuronal cell death in which full recovery to a neurite-bearing cell was still possible. Our findings underscore a strategy of treating chronic neurodegenerative diseases by removing stressors from neurons and harnessing intracellular targets that delay or prevent trespassing the point of no return.
Collapse
Affiliation(s)
- Wenting You
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, 6229 HX, Maastricht, The Netherlands
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Tao Zhou
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, 6229 HX, Maastricht, The Netherlands
| | - Kèvin Knoops
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, 6229 HX, Maastricht, The Netherlands
| | - Marc A M J van Zandvoort
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Disease, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Institute of Molecular Cardiovascular Research, Universitätsklinikum Aachen, 52074, Aachen, Germany
| | - Wilfred T V Germeraad
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Birke Benedikter
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, 6229 HX, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, 6229 HX, Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Chang CW, Chen C, Chang CW, Chiu PY, Yang JS, Chen FA. Effects of Tetrandrine on the Apoptosis of Cisplatin-resistant Oral Cancer Cells. Pharmacogn Mag 2023. [DOI: 10.1177/09731296231158699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background Cisplatin, the first-line drug for chemotherapy, often has limited treatment efficacy because of resistance and cancer recurrence mechanisms. Tetrandrine is a unique secondary metabolite of Stephania tetrandra. As a traditional Chinese medicine agent, tetrandrine has been reported to have antioxidant, anti-inflammatory, antitumor, and antiangiogenesis activities and has been shown to inhibit the proliferation and angiogenesis of colorectal, lung, and breast cancer cells; potential mechanisms underlying its activities include the promotion of tumor cell apoptosis, promotion of cell cycle arrest, and intensification of reactive oxygen species (ROS) production. Objectives The main treatments for oral cancer are chemotherapy, surgery, and radiotherapy; these treatments are often used in combination. Cancer cells easily develop cisplatin resistance; therefore, we investigated tetrandrine’s potential as a therapy for overcoming resistance to oral cancer drugs. Materials and Methods We used the cisplatin-resistant oral cancer CAR cell line (CAL27) as a research objected and applied inhibitor treatment to clarify the role of tetrandrine in cell death and mitochondrial dysfunction. Results Tetrandrine could effectively inhibit CAR cell proliferation and induce apoptosis, with a corresponding increase in ROS production in mitochondria. Moreover, tetrandrine increased caspase-9 and caspase-3 activity in CAR cells and induced apoptotic mRNA, caspase-3/-9, AIF, and Endo G overexpression. Our results indicate that tetrandrine induces apoptosis in CAR cells through a mitochondrial-dependent signaling pathway.
Collapse
Affiliation(s)
- Chin-Wen Chang
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chun Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wei Chang
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| | - Po-Yen Chiu
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| |
Collapse
|
9
|
Nano M, Mondo JA, Harwood J, Balasanyan V, Montell DJ. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci U S A 2023; 120:e2216531120. [PMID: 36669100 PMCID: PMC9942801 DOI: 10.1073/pnas.2216531120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/17/2022] [Indexed: 01/21/2023] Open
Abstract
Executioner-caspase activation has been considered a point-of-no-return in apoptosis. However, numerous studies report survival from caspase activation after treatment with drugs or radiation. An open question is whether cells can recover from direct caspase activation without pro-survival stress responses induced by drugs. To address this question, we engineered a HeLa cell line to express caspase-3 inducibly and combined it with a quantitative caspase activity reporter. While high caspase activity levels killed all cells and very low levels allowed all cells to live, doses of caspase activity sufficient to kill 15 to 30% of cells nevertheless allowed 70 to 85% to survive. At these doses, neither the rate, nor the peak level, nor the total amount of caspase activity could accurately predict cell death versus survival. Thus, cells can survive direct executioner-caspase activation, and variations in cellular state modify the outcome of potentially lethal caspase activity. Such heterogeneities may underlie incomplete tumor cell killing in response to apoptosis-inducing cancer treatments.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - James A. Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
| | - Jacob Harwood
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
| | - Varuzhan Balasanyan
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
10
|
Zhu Y, Shi J. Cytotoxic and chemotactic dynamics of NK cells quantified by live-cell imaging. Methods Cell Biol 2023; 173:49-64. [PMID: 36653085 DOI: 10.1016/bs.mcb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural Killer (NK) cells detect and eliminate virus-infected cells and cancer cells, and are crucial players of the human immune defense system. Although the relevant molecular machineries involved in NK cell activation and NK-target cell interactions are largely known, how their collective signaling modulates the dynamic behaviors of NK cells, e.g., motility and cytotoxicity, and the rate-limiting kinetics involved are still in need of comprehensive investigations. In traditional bulk killing assays, heterogeneity and kinetic details of individual NK-target cell interactions are masked, seriously limiting analysis of the underlying dynamic mechanisms. Here we present detailed protocols of a number of live-cell imaging assays using fluorescent protein reporters and/or a live-cell dye that enable the acquisition of quantitative kinetic data at the single cell level for elucidating the mechanism underlying the interaction dynamics of primary human NK cells and epithelial cancer cells. Moreover, we discuss how the imaging data can be analyzed either alone or in combination to quantify and determine the key dynamic steps/intermediates involved in specific NK cell activity, e.g., NK cell cytotoxic modes and their associated kinetics, and NK cell motility toward different cancer targets. These live-cell imaging assays can be easily adapted to analyze the rate-limiting kinetics and heterogeneity of other cell-cell interaction dynamics, e.g., in T cell function.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jue Shi
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
11
|
Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022; 9:70. [PMID: 36522661 PMCID: PMC9756521 DOI: 10.1186/s40779-022-00429-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Collapse
Affiliation(s)
- He-Qi Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia-Chen Liu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zheng-Yi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chang-Xue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
12
|
Apoptotic priming is defined by the dynamic exchange of Bcl-2 proteins between mitochondria and cytosol. Cell Death Differ 2022; 29:2262-2274. [PMID: 35585181 PMCID: PMC9613888 DOI: 10.1038/s41418-022-01013-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
Apoptosis is regulated by interactions between the BH3-only and multi-domain Bcl-2 family proteins. These interactions are integrated on the outer mitochondrial membrane (OMM) where they set the threshold for apoptosis, known as mitochondrial priming. However, how mitochondrial priming is controlled at the level of single cells remains unclear. Retrotranslocation of Bcl-XL has been proposed as one mechanism, removing pro-apoptotic Bcl-2 proteins from the OMM, thus reducing priming. Contrary to this view, we now show that Bcl-XL retrotranslocation is inhibited by binding to its BH3-only partners, resulting in accumulation of these protein complexes on mitochondria. We find that Bcl-XL retrotranslocation dynamics are tightly coupled to mitochondrial priming. Quantifying these dynamics indicates the heterogeneity in priming between cells within a population and predicts how they subsequently respond to a pro-apoptotic signal.
Collapse
|
13
|
An integrative systems biology approach to overcome venetoclax resistance in acute myeloid leukemia. PLoS Comput Biol 2022; 18:e1010439. [PMID: 36099249 PMCID: PMC9469948 DOI: 10.1371/journal.pcbi.1010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
The over-expression of the Bcl-2 protein is a common feature of many solid cancers and hematological malignancies, and it is typically associated with poor prognosis and resistance to chemotherapy. Bcl-2-specific inhibitors, such as venetoclax, have recently been approved for the treatment of chronic lymphocytic leukemia and small lymphocytic lymphoma, and they are showing promise in clinical trials as a targeted therapy for patients with relapsed or refractory acute myeloid leukemia (AML). However, successful treatment of AML with Bcl-2-specific inhibitors is often followed by the rapid development of drug resistance. An emerging paradigm for overcoming drug resistance in cancer treatment is through the targeting of mitochondrial energetics and metabolism. In AML in particular, it was recently observed that inhibition of mitochondrial translation via administration of the antibiotic tedizolid significantly affects mitochondrial bioenergetics, activating the integrated stress response (ISR) and subsequently sensitizing drug-resistant AML cells to venetoclax. Here we develop an integrative systems biology approach to acquire a deeper understanding of the molecular mechanisms behind this process, and in particular, of the specific role of the ISR in the commitment of cells to apoptosis. Our multi-scale mathematical model couples the ISR to the intrinsic apoptosis pathway in venetoclax-resistant AML cells, includes the metabolic effects of treatment, and integrates RNA, protein level, and cellular viability data. Using the mathematical model, we identify the dominant mechanisms by which ISR activation helps to overcome venetoclax resistance, and we study the temporal sequencing of combination treatment to determine the most efficient and robust combination treatment protocol. In this work, we develop a multi-scale systems biology approach to study the mechanisms by which the integrated stress response (ISR) activation helps to overcome venetoclax resistance in acute myeloid leukemia (AML). The multi-scale model enables the integration of RNA-level, protein-level, and cellular viability and proliferation data. The model developed in this work can predict several important features of the resistant AML cell lines that are consistent with experimental data. Further, our integrative systems biology approach led to the determination of the optimal combination treatment protocol.
Collapse
|
14
|
Bian B, Paquet A, Arguel MJ, Meyer M, Peyre L, Chalabi A, Péré M, Lebrigand K, Waldmann R, Barbry P, Hofman P, Roux J. Coupling live-cell imaging and in situ isolation of the same single cell to profile the transient states of predicted drug-tolerant cells. STAR Protoc 2022; 3:101600. [PMID: 36042886 PMCID: PMC9420533 DOI: 10.1016/j.xpro.2022.101600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell response variability is a starting point in cancer drug resistance that has been difficult to analyze because the tolerant cell states are short lived. Here, we present fate-seq, an approach to isolate single cells in their transient states of drug sensitivity or tolerance before profiling. The drug response is predicted in live cells, which are laser-captured by microdissection before any drug-induced change can alter their states. This framework enables the identification of the cell-state signatures causing differential cell decisions upon treatment. For complete details on the use and execution of this protocol, please refer to Meyer et al. (2020). Fate-seq provides gene sets of transient cell states Fate-seq can profile the differential cell fates upon therapeutic treatment It produces a molecular signature of cell sensitivity at a given drug dose
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Benjamin Bian
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Marie-Jeanne Arguel
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Asma Chalabi
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Marielle Péré
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, 06902 Sophia Antipolis, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Rainer Waldmann
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France; Université Côte d'Azur, FHU OncoAge, 06107 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France; Université Côte d'Azur, FHU OncoAge, 06107 Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France; Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, 06902 Sophia Antipolis, France.
| |
Collapse
|
15
|
Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines 2022; 10:biomedicines10050974. [PMID: 35625711 PMCID: PMC9138898 DOI: 10.3390/biomedicines10050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Over several decades, cell biology research has characterized distinct forms of regulated cell death, identified master regulators such as nuclear factor kappa B (NFκB), and contributed to translating these findings in order to improve anti-cancer therapies. In the era of immunotherapy, however, the field warrants a new appraisal-the targeted induction of immunogenic cell death may offer personalized strategies to optimize anti-tumor immunity. Once again, the spotlight is on NFκB, which is not only a master regulator of cancer cell death, survival, and inflammation, but also of adaptive anti-tumor immune responses that are triggered by dying tumor cells.
Collapse
|
16
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Procházková M, Killinger M, Prokeš L, Klepárník K. Miniaturized bioluminescence technology for single-cell quantification of caspase-3/7. J Pharm Biomed Anal 2021; 209:114512. [PMID: 34891005 DOI: 10.1016/j.jpba.2021.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Correct determination of the instantaneous level and changes of relevant proteins inside individual cells is essential for correct interpretation and understanding of physiological, diagnostic, and therapeutic events. Thus, single-cell analyses are important for quantification of natural cellular heterogeneity, which cannot be evaluated from averaged data of a cell population measurements. Here, we developed an original highly sensitive and selective instrumentation and methodology based on homogeneous single-step bioluminescence assay to quantify caspases and evaluate their heterogeneity in individual cells. Individual suspended cells are selected under microscope and reliably transferred into the 7 µl detection vials by a micromanipulator. The sensitivity of the method is given by implementation of photomultiplying tube with a cooled photocathode working in the photon counting mode. By optimization of our device and methodology, the limits of detection and quantitation were decreased down to 2.1 and 7.0 fg of recombinant caspase-3, respectively. These masses are lower than average amounts of caspase-3/7 in individual apoptotic and even non-apoptotic cells. As a proof of concept, the content of caspase-3/7 in single treated and untreated HeLa cells was determined to be 154 and 25 fg, respectively. Based on these results, we aim to use the technology for investigations of non-apoptotic functions of caspases.
Collapse
Affiliation(s)
- Markéta Procházková
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic.
| | - Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic.
| | - Lubomír Prokeš
- Department of Physics, Chemistry and Vocational Education, Faculty of Education, Masaryk University, Poříčí 7, Brno 603 00, Czech Republic.
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| |
Collapse
|
18
|
Arancibia SMF, Grecco HE, Morelli LG. Effective description of bistability and irreversibility in apoptosis. Phys Rev E 2021; 104:064410. [PMID: 35030833 DOI: 10.1103/physreve.104.064410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Apoptosis is a mechanism of programmed cell death in which cells engage in a controlled demolition and prepare to be digested without damaging their environment. In normal conditions, apoptosis is repressed until it is irreversibly induced by an appropriate signal. In adult organisms, apoptosis is a natural way to dispose of damaged cells and its disruption or excess is associated with cancer and autoimmune diseases. Apoptosis is regulated by a complex signaling network controlled by caspases, specialized enzymes that digest essential cellular components and promote the degradation of genomic DNA. In this work, we propose an effective description of the signaling network focused on caspase-3 as a readout of cell fate. We integrate intermediate network interactions into a nonlinear feedback function acting on caspase-3 and introduce the effect of pro-apoptotic stimuli and regulatory elements as a saturating activation function. We show that activation dynamics in the theory is similar to previously reported experimental results. We compute bifurcation diagrams and obtain cell fate maps describing how stimulus intensity and feedback strength affect cell survival and death fates. These fates overlap within a bistable region that depends on total caspase concentration, regulatory elements, and feedback nonlinearity. We study a strongly nonlinear regime to obtain analytical expressions for bifurcation curves and fate map boundaries. For a broad range of parameters, strong stimuli can induce an irreversible switch to the death fate. We use the theory to explore dynamical stimulation conditions and determine how cell fate depends on stimulation temporal patterns. This analysis predicts a critical relation between transient stimuli intensity and duration to trigger irreversible apoptosis. We derive an analytical expression for this critical relation, valid for short stimuli. Our description provides distinct predictions and offers a framework to study how this signaling network processes different stimuli to make a cell fate decision.
Collapse
Affiliation(s)
- Sol M Fernández Arancibia
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET/Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
| | - Hernán E Grecco
- Department of Physics, FCEN, University of Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- IFIBA, CONICET, 1428 Buenos Aires, Argentina
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, Dortmund D-44227, Germany
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET/Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
- Department of Physics, FCEN, University of Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, Dortmund D-44227, Germany
| |
Collapse
|
19
|
Chaves M, Gomes-Pereira LC, Roux J. Two-level modeling approach to identify the regulatory dynamics capturing drug response heterogeneity in single-cells. Sci Rep 2021; 11:20809. [PMID: 34675364 PMCID: PMC8531316 DOI: 10.1038/s41598-021-99943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Single-cell multimodal technologies reveal the scales of cellular heterogeneity impairing cancer treatment, yet cell response dynamics remain largely underused to decipher the mechanisms of drug resistance they take part in. As the phenotypic heterogeneity of a clonal cell population informs on the capacity of each single-cell to recapitulate the whole range of observed behaviors, we developed a modeling approach utilizing single-cell response data to identify regulatory reactions driving population heterogeneity in drug response. Dynamic data of hundreds of HeLa cells treated with TNF-related apoptosis-inducing ligand (TRAIL) were used to characterize the fate-determining kinetic parameters of an apoptosis receptor reaction model. Selected reactions sets were augmented to incorporate a mechanism that leads to the separation of the opposing response phenotypes. Using a positive feedback loop motif to identify the reaction set, we show that caspase-8 is able to encapsulate high levels of heterogeneity by introducing a response delay and amplifying the initial differences arising from natural protein expression variability. Our approach enables the identification of fate-determining reactions that drive the population response heterogeneity, providing regulatory targets to curb the cell dynamics of drug resistance.
Collapse
Affiliation(s)
- Madalena Chaves
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis, France
| | - Luis C Gomes-Pereira
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis, France.,Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
20
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
21
|
Proteasome inhibition triggers the formation of TRAIL receptor 2 platforms for caspase-8 activation that accumulate in the cytosol. Cell Death Differ 2021; 29:147-155. [PMID: 34354257 PMCID: PMC8738721 DOI: 10.1038/s41418-021-00843-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Cancer cells that are resistant to Bax/Bak-dependent intrinsic apoptosis can be eliminated by proteasome inhibition. Here, we show that proteasome inhibition induces the formation of high molecular weight platforms in the cytosol that serve to activate caspase-8. The activation complexes contain Fas-associated death domain (FADD) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Furthermore, the complexes contain TRAIL-receptor 2 (TRAIL-R2) but not TRAIL-receptor 1 (TRAIL-R1). While RIPK1 inhibition or depletion did not affect proteasome inhibitor-induced cell death, TRAIL-R2 was found essential for efficient caspase-8 activation, since the loss of TRAIL-R2 expression abrogated caspase processing, significantly reduced cell death, and promoted cell re-growth after drug washout. Overall, our study provides novel insight into the mechanisms by which proteasome inhibition eliminates otherwise apoptosis-resistant cells, and highlights the crucial role of a ligand-independent but TRAIL-R2-dependent activation mechanism for caspase-8 in this scenario.
Collapse
|
22
|
Kurdyaeva T, Milias-Argeitis A. Uncertainty propagation for deterministic models of biochemical networks using moment equations and the extended Kalman filter. J R Soc Interface 2021; 18:20210331. [PMID: 34343452 DOI: 10.1098/rsif.2021.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Differential equation models of biochemical networks are frequently associated with a large degree of uncertainty in parameters and/or initial conditions. However, estimating the impact of this uncertainty on model predictions via Monte Carlo simulation is computationally demanding. A more efficient approach could be to track a system of low-order statistical moments of the state. Unfortunately, when the underlying model is nonlinear, the system of moment equations is infinite-dimensional and cannot be solved without a moment closure approximation which may introduce bias in the moment dynamics. Here, we present a new method to study the time evolution of the desired moments for nonlinear systems with polynomial rate laws. Our approach is based on solving a system of low-order moment equations by substituting the higher-order moments with Monte Carlo-based estimates from a small number of simulations, and using an extended Kalman filter to counteract Monte Carlo noise. Our algorithm provides more accurate and robust results compared to traditional Monte Carlo and moment closure techniques, and we expect that it will be widely useful for the quantification of uncertainty in biochemical model predictions.
Collapse
Affiliation(s)
- Tamara Kurdyaeva
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Zhu Y, Xie J, Shi J. Rac1/ROCK-driven membrane dynamics promote natural killer cell cytotoxicity via granzyme-induced necroptosis. BMC Biol 2021; 19:140. [PMID: 34325694 PMCID: PMC8323222 DOI: 10.1186/s12915-021-01068-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells play an important role in cancer immunosurveillance and therapy. However, the target selectivity of NK cell activity is still poorly understood. RESULTS Here, we used live-cell reporters to unravel differential epithelial cancer target killing by primary human NK cells. We found highly variable fractions of killing by distinct NK cell cytotoxic modes that were not determined by NK ligand expression. Rather, epithelial plasma membrane dynamics driven by ROCK-mediated blebs and/or Rac1-mediated lamellipodia promoted necrotic mode in preference to the apoptotic mode of killing. Inhibition of granzyme B and key necroptosis regulators RIP1, RIP3, and MLKL significantly attenuated the necrotic killing, revealing a novel NK cell cytotoxic pathway by granzyme-induced necroptosis that conferred target selectivity. CONCLUSIONS Our results not only elucidate a new NK cell effector mechanism but also suggest that tissue microenvironment and oncogenic signaling pathways that promote membrane dynamics, e.g., Rac1 and Rho/ROCK, could be exploited to enhance proinflammatory NK cell killing.
Collapse
Affiliation(s)
- Yanting Zhu
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Xie
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Zaitceva V, Kopeina GS, Zhivotovsky B. Anastasis: Return Journey from Cell Death. Cancers (Basel) 2021; 13:3671. [PMID: 34359573 PMCID: PMC8345212 DOI: 10.3390/cancers13153671] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
For over 20 years, it has been a dogma that once the integrity of mitochondria is disrupted and proapoptotic proteins that are normally located in the intermembrane space of mitochondria appeared in the cytoplasm, the process of cell death becomes inevitable. However, it has been recently shown that upon removal of the death signal, even at the stage of disturbance in the mitochondria, cells can recover and continue to grow. This phenomenon was named anastasis. Here, we will critically discuss the present knowledge concerning the mechanisms of cell death reversal, or development of anastasis, methods for its detection, and what role signaling from different intracellular compartments plays in anastasis stimulation.
Collapse
Affiliation(s)
- Victoria Zaitceva
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Z.); (G.S.K.)
| | - Gelina S. Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Z.); (G.S.K.)
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Z.); (G.S.K.)
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden
| |
Collapse
|
25
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
26
|
Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. eLife 2021; 10:e58342. [PMID: 34085923 PMCID: PMC8192121 DOI: 10.7554/elife.58342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
RNA abundance is generally sensitive to perturbations in decay and synthesis rates, but crosstalk between RNA polymerase II transcription and cytoplasmic mRNA degradation often leads to compensatory changes in gene expression. Here, we reveal that widespread mRNA decay during early apoptosis represses RNAPII transcription, indicative of positive (rather than compensatory) feedback. This repression requires active cytoplasmic mRNA degradation, which leads to impaired recruitment of components of the transcription preinitiation complex to promoter DNA. Importin α/β-mediated nuclear import is critical for this feedback signaling, suggesting that proteins translocating between the cytoplasm and nucleus connect mRNA decay to transcription. We also show that an analogous pathway activated by viral nucleases similarly depends on nuclear protein import. Collectively, these data demonstrate that accelerated mRNA decay leads to the repression of mRNA transcription, thereby amplifying the shutdown of gene expression. This highlights a conserved gene regulatory mechanism by which cells respond to threats.
Collapse
Affiliation(s)
- Christopher Duncan-Lewis
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Ella Hartenian
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Valeria King
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology; University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, BerkeleyBerkeleyUnited States
| |
Collapse
|
27
|
Oyler-Yaniv J, Oyler-Yaniv A, Maltz E, Wollman R. TNF controls a speed-accuracy tradeoff in the cell death decision to restrict viral spread. Nat Commun 2021; 12:2992. [PMID: 34016976 PMCID: PMC8137918 DOI: 10.1038/s41467-021-23195-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rapid death of infected cells is an important antiviral strategy. However, fast decisions that are based on limited evidence can be erroneous and cause unnecessary cell death and subsequent tissue damage. How cells optimize their death decision making strategy to maximize both speed and accuracy is unclear. Here, we show that exposure to TNF, which is secreted by macrophages during viral infection, causes cells to change their decision strategy from "slow and accurate" to "fast and error-prone". Mathematical modeling combined with experiments in cell culture and whole organ culture show that the regulation of the cell death decision strategy is critical to prevent HSV-1 spread. These findings demonstrate that immune regulation of cellular cognitive processes dynamically changes a tissues' tolerance for self-damage, which is required to protect against viral spread.
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Alon Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Evan Maltz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, University of California UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California UCLA, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Cingöz A, Ozyerli-Goknar E, Morova T, Seker-Polat F, Esai Selvan M, Gümüş ZH, Bhere D, Shah K, Solaroglu I, Bagci-Onder T. Generation of TRAIL-resistant cell line models reveals distinct adaptive mechanisms for acquired resistance and re-sensitization. Oncogene 2021; 40:3201-3216. [PMID: 33767436 DOI: 10.1038/s41388-021-01697-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumor cell-specific apoptosis, making it a prime therapeutic candidate. However, many tumor cells are either innately TRAIL-resistant, or they acquire resistance with adaptive mechanisms that remain poorly understood. In this study, we generated acquired TRAIL resistance models using multiple glioblastoma (GBM) cell lines to assess the molecular alterations in the TRAIL-resistant state. We selected TRAIL-resistant cells through chronic and long-term TRAIL exposure and noted that they showed persistent resistance both in vitro and in vivo. Among known TRAIL-sensitizers, proteosome inhibitor Bortezomib, but not HDAC inhibitor MS-275, was effective in overcoming resistance in all cell models. This was partly achieved through upregulating death receptors and pro-apoptotic proteins, and downregulating major anti-apoptotic members, Bcl-2 and Bcl-xL. We showed that CRISPR/Cas9 mediated silencing of DR5 could block Bortezomib-mediated re-sensitization, demonstrating its critical role. While overexpression of Bcl-2 or Bcl-xL was sufficient to confer resistance to TRAIL-sensitive cells, it failed to override Bortezomib-mediated re-sensitization. With RNA sequencing in multiple paired TRAIL-sensitive and TRAIL-resistant cells, we identified major alterations in inflammatory signaling, particularly in the NF-κB pathway. Inhibiting NF-κB substantially sensitized the most resistant cells to TRAIL, however, the sensitization effect was not as great as what was observed with Bortezomib. Together, our findings provide new models of acquired TRAIL resistance, which will provide essential tools to gain further insight into the heterogeneous therapy responses within GBM tumors. Additionally, these findings emphasize the critical importance of combining proteasome inhibitors and pro-apoptotic ligands to overcome acquired resistance.
Collapse
Affiliation(s)
- Ahmet Cingöz
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Fidan Seker-Polat
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zeynep Hülya Gümüş
- Koç University School of Medicine, Istanbul, 34450, Turkey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ihsan Solaroglu
- Koç University School of Medicine, Istanbul, 34450, Turkey
- Department of Neurosurgery, Koç University School of Medicine, Istanbul, 34010, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey.
- Koç University School of Medicine, Istanbul, 34450, Turkey.
| |
Collapse
|
29
|
Schwartz HR, Richards R, Fontana RE, Joyce AJ, Honeywell ME, Lee MJ. Drug GRADE: An Integrated Analysis of Population Growth and Cell Death Reveals Drug-Specific and Cancer Subtype-Specific Response Profiles. Cell Rep 2021; 31:107800. [PMID: 32579927 PMCID: PMC7394473 DOI: 10.1016/j.celrep.2020.107800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 02/04/2023] Open
Abstract
When evaluating anti-cancer drugs, two different measurements are used: relative viability, which scores an amalgam of proliferative arrest and cell death, and fractional viability, which specifically scores the degree of cell killing. We quantify relationships between drug-induced growth inhibition and cell death by counting live and dead cells using quantitative microscopy. We find that most drugs affect both proliferation and death, but in different proportions and with different relative timing. This causes a non-uniform relationship between relative and fractional response measurements. To unify these measurements, we created a data visualization and analysis platform called drug GRADE, which characterizes the degree to which death contributes to an observed drug response. GRADE captures drug- and genotype-specific responses, which are not captured using traditional pharmacometrics. This study highlights the idiosyncratic nature of drug-induced proliferative arrest and cell death. Furthermore, we provide a metric for quantitatively evaluating the relationship between these behaviors.
Collapse
Affiliation(s)
- Hannah R Schwartz
- Program in Systems Biology (PSB), University of Massachusetts Medical School, Worcester, MA, USA
| | - Ryan Richards
- Program in Systems Biology (PSB), University of Massachusetts Medical School, Worcester, MA, USA
| | - Rachel E Fontana
- Program in Systems Biology (PSB), University of Massachusetts Medical School, Worcester, MA, USA
| | - Anna J Joyce
- Program in Systems Biology (PSB), University of Massachusetts Medical School, Worcester, MA, USA
| | - Megan E Honeywell
- Program in Systems Biology (PSB), University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael J Lee
- Program in Systems Biology (PSB), University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine (PMM), Department of Molecular, Cell, and Cancer Biology (MCCB), University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
30
|
Ihenacho UK, Meacham KA, Harwig MC, Widlansky ME, Hill RB. Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and Disease. Front Endocrinol (Lausanne) 2021; 12:660095. [PMID: 33841340 PMCID: PMC8027123 DOI: 10.3389/fendo.2021.660095] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1's role in both endocrine and neurological disorders.
Collapse
Affiliation(s)
| | - Kelsey A. Meacham
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E. Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
31
|
Zakharov II, Savitskaya MA, Onishchenko GE. The Problem of Apoptotic Processes Reversibility. BIOCHEMISTRY (MOSCOW) 2021; 85:1145-1158. [PMID: 33202200 DOI: 10.1134/s000629792010003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis is the best understood variant of regulated cell death, which has been considered irreversible for a long time. To date, an increasing amount of data has been accumulating indicating that key events of apoptosis, such as the externalization of phosphatidylserine, mitochondrial outer membrane permeabilization, caspase activation, DNA damage, and cytoplasmic blebbing are not irreversible and can be involved in the normal cell functioning not associated with the induction of apoptosis. Anastasis - cell recovery after induction of apoptosis - can occur following elimination of proapoptotic stimuli. This can facilitate survival of damaged or tumor cells. This review describes key processes of apoptosis, which do not necessarily lead to cell death during normal cell activity as well as anastasis. Understanding mechanisms and consequences of apoptotic processes reversibility, on the one hand, could contribute to the improvement of existing therapeutic approaches for various diseases, including malignant neoplasms, and, on the other hand, could open up new possibilities for protecting cellular elements of tissues and organs from death during treatment of degenerative pathologies.
Collapse
Affiliation(s)
- I I Zakharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M A Savitskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - G E Onishchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
32
|
McKenna S, García-Gutiérrez L, Matallanas D, Fey D. BAX and SMAC regulate bistable properties of the apoptotic caspase system. Sci Rep 2021; 11:3272. [PMID: 33558564 PMCID: PMC7870884 DOI: 10.1038/s41598-021-82215-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2020] [Indexed: 01/30/2023] Open
Abstract
The initiation of apoptosis is a core mechanism in cellular biology by which organisms control the removal of damaged or unnecessary cells. The irreversible activation of caspases is essential for apoptosis, and mathematical models have demonstrated that the process is tightly regulated by positive feedback and a bistable switch. BAX and SMAC are often dysregulated in diseases such as cancer or neurodegeneration and are two key regulators that interact with the caspase system generating the apoptotic switch. Here we present a mathematical model of how BAX and SMAC control the apoptotic switch. Formulated as a system of ordinary differential equations, the model summarises experimental and computational evidence from the literature and incorporates the biochemical mechanisms of how BAX and SMAC interact with the components of the caspase system. Using simulations and bifurcation analysis, we find that both BAX and SMAC regulate the time-delay and activation threshold of the apoptotic switch. Interestingly, the model predicted that BAX (not SMAC) controls the amplitude of the apoptotic switch. Cell culture experiments using siRNA mediated BAX and SMAC knockdowns validated this model prediction. We further validated the model using data of the NCI-60 cell line panel using BAX protein expression as a cell-line specific parameter and show that model simulations correlated with the cellular response to DNA damaging drugs and established a defined threshold for caspase activation that could distinguish between sensitive and resistant melanoma cells. In summary, we present an experimentally validated dynamic model that summarises our current knowledge of how BAX and SMAC regulate the bistable properties of irreversible caspase activation during apoptosis.
Collapse
Affiliation(s)
- Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Floriano BF, Carvalho T, Lopes TZ, Takahashi LAU, Rahal P, Tedesco AC, Calmon MF. Effect of berberine nanoemulsion Photodynamic therapy on cervical carcinoma cell line. Photodiagnosis Photodyn Ther 2021; 33:102174. [PMID: 33401021 DOI: 10.1016/j.pdpdt.2020.102174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Cervical carcinoma is the most common gynecological cancer among young and adult women. There has been increasing interest in natural sources for cervical carcinoma treatment, especially for active compounds from plant extracts as antineoplastic agents. Berberine is an example of one these promising natural products. It is a natural isoquinoline alkaloid and comes from plants, such as Berbis, Coptis, and Hydrastis. It is widely used in Chinese medicine and has demonstrated activity against various cancer cell lines. This work aims to analyze the efficiency of berberine-containing nanoemulsions as photosensitizing agents in photodynamic therapy and their interaction with cervical carcinoma cells and immortalized human keratinocyte cell line. Among all groups tested, berberine nanoemulsions combined with photodynamic therapy induced the most statistically significant phototoxicity in the evaluated cell lines. Fluorescence microscopy demonstrated that the compound was present for up to 48 h when berberine nanoemulsions were used. The reactive oxygen species assay showed an increase in reactive oxygen species in the two studied cell lines after treatment of berberine-containing nanoemulsion combined with photodynamic therapy. The autophagy trial showed significant increases in cell death when berberine-containing nanoemulsion treatment was combined with photodynamic therapy when compared to trichostatin A treatment as a positive control. However, caspase-3 activity did not significantly increase in cervical carcinoma cells and immortalized human keratinocyte cell line. The results suggest that nanoemulsions with berberine have potential for use as photosensitizing agents in photodynamic therapy to treat cervical carcinoma.
Collapse
Affiliation(s)
- Barbara Freitas Floriano
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Tamara Carvalho
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Tairine Zara Lopes
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Luandra Aparecida Unten Takahashi
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Paula Rahal
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marília Freitas Calmon
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
34
|
Li X, Zhong CQ, Wu R, Xu X, Yang ZH, Cai S, Wu X, Chen X, Yin Z, He Q, Li D, Xu F, Yan Y, Qi H, Xie C, Shuai J, Han J. RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes. Protein Cell 2021; 12:858-876. [PMID: 33389663 PMCID: PMC8563874 DOI: 10.1007/s13238-020-00810-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ~1000 molecules/cell (mpc), the cell solely undergoes TRADD-dependent apoptosis. When RIP1 is above ~1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>~46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.
Collapse
|
35
|
Oliver Metzig M, Tang Y, Mitchell S, Taylor B, Foreman R, Wollman R, Hoffmann A. An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNF-induced necroptosis decisions. Mol Syst Biol 2020; 16:e9677. [PMID: 33314666 PMCID: PMC7734648 DOI: 10.15252/msb.20209677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro-inflammatory form of cell death. Whether TNF-induced NFκB affects the fate decision to undergo TNF-induced necroptosis is unclear. Live-cell microscopy and model-aided analysis of death kinetics identified a molecular circuit that interprets TNF-induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3-containing necrosome complex and protect a fraction of cells from transient, but not long-term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF-induced necroptosis. Our results suggest that TNF's dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB-A20-RIPK3 circuit, that could be targeted to treat inflammation and cancer.
Collapse
Affiliation(s)
- Marie Oliver Metzig
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Ying Tang
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Simon Mitchell
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Present address:
Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
| | - Brooks Taylor
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| | - Robert Foreman
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| | - Roy Wollman
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryUCLALos AngelesCAUSA
- Department of Integrative Biology and PhysiologyUCLALos AngelesCAUSA
| | - Alexander Hoffmann
- Signaling Systems LaboratoryDepartment of MicrobiologyImmunology and Molecular GeneticsUCLALos AngelesCAUSA
- Institute for Quantitative and Computational BiosciencesUCLALos AngelesCAUSA
| |
Collapse
|
36
|
Chu CF, Feng HK, Sun KH, Hsu CL, Dzhagalov IL. Examination of Fas-Induced Apoptosis of Murine Thymocytes in Thymic Tissue Slices Reveals That Fas Is Dispensable for Negative Selection. Front Cell Dev Biol 2020; 8:586807. [PMID: 33195241 PMCID: PMC7609743 DOI: 10.3389/fcell.2020.586807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
The death receptor Fas can induce cell death through the extrinsic pathway of apoptosis in a variety of cells, including developing thymocytes. Although Fas-induced cell death has been researched and modeled extensively, most of the studies have been done in vitro because of the lethality of Fas triggering in vivo. Thus, little is known about the time line of this type of cell death in vivo, specifically, how does the presence of macrophages and pro-survival cytokines affect apoptosis progression. In addition, although the sequence and timing of events during intrinsic pathway activation in thymocytes in situ have been described, no corresponding data for the extrinsic pathway are available. To address this gap in our knowledge, we established a novel system to study Fas-induced thymocyte cell death using tissue explants. We found that within 1 h of Fas ligation, caspase 3 was activated, within 2 h phosphatidylserine was externalized to serve as an "eat-me" signal, and at the same time, we observed signs of cell loss, likely due to efferocytosis. Both caspase 3 activation and phosphatidylserine exposure were critical for cell loss. Although Fas ligand (FasL) was delivered simultaneously to all cells, we observed significant variation in the entry into the cell death pathway. This model also allowed us to revisit the role of Fas in negative selection, and we ruled out an essential part for it in the deletion of autoreactive thymocytes. Our work provides a timeline for the apoptosis-associated events following Fas triggering in situ and confirms the lack of involvement of Fas in the negative selection of thymocytes.
Collapse
Affiliation(s)
- Chang-Feng Chu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Kai Feng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
37
|
Meyer M, Paquet A, Arguel MJ, Peyre L, Gomes-Pereira LC, Lebrigand K, Mograbi B, Brest P, Waldmann R, Barbry P, Hofman P, Roux J. Profiling the Non-genetic Origins of Cancer Drug Resistance with a Single-Cell Functional Genomics Approach Using Predictive Cell Dynamics. Cell Syst 2020; 11:367-374.e5. [PMID: 33099406 DOI: 10.1016/j.cels.2020.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Non-genetic heterogeneity observed in clonal cell populations is an immediate cause of drug resistance that remains challenging to profile because of its transient nature. Here, we coupled three single-cell technologies to link the predicted drug response of a cell to its own genome-wide transcriptomic profile. As a proof of principle, we analyzed the response to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa cells to demonstrate that cell dynamics can discriminate the transient transcriptional states at the origin of cell decisions such as sensitivity and resistance. Our same-cell approach, named fate-seq, can reveal the molecular factors regulating the efficacy of a drug in clonal cells, providing therapeutic targets of non-genetic drug resistance otherwise confounded in gene expression noise. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Marie-Jeanne Arguel
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Luis C Gomes-Pereira
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, 06560 Nice, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Rainer Waldmann
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France.
| |
Collapse
|
38
|
Flavonoids Restore Platinum Drug Sensitivity to Ovarian Carcinoma Cells in a Phospho-ERK1/2-Dependent Fashion. Int J Mol Sci 2020; 21:ijms21186533. [PMID: 32906729 PMCID: PMC7555577 DOI: 10.3390/ijms21186533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) is the second most common type of gynecological malignancy; it has poor survival rates and is frequently (>75%) diagnosed at an advanced stage. Platinum-based chemotherapy, with, e.g., carboplatin, is the standard of care for OC, but toxicity and acquired resistance to therapy have proven challenging. Despite advances in OC diagnosis and treatment, approximately 85% of patients will experience relapse, mainly due to chemoresistance. The latter is attributed to alterations in the cancer cells and is also mediated by tumor microenvironment (TME). Recently, we reported the synthesis of a platinum (IV) prodrug that exhibits equal potency toward platinum-sensitive and resistant OC cell lines. Here, we investigated the effect of TME on platinum sensitivity. Co-culture of OC cells with murine or human mesenchymal stem cells (MS-5 and HS-5, respectively) rendered them resistant to chemotherapeutic agents, including platinum, paclitaxel and colchicine. Platinum resistance was also conferred by co-culture with differentiated murine adipocyte progenitor cells. Exposure of OC cells to chemotherapeutic agents resulted in activation of phospho-ERK1/2. Co-culture with MS-5, which conferred drug resistance, was accompanied by blockage of phospho-ERK1/2 activation. The flavonoids fisetin and quercetin were active in restoring ERK phosphorylation, as well as sensitivity to platinum compounds. Exposure of OC cells to cobimetinib-a MEK1 inhibitor that also inhibits extracellular signal-regulated kinase (ERK) phosphorylation-which resulted in reduced sensitivity to the platinum compound. This suggests that ERK activity is involved in mediating the function of flavonoids in restoring platinum sensitivity to OC co-cultured with cellular components of the TME. Our data show the potential of combining flavonoids with standard therapy to restore drug sensitivity to OC cells and overcome TME-mediated platinum drug resistance.
Collapse
|
39
|
Wen Y, Liu J, He H, Li SSC, Liu Z. Single-Cell Analysis of Signaling Proteins Provides Insights into Proapoptotic Properties of Anticancer Drugs. Anal Chem 2020; 92:12498-12508. [PMID: 32790289 DOI: 10.1021/acs.analchem.0c02344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Single-cell DNA analysis technology has provided unprecedented insights into many physiological and pathological processes. In contrast, technologies that allow protein analysis in single cells have lagged behind. Herein, a method called single-cell Plasmonic ImmunoSandwich Assay (scPISA) that is capable of measuring signaling proteins and protein complexes in single living cells is described. scPISA is straightforward, comprising specific in-cell extraction and ultrasensitive plasmonic detection. It is applied to evaluate the efficacy and kinetics of cytotoxic drugs. It reveals that different drugs exhibit distinct proapoptotic properties at the single-cell level. A set of new parameters is thus proposed for comprehensive and quantitative evaluation of the efficacy of anticancer drugs. It discloses that metformin can dramatically enhance the overall anticancer efficacy when combined with actinomycin D, although it itself is significantly less effective. Furthermore, scPISA reveals that survivin interacts with cytochrome C and caspase-3 in a dynamic fashion in single cells during continuous drug treatment. As compared with conventional assays, scPISA exhibits several significant advantages, such as ultrahigh sensitivity, single-cell resolution, fast speed, and so on. Therefore, this approach may provide a powerful tool for wide, important applications from basic research to clinical applications, particularly precision medicine.
Collapse
Affiliation(s)
- Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shawn S C Li
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Wang TS, Coppens I, Saorin A, Brady NR, Hamacher-Brady A. Endolysosomal Targeting of Mitochondria Is Integral to BAX-Mediated Mitochondrial Permeabilization during Apoptosis Signaling. Dev Cell 2020; 53:627-645.e7. [PMID: 32504557 DOI: 10.1016/j.devcel.2020.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/03/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is a core event in apoptosis signaling. However, the underlying mechanism of BAX and BAK pore formation remains incompletely understood. We demonstrate that mitochondria are globally and dynamically targeted by endolysosomes (ELs) during MOMP. In response to pro-apoptotic BH3-only protein signaling and pharmacological MOMP induction, ELs increasingly form transient contacts with mitochondria. Subsequently, ELs rapidly accumulate within the entire mitochondrial compartment. This switch-like accumulation period temporally coincides with mitochondrial BAX clustering and cytochrome c release. Remarkably, interactions of ELs with mitochondria control BAX recruitment and pore formation. Knockdown of Rab5A, Rab5C, or USP15 interferes with EL targeting of mitochondria and functionally uncouples BAX clustering from cytochrome c release, while knockdown of the Rab5 exchange factor Rabex-5 impairs both BAX clustering and cytochrome c release. Together, these data reveal that EL-mitochondrial inter-organelle communication is an integral regulatory component of functional MOMP execution during cellular apoptosis signaling.
Collapse
Affiliation(s)
- Tim Sen Wang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Isabelle Coppens
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anna Saorin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan Ryan Brady
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Anne Hamacher-Brady
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Rahman SMT, Zhou W, Deiters A, Haugh JM. Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. J Biol Chem 2020; 295:8494-8504. [PMID: 32371393 DOI: 10.1074/jbc.ra119.012079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
The selective pressure imposed by extrinsic death signals and stressors adds to the challenge of isolating and interpreting the roles of proteins in stress-activated signaling networks. By expressing a kinase with activating mutations and a caged lysine blocking the active site, we can rapidly switch on catalytic activity with light and monitor the ensuing dynamics. Applying this approach to MAP kinase 6 (MKK6), which activates the p38 subfamily of MAPKs, we found that decaging active MKK6 in fibroblasts is sufficient to trigger apoptosis in a p38-dependent manner. Both in fibroblasts and in a murine melanoma cell line expressing mutant B-Raf, MKK6 activation rapidly and potently inhibited the pro-proliferative extracellular signal-regulated kinase (ERK) pathway; to our surprise, this negative cross-regulation was equally robust when all p38 isoforms were inhibited. These results position MKK6 as a new pleiotropic signal transducer that promotes both pro-apoptotic and anti-proliferative signaling, and they highlight the utility of caged, light-activated kinases for dissecting stress-activated signaling networks.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
42
|
Gross E, Harrington H, Meshkat N, Shiu A. Joining and decomposing reaction networks. J Math Biol 2020; 80:1683-1731. [PMID: 32123964 DOI: 10.1007/s00285-020-01477-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/09/2020] [Indexed: 12/30/2022]
Abstract
In systems and synthetic biology, much research has focused on the behavior and design of single pathways, while, more recently, experimental efforts have focused on how cross-talk (coupling two or more pathways) or inhibiting molecular function (isolating one part of the pathway) affects systems-level behavior. However, the theory for tackling these larger systems in general has lagged behind. Here, we analyze how joining networks (e.g., cross-talk) or decomposing networks (e.g., inhibition or knock-outs) affects three properties that reaction networks may possess-identifiability (recoverability of parameter values from data), steady-state invariants (relationships among species concentrations at steady state, used in model selection), and multistationarity (capacity for multiple steady states, which correspond to multiple cell decisions). Specifically, we prove results that clarify, for a network obtained by joining two smaller networks, how properties of the smaller networks can be inferred from or can imply similar properties of the original network. Our proofs use techniques from computational algebraic geometry, including elimination theory and differential algebra.
Collapse
Affiliation(s)
| | | | | | - Anne Shiu
- Texas A&M University, College Station, USA
| |
Collapse
|
43
|
Guilbert M, Anquez F, Pruvost A, Thommen Q, Courtade E. Protein level variability determines phenotypic heterogeneity in proteotoxic stress response. FEBS J 2020; 287:5345-5361. [PMID: 32222033 DOI: 10.1111/febs.15297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
Cell-to-cell variability in stress response is a bottleneck for the construction of accurate and predictive models which could guide clinical diagnosis and treatment of certain diseases, for example, cancer. Indeed, such phenotypic heterogeneity can lead to fractional killing and persistence of a subpopulation of cells which are resistant to a given treatment. The heat shock response network plays a major role in protecting the proteome against several types of injuries. Here, we combine high-throughput measurements and mathematical modeling to unveil the molecular origin of the phenotypic variability in the heat shock response network. Although the mean response coincides with known biochemical measurements, we found a surprisingly broad diversity in single-cell dynamics with a continuum of response amplitudes and temporal shapes for several stimulus strengths. We theoretically predict that the broad phenotypic heterogeneity is due to network ultrasensitivity together with variations in the expression level of chaperones controlled by the transcription factor heat shock factor 1. Furthermore, we experimentally confirm this prediction by mapping the response amplitude to chaperone and heat shock factor 1 expression levels.
Collapse
Affiliation(s)
- Marie Guilbert
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - François Anquez
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Alexandra Pruvost
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Quentin Thommen
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Emmanuel Courtade
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| |
Collapse
|
44
|
Dixit PD, Lyashenko E, Niepel M, Vitkup D. Maximum Entropy Framework for Predictive Inference of Cell Population Heterogeneity and Responses in Signaling Networks. Cell Syst 2020; 10:204-212.e8. [PMID: 31864963 PMCID: PMC7047530 DOI: 10.1016/j.cels.2019.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Predictive models of signaling networks are essential for understanding cell population heterogeneity and designing rational interventions in disease. However, using computational models to predict heterogeneity of signaling dynamics is often challenging because of the extensive variability of biochemical parameters across cell populations. Here, we describe a maximum entropy-based framework for inference of heterogeneity in dynamics of signaling networks (MERIDIAN). MERIDIAN estimates the joint probability distribution over signaling network parameters that is consistent with experimentally measured cell-to-cell variability of biochemical species. We apply the developed approach to investigate the response heterogeneity in the EGFR/Akt signaling network. Our analysis demonstrates that a significant fraction of cells exhibits high phosphorylated Akt (pAkt) levels hours after EGF stimulation. Our findings also suggest that cells with high EGFR levels predominantly contribute to the subpopulation of cells with high pAkt activity. We also discuss how MERIDIAN can be extended to accommodate various experimental measurements.
Collapse
Affiliation(s)
- Purushottam D Dixit
- Department of Systems Biology, Columbia University, New York, NY, USA; Department of Physics, University of Florida, Gainesville, FL, USA.
| | - Eugenia Lyashenko
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mario Niepel
- Laboratory of Systems Pharmacology, HMS LINCS Center, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Columbia University, New York, NY, USA; Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Granada AE, Jiménez A, Stewart-Ornstein J, Blüthgen N, Reber S, Jambhekar A, Lahav G. The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy. Mol Biol Cell 2020; 31:845-857. [PMID: 32049575 PMCID: PMC7185964 DOI: 10.1091/mbc.e19-09-0515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
DNA-damaging chemotherapeutics are widely used in cancer treatments, but for solid tumors they often leave a residual tumor-cell population. Here we investigated how cellular states might affect the response of individual cells in a clonal population to cisplatin, a DNA-damaging chemotherapeutic agent. Using a live-cell reporter of cell cycle phase and long-term imaging, we monitored single-cell proliferation before, at the time of, and after treatment. We found that in response to cisplatin, cells either arrested or died, and the ratio of these outcomes depended on the dose. While we found that the cell cycle phase at the time of cisplatin addition was not predictive of outcome, the proliferative history of the cell was: highly proliferative cells were more likely to arrest than to die, whereas slowly proliferating cells showed a higher probability of death. Information theory analysis revealed that the dose of cisplatin had the greatest influence on the cells’ decisions to arrest or die, and that the proliferation status interacted with the cisplatin dose to further guide this decision. These results show an unexpected effect of proliferation status in regulating responses to cisplatin and suggest that slowly proliferating cells within tumors may be acutely vulnerable to chemotherapy.
Collapse
Affiliation(s)
- Adrián E Granada
- IRI Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Alba Jiménez
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Jacob Stewart-Ornstein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15260
| | - Nils Blüthgen
- IRI Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany.,Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 -Heidelberg, Germany.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Simone Reber
- IRI Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany.,University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
46
|
Cao M, Qiu B, Zhou T, Zhang J. Control strategies for the timing of intracellular events. Phys Rev E 2020; 100:062401. [PMID: 31962487 DOI: 10.1103/physreve.100.062401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 11/07/2022]
Abstract
While the timing of intracellular events is essential for many cellular processes, gene expression inside a single cell can exhibit substantial cell-to-cell variability, raising the question of how cells ensure precision in event timing despite such stochasticity. We address this question by analyzing a biologically reasonable model of gene expression in the context of first passage time (FPT), focusing on two experimentally measurable statistics: mean FPT (MFPT) and timing variability (TV). We show that (1) transcriptional burst size (BS) and burst frequency (BF) can minimize the TV; (2) translational BS monotonically reduces the MFPT to a nonzero low bound; (3) the timescale of promoter kinetics can minimize both the MFPT and the TV, depending on the ratio of the on-switching rate over the off-switching rate; and (4) positive feedback regulation of any form can all minimize the TV, whereas negative feedback regulation of transcriptional BF or BS always enhances the TV. These control strategies can have broad implications for diverse cellular processes relying on precise temporal triggering of events.
Collapse
Affiliation(s)
- Mengfang Cao
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Baohua Qiu
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jiajun Zhang
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
47
|
Miura H, Kondo Y, Matsuda M, Aoki K. Cell-to-Cell Heterogeneity in p38-Mediated Cross-Inhibition of JNK Causes Stochastic Cell Death. Cell Rep 2019; 24:2658-2668. [PMID: 30184500 DOI: 10.1016/j.celrep.2018.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
The stress-activated protein kinases c-Jun N-terminal kinase (JNK) and p38 are important players in cell-fate decisions in response to environmental stress signals. Crosstalk signaling between JNK and p38 is emerging as an important regulatory mechanism in inflammatory and stress responses. However, it is unknown how this crosstalk affects signaling dynamics, cell-to-cell variation, and cellular responses at the single-cell level. We established a multiplexed live-cell imaging system based on kinase translocation reporters to simultaneously monitor JNK and p38 activities with high specificity and sensitivity at single-cell resolution. Various stresses activated JNK and p38 with various dynamics. In all cases, p38 suppressed JNK activity in a cross-inhibitory manner. We demonstrate that p38 antagonizes JNK through both transcriptional and post-translational mechanisms. This cross-inhibition generates cellular heterogeneity in JNK activity after stress exposure. Our data indicate that this heterogeneity in JNK activity plays a role in fractional killing in response to UV stress.
Collapse
Affiliation(s)
- Haruko Miura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
48
|
Salvucci M, Zakaria Z, Carberry S, Tivnan A, Seifert V, Kögel D, Murphy BM, Prehn JHM. System-based approaches as prognostic tools for glioblastoma. BMC Cancer 2019; 19:1092. [PMID: 31718568 PMCID: PMC6852738 DOI: 10.1186/s12885-019-6280-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The evasion of apoptosis is a hallmark of cancer. Understanding this process holistically and overcoming apoptosis resistance is a goal of many research teams in order to develop better treatment options for cancer patients. Efforts are also ongoing to personalize the treatment of patients. Strategies to confirm the therapeutic efficacy of current treatments or indeed to identify potential novel additional options would be extremely beneficial to both clinicians and patients. In the past few years, system medicine approaches have been developed that model the biochemical pathways of apoptosis. These systems tools incorporate and analyse the complex biological networks involved. For their successful integration into clinical practice, it is mandatory to integrate systems approaches with routine clinical and histopathological practice to deliver personalized care for patients. RESULTS We review here the development of system medicine approaches that model apoptosis for the treatment of cancer with a specific emphasis on the aggressive brain cancer, glioblastoma. CONCLUSIONS We discuss the current understanding in the field and present new approaches that highlight the potential of system medicine approaches to influence how glioblastoma is diagnosed and treated in the future.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Zaitun Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Steven Carberry
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Amanda Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Volker Seifert
- Department of Neurosurgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Donat Kögel
- Department of Neurosurgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Brona M. Murphy
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
49
|
Bathla P, Sandanaraj BS. Development of Activity-Based Reporter Gene Technology for Imaging of Protease Activity with an Exquisite Specificity in a Single Live Cell. ACS Chem Biol 2019; 14:2276-2285. [PMID: 31498985 DOI: 10.1021/acschembio.9b00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imaging of an active protease with an exquisite specificity in the presence of highly homologous proteins within a living cell is a very challenging task. Herein, we disclose a new method called "Activity-based Reporter Gene Technology" (AbRGT). This method provides an opportunity to study the function of "active protease" with an unprecedented specificity. As a proof-of-concept, we have applied this method to study the function of individual caspase protease in both intrinsic and extrinsic apoptosis signaling pathways. The versatility of this method is demonstrated by studying the function of both the initiator and effector caspases, independently. The modular fashion of this technology provides the opportunity to noninvasively image the function of cathepsin-B in a caspase-dependent cell death pathway. As a potential application, this method is used as a tool to screen compounds that are potent inhibitors of caspases and cathepsin-B proteases. The fact that this method can be readily applied to any protease of interest opens up huge opportunities for this technology in the area of target validation, high-throughput screening, in vivo imaging, diagnostics, and therapeutic intervention.
Collapse
|
50
|
Sun CY, Zhang XP, Wang W. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision. Int J Mol Sci 2019; 20:ijms20194768. [PMID: 31561425 PMCID: PMC6801623 DOI: 10.3390/ijms20194768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
p53-targeted microRNAs (miRNAs) markedly affect cellular response to DNA damage. These miRNAs may contribute to either cell cycle arrest or apoptosis induction. However, how these miRNAs coordinate to modulate the decision between cell survival and death remains less understood. Here, we developed an integrated model of p53 signaling network to investigate how p53-targeted miR-192 and miR-22 modulate cellular outcome in response to DNA damage. By numerical simulations, we found that p53 is activated progressively depending on the extent of DNA damage. Upon moderate damage, p53 rises to medium levels and induces miR-192 to promote its own activation, facilitating p21 induction and cell cycle arrest. Upon severe damage, p53 reaches high levels and is fully activated due to phosphatase and tensin homolog (PTEN) induction. As a result, it transactivates miR-22 to repress p21 expression and activate E2F1, resulting in apoptosis. Therefore, miR-192 promotes primary activation of p53, while miR-22 promotes apoptosis by downregulating p21. This work may advance the understanding of the mechanism for cell fate decision between life and death by p53-inducible miRNAs.
Collapse
Affiliation(s)
- Cheng-Yuan Sun
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|