1
|
Lei T, Zhang G. Generation of Cdc20 RNAi-Sensitive Cell Lines to Study Mitotic Exit. Methods Mol Biol 2025; 2874:9-20. [PMID: 39614043 DOI: 10.1007/978-1-0716-4236-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Accurate mitotic progression ensures the fidelity of genome passage. Cdc20 is a key mitotic regulator. It promotes mitotic exit by activating the anaphase-promoting complex or cyclosome (APC/C) and monitors kinetochore-microtubule attachment through activating the spindle assembly checkpoint (SAC). Precise characterization of Cdc20 requires efficient depletion of endogenous Cdc20, which is extremely difficult to achieve by RNA interference (RNAi). This chapter describes the methodology to generate Cdc20 RNAi-sensitive cell lines with the help of CRISPR/Cas9 technology. These cell lines are highly sensitive to Cdc20 RNAi and provide a very useful tool for Cdc20 functionality investigation without the interference of endogenous Cdc20 protein. Similar strategy could be applied to other genes.
Collapse
Affiliation(s)
- Tingting Lei
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Malumbres M, Villarroya-Beltri C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat Rev Genet 2024; 25:864-878. [PMID: 39169218 DOI: 10.1038/s41576-024-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis. MVA is accompanied by tumour susceptibility (depending on the genetic basis) as well as cellular and systemic stress, including chronic immune response and the associated clinical implications.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cancer Cell Cycle Group, Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona, Barcelona, Spain.
| | | |
Collapse
|
3
|
Valles SY, Bural S, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. Mol Biol Cell 2024; 35:ar141. [PMID: 39356777 PMCID: PMC11617097 DOI: 10.1091/mbc.e23-12-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y. Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Shrea Bural
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Duane A. Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
4
|
Zhang Y, Young R, Garvanska DH, Song C, Zhai Y, Wang Y, Jiang H, Fang J, Nilsson J, Alfieri C, Zhang G. Functional analysis of Cdc20 reveals a critical role of CRY box in mitotic checkpoint signaling. Commun Biol 2024; 7:164. [PMID: 38337031 PMCID: PMC10858191 DOI: 10.1038/s42003-024-05859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.
Collapse
Affiliation(s)
- Yuqing Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rose Young
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | | | - Chunlin Song
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jakob Nilsson
- The NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK.
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Valles SY, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572788. [PMID: 38187612 PMCID: PMC10769330 DOI: 10.1101/2023.12.21.572788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To ensure genomic fidelity a series of spatially and temporally coordinated events are executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown if Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
7
|
Wang Y, Zhang Y, Zhang G. Novel regulation on the mitotic checkpoint revealed by knocking out CDC20. Front Cell Dev Biol 2023; 11:1276532. [PMID: 37849739 PMCID: PMC10577266 DOI: 10.3389/fcell.2023.1276532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Affiliation(s)
- Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
9
|
Lara-Gonzalez P, Variyar S, Budrewicz J, Schlientz A, Varshney N, Bellaart A, Moghareh S, Nguyen ACN, Oegema K, Desai A. Cyclin B3 is a dominant fast-acting cyclin that drives rapid early embryonic mitoses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553011. [PMID: 37609212 PMCID: PMC10441424 DOI: 10.1101/2023.08.11.553011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In many species, early embryonic mitoses proceed at a very rapid pace, but how this pace is achieved is not understood. Here we show that in the early C. elegans embryo, cyclin B3 is the dominant driver of rapid embryonic mitoses. Metazoans typically have three cyclin B isoforms that associate with and activate Cdk1 kinase to orchestrate mitotic events: the related cyclins B1 and B2 and the more divergent cyclin B3. We show that whereas embryos expressing cyclins B1 and B2 support slow mitosis (NEBD to Anaphase ~ 600s), the presence of cyclin B3 dominantly drives the ~3-fold faster mitosis observed in wildtype embryos. CYB-1/2-driven mitosis is longer than CYB-3-driven mitosis primarily because the progression of mitotic events itself is slower, rather than delayed anaphase onset due to activation of the spindle checkpoint or inhibitory phosphorylation of the anaphase activator CDC-20. Addition of cyclin B1 to cyclin B3-only mitosis introduces an ~60s delay between the completion of chromosome alignment and anaphase onset, which likely ensures segregation fidelity; this delay is mediated by inhibitory phosphorylation on CDC-20. Thus, the dominance of cyclin B3 in driving mitotic events, coupled to introduction of a short cyclin B1-dependent delay in anaphase onset, sets the rapid pace and ensures fidelity of mitoses in the early C. elegans embryo.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
- Ludwig Institute for Cancer Research, La Jolla CA 92093
| | - Smriti Variyar
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Jacqueline Budrewicz
- Ludwig Institute for Cancer Research, La Jolla CA 92093
- Current address: Department of Molecular and Medical Genetics, Oregon Health & Science University (OHSU), OR 97239
- Current address: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon
| | - Aleesa Schlientz
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Neha Varshney
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Andrew Bellaart
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Shabnam Moghareh
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
| | - Anh Cao Ngoc Nguyen
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla CA 92093
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla CA 92093
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| |
Collapse
|
10
|
Grey W, Atkinson S, Rix B, Casado P, Ariza-McNaughton L, Hawley C, Sopoena ML, Bridge KS, Kent D, Cutillas PR, Bonnet D. The CKS1/CKS2 Proteostasis Axis Is Crucial to Maintain Hematopoietic Stem Cell Function. Hemasphere 2023; 7:e853. [PMID: 36874381 PMCID: PMC9977483 DOI: 10.1097/hs9.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Long-term hematopoietic stem cells are rare, highly quiescent stem cells of the hematopoietic system with life-long self-renewal potential and the ability to transplant and reconstitute the entire hematopoietic system of conditioned recipients. Most of our understanding of these rare cells has relied on cell surface identification, epigenetic, and transcriptomic analyses. Our knowledge of protein synthesis, folding, modification, and degradation-broadly termed protein homeostasis or "proteostasis"-in these cells is still in its infancy, with very little known about how the functional state of the proteome is maintained in hematopoietic stem cells. We investigated the requirement of the small phospho-binding adaptor proteins, the cyclin-dependent kinase subunits (CKS1 and CKS2), for maintaining ordered hematopoiesis and long-term hematopoietic stem cell reconstitution. CKS1 and CKS2 are best known for their roles in p27 degradation and cell cycle regulation, and by studying the transcriptome and proteome of Cks1 -/- and Cks2 -/- mice, we demonstrate regulation of key signaling pathways that govern hematopoietic stem cell biology including AKT, FOXO1, and NFκB, together balancing protein homeostasis and restraining reactive oxygen species to ensure healthy hematopoietic stem cell function.
Collapse
Affiliation(s)
- William Grey
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Samantha Atkinson
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beatrice Rix
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | | | - Cathy Hawley
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Miriam L. Sopoena
- Bioinformatics Core, The Francis Crick Institute, London, United Kingdom
| | - Katherine S. Bridge
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - David Kent
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
11
|
Screening of Hub Genes in Hepatocellular Carcinoma Based on Network Analysis and Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7300788. [PMID: 36479313 PMCID: PMC9722289 DOI: 10.1155/2022/7300788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (LIHC) is the fifth common cancer worldwide, and it requires effective diagnosis and treatment to prevent aggressive metastasis. The purpose of this study was to construct a machine learning-based diagnostic model for the diagnosis of liver cancer. Using weighted correlation network analysis (WGCNA), univariate analysis, and Lasso-Cox regression analysis, protein-protein interactions network analysis is used to construct gene networks from transcriptome data of hepatocellular carcinoma patients and find hub genes for machine learning. The five models, including gradient boosting, random forest, support vector machine, logistic regression, and integrated learning, were to identify a multigene prediction model of patients. Immunological assessment, TP53 gene mutation and promoter methylation level analysis, and KEGG pathway analysis were performed on these groups. Potential drug molecular targets for the corresponding hepatocellular carcinomas were obtained by molecular docking for analysis, resulting in the screening of 2 modules that may be relevant to the survival of hepatocellular carcinoma patients, and the construction of 5 diagnostic models and multiple interaction networks. The modes of action of drug-molecule interactions that may be effective against hepatocellular carcinoma core genes CCNA2, CCNB1, and CDK1 were investigated. This study is expected to provide research ideas for early diagnosis of hepatocellular carcinoma.
Collapse
|
12
|
Grey W, Rio-Machin A, Casado-Izquierdo P, Grönroos E, Ali S, Miettinen JJ, Bewicke-Copley F, Parsons A, Heckman CA, Swanton C, Cutillas P, Gribben J, Fitzgibbon J, Bonnet D. CKS1 inhibition depletes leukemic stem cells and protects healthy hematopoietic stem cells in acute myeloid leukemia. Sci Transl Med 2022; 14:eabn3248. [PMID: 35731890 PMCID: PMC7612983 DOI: 10.1126/scitranslmed.abn3248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.
Collapse
Affiliation(s)
- William Grey
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, U.K
| | - Ana Rio-Machin
- Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, U.K
| | - Pedro Casado-Izquierdo
- Cell signalling and proteomics group, Centre for Genomics and Computational Biology, Barts Cancer Institute, London, U.K
| | - Eva Grönroos
- Cancer evolution and genome instability laboratory, The Francis Crick Institute, London, U.K
| | - Sara Ali
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, U.K
| | - Juho J. Miettinen
- Institute for Molecular Medicine Finland – FINN, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | | | - Alun Parsons
- Institute for Molecular Medicine Finland – FINN, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland – FINN, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Charles Swanton
- Cancer evolution and genome instability laboratory, The Francis Crick Institute, London, U.K
| | - Pedro Cutillas
- Cell signalling and proteomics group, Centre for Genomics and Computational Biology, Barts Cancer Institute, London, U.K
| | - John Gribben
- Centre for Haemato-Oncology, Bart’s Cancer Institute, London, U.K
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, U.K
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, U.K
| |
Collapse
|
13
|
Lee SB, Garofano L, Ko A, D'Angelo F, Frangaj B, Sommer D, Gan Q, Kim K, Cardozo T, Iavarone A, Lasorella A. Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription. Nat Commun 2022; 13:2089. [PMID: 35440621 PMCID: PMC9018835 DOI: 10.1038/s41467-022-29502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022] Open
Abstract
Tissue-specific transcriptional activity is silenced in mitotic cells but it remains unclear whether the mitotic regulatory machinery interacts with tissue-specific transcriptional programs. We show that such cross-talk involves the controlled interaction between core subunits of the anaphase-promoting complex (APC) and the ID2 substrate. The N-terminus of ID2 is independently and structurally compatible with a pocket composed of core APC/C subunits that may optimally orient ID2 onto the APCCDH1 complex. Phosphorylation of serine-5 by CDK1 prevented the association of ID2 with core APC, impaired ubiquitylation and stabilized ID2 protein at the mitosis-G1 transition leading to inhibition of basic Helix-Loop-Helix (bHLH)-mediated transcription. The serine-5 phospho-mimetic mutant of ID2 that inefficiently bound core APC remained stable during mitosis, delayed exit from mitosis and reloading of bHLH transcription factors on chromatin. It also locked cells into a "mitotic stem cell" transcriptional state resembling the pluripotent program of embryonic stem cells. The substrates of APCCDH1 SKP2 and Cyclin B1 share with ID2 the phosphorylation-dependent, D-box-independent interaction with core APC. These results reveal a new layer of control of the mechanism by which substrates are recognized by APC.
Collapse
Affiliation(s)
- Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Qiwen Gan
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Department of Neurology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, 10032, USA.
| |
Collapse
|
14
|
Phon BWS, Kamarudin MNA, Bhuvanendran S, Radhakrishnan AK. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed Pharmacother 2021; 145:112396. [PMID: 34775238 DOI: 10.1016/j.biopha.2021.112396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma (GBM) remains incurable despite the overwhelming discovery of 2-dimensional (2D) cell-based potential therapeutics since the majority of them have met unsatisfactory results in animal and clinical settings. Incremental empirical evidence has laid the widespread need of transitioning 2D to 3-dimensional (3D) cultures that better mimic GBM's complex and heterogenic nature to allow better translation of pre-clinical results. This systematic scoping review analyses the transcriptomic data involving 3D models of GBM against 2D models from 22 studies identified from four databases (PubMed, ScienceDirect, Medline, and Embase). From a total of 499 genes reported in these studies, 313 (63%) genes were upregulated across 3D models cultured using different scaffolds. Our analysis showed that 4 of the replicable upregulated genes are associated with GBM stemness, epithelial to mesenchymal transition (EMT), hypoxia, and migration-related genes regardless of the type of scaffolds, displaying close resemblances to primitive undifferentiated tumour phenotypes that are associated with decreased overall survival and increased hazard ratio in GBM patients. The upregulation of drug response and drug efflux genes (e.g. cytochrome P450s and ABC transporters) mirrors the GBM genetic landscape that contributes to in vivo and clinical treatment resistance. These upregulated genes displayed strong protein-protein interactions when analysed using an online bioinformatics software (STRING). These findings reinforce the need for widespread transition to 3D GBM models as a relatively inexpensive humanised pre-clinical tool with suitable genetic biomarkers to bridge clinical gaps in potential therapeutic evaluations.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Muhamad N A Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
15
|
Wang X, Zhang D, Zheng C, Wu S, Glotzer M, Tse YC. Cortical recruitment of centralspindlin and RhoA effectors during meiosis I of Caenorhabditis elegans primary spermatocytes. J Cell Sci 2021; 134:jcs.238543. [PMID: 33468621 DOI: 10.1242/jcs.238543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Haploid male gametes are produced through meiosis during gametogenesis. Whereas the cell biology of mitosis and meiosis is well studied in the nematode Caenorhabditis elegans, comparatively little is known regarding the physical division of primary spermatocytes during meiosis I. Here, we investigated this process using high-resolution time-lapse confocal microscopy and examined the spatiotemporal regulation of contractile ring assembly in C. elegans primary spermatocytes. We found that centralspindlin and RhoA effectors were recruited to the equatorial cortex of dividing primary spermatocytes for contractile ring assembly before segregation of homologous chromosomes. We also observed that perturbations shown to promote centralspindlin oligomerization regulated the cortical recruitment of NMY-2 and impacted the order in which primary spermatocytes along the proximal-distal axis of the gonad enter meiosis I. These results expand our understanding of the cellular division of primary spermatocytes into secondary spermatocytes during meiosis I.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiangchuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cunni Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yu Chung Tse
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.,Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Zhao L, Xue S, Yao Z, Shi J, Chen B, Wu L, Sun L, Xu Y, Yan Z, Li B, Mao X, Fu J, Zhang Z, Mu J, Wang W, Du J, Liu S, Dong J, Wang W, Li Q, He L, Jin L, Liang X, Kuang Y, Sun X, Wang L, Sang Q. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein Cell 2021; 11:921-927. [PMID: 32666501 PMCID: PMC7719138 DOI: 10.1007/s13238-020-00756-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Songguo Xue
- Center of Assisted Reproduction, Shanghai East hospital, Tongji University, Shanghai, 200120, China
| | - Zhongyuan Yao
- The Reproductive Medical Center of Xiangya Hospital, Central South University, Changsha, 41008, China
| | - Juanzi Shi
- Reproductive Medicine Center, Shaanxi Maternal and Child Care Service Center, Xi'an, 710069, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, 200032, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Lihua Sun
- Center of Assisted Reproduction, Shanghai East hospital, Tongji University, Shanghai, 200120, China
| | - Yao Xu
- Center of Assisted Reproduction, Shanghai East hospital, Tongji University, Shanghai, 200120, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, 200032, China
| | - Shuai Liu
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China. .,Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China. .,Shanghai Center for Women and Children's Health, Shanghai, 200062, China.
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and metabolism, Ministry of Science and technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China. .,Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China.
| |
Collapse
|
17
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
18
|
Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2020; 28:427-438. [PMID: 33130827 PMCID: PMC7862229 DOI: 10.1038/s41418-020-00648-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development. ![]()
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
19
|
Bancroft J, Holder J, Geraghty Z, Alfonso-Pérez T, Murphy D, Barr FA, Gruneberg U. PP1 promotes cyclin B destruction and the metaphase-anaphase transition by dephosphorylating CDC20. Mol Biol Cell 2020; 31:2315-2330. [PMID: 32755477 PMCID: PMC7851957 DOI: 10.1091/mbc.e20-04-0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 promotes cyclin B destruction at the onset of anaphase by removing specific inhibitory phosphorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphorylation-defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint response and rapidly destroy cyclin B once all chromosomes have aligned and enter into anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells.
Collapse
Affiliation(s)
- James Bancroft
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Zoë Geraghty
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Daniel Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
20
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
21
|
Separase-triggered apoptosis enforces minimal length of mitosis. Nature 2020; 580:542-547. [PMID: 32322059 DOI: 10.1038/s41586-020-2187-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/10/2020] [Indexed: 01/13/2023]
Abstract
Prolonged mitosis often results in apoptosis1. Shortened mitosis causes tumorigenic aneuploidy, but it is unclear whether it also activates the apoptotic machinery2. Separase, a cysteine protease and trigger of all eukaryotic anaphases, has a caspase-like catalytic domain but has not previously been associated with cell death3,4. Here we show that human cells that enter mitosis with already active separase rapidly undergo death in mitosis owing to direct cleavage of anti-apoptotic MCL1 and BCL-XL by separase. Cleavage not only prevents MCL1 and BCL-XL from sequestering pro-apoptotic BAK, but also converts them into active promoters of death in mitosis. Our data strongly suggest that the deadliest cleavage fragment, the C-terminal half of MCL1, forms BAK/BAX-like pores in the mitochondrial outer membrane. MCL1 and BCL-XL are turned into separase substrates only upon phosphorylation by NEK2A. Early mitotic degradation of this kinase is therefore crucial for preventing apoptosis upon scheduled activation of separase in metaphase. Speeding up mitosis by abrogation of the spindle assembly checkpoint results in a temporal overlap of the enzymatic activities of NEK2A and separase and consequently in cell death. We propose that NEK2A and separase jointly check on spindle assembly checkpoint integrity and eliminate cells that are prone to chromosome missegregation owing to accelerated progression through early mitosis.
Collapse
|
22
|
Paradoxical mitotic exit induced by a small molecule inhibitor of APC/C Cdc20. Nat Chem Biol 2020; 16:546-555. [PMID: 32152539 PMCID: PMC7289404 DOI: 10.1038/s41589-020-0495-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a ubiquitin ligase that initiates anaphase and mitotic exit. APC/C is activated by Cdc20 and inhibited by the mitotic checkpoint complex (MCC), which delays mitotic exit when the spindle assembly checkpoint (SAC) is activated. We previously identified apcin as a small molecule ligand of Cdc20 that inhibits APC/CCdc20 and prolongs mitosis. Here we find that apcin paradoxically shortens mitosis when SAC activity is high. These opposing effects of apcin arise from targeting of a common binding site in Cdc20 required for both substrate ubiquitination and MCC-dependent APC/C inhibition. Furthermore, we found that apcin cooperates with p31comet to relieve MCC-dependent inhibition of APC/C. Apcin therefore causes either net APC/C inhibition, prolonging mitosis when SAC activity is low, or net APC/C activation, shortening mitosis when SAC activity is high, demonstrating that a small molecule can produce opposing biological effects depending on regulatory context.
Collapse
|
23
|
Lara-Gonzalez P, Moyle MW, Budrewicz J, Mendoza-Lopez J, Oegema K, Desai A. The G2-to-M Transition Is Ensured by a Dual Mechanism that Protects Cyclin B from Degradation by Cdc20-Activated APC/C. Dev Cell 2019; 51:313-325.e10. [PMID: 31588029 DOI: 10.1016/j.devcel.2019.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/26/2019] [Accepted: 09/05/2019] [Indexed: 12/23/2022]
Abstract
In the eukaryotic cell cycle, a threshold level of cyclin B accumulation triggers the G2-to-M transition, and subsequent cyclin B destruction triggers mitotic exit. The anaphase-promoting complex/cyclosome (APC/C) is the E3 ubiquitin ligase that, together with its co-activator Cdc20, targets cyclin B for destruction during mitotic exit. Here, we show that two pathways act in concert to protect cyclin B from Cdc20-activated APC/C in G2, in order to enable cyclin B accumulation and the G2-to-M transition. The first pathway involves the Mad1-Mad2 spindle checkpoint complex, acting in a distinct manner from checkpoint signaling after mitotic entry but employing a common molecular mechanism-the promotion of Mad2-Cdc20 complex formation. The second pathway involves cyclin-dependent kinase phosphorylation of Cdc20, which is known to reduce Cdc20's affinity for the APC/C. Cooperation of these two mechanisms, which target distinct APC/C binding interfaces of Cdc20, enables cyclin B accumulation and the G2-to-M transition.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Mark W Moyle
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jacqueline Budrewicz
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jose Mendoza-Lopez
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
25
|
Zhang S, Tischer T, Barford D. Cyclin A2 degradation during the spindle assembly checkpoint requires multiple binding modes to the APC/C. Nat Commun 2019; 10:3863. [PMID: 31455778 PMCID: PMC6712056 DOI: 10.1038/s41467-019-11833-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) orchestrates cell cycle progression by controlling the temporal degradation of specific cell cycle regulators. Although cyclin A2 and cyclin B1 are both targeted for degradation by the APC/C, during the spindle assembly checkpoint (SAC), the mitotic checkpoint complex (MCC) represses APC/C's activity towards cyclin B1, but not cyclin A2. Through structural, biochemical and in vivo analysis, we identify a non-canonical D box (D2) that is critical for cyclin A2 ubiquitination in vitro and degradation in vivo. During the SAC, cyclin A2 is ubiquitinated by the repressed APC/C-MCC, mediated by the cooperative engagement of its KEN and D2 boxes, ABBA motif, and the cofactor Cks. Once the SAC is satisfied, cyclin A2 binds APC/C-Cdc20 through two mutually exclusive binding modes, resulting in differential ubiquitination efficiency. Our findings reveal that a single substrate can engage an E3 ligase through multiple binding modes, affecting its degradation timing and efficiency.
Collapse
Affiliation(s)
- Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Thomas Tischer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
26
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
27
|
Jonsson M, Fjeldbo CS, Holm R, Stokke T, Kristensen GB, Lyng H. Mitochondrial Function of CKS2 Oncoprotein Links Oxidative Phosphorylation with Cell Division in Chemoradioresistant Cervical Cancer. Neoplasia 2019; 21:353-362. [PMID: 30856376 PMCID: PMC6411633 DOI: 10.1016/j.neo.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/03/2022]
Abstract
CDK regulatory subunit 2 (CKS2) has a nuclear function that promotes cell division and is a candidate biomarker of chemoradioresistance in cervical cancer. The underlying mechanisms are, however, not completely understood. We investigated whether CKS2 also has a mitochondrial function that augments tumor aggressiveness. Based on global gene expression data of two cervical cancer cohorts of 150 and 135 patients, we identified a set of genes correlated with CKS2 expression. Gene set enrichment analysis showed enrichment of mitochondrial cellular compartments, and the hallmarks oxidative phosphorylation (OXPHOS) and targets of the MYC oncogene in the gene set. By in situ proximity ligation assay, we showed that CKS2 formed complex with the positively correlated MYC target, mitochondrial single-stranded DNA binding protein SSBP1, in the mitochondrion of cervix tumor samples and HeLa and SiHa cervical cancer cell lines, indicating a role in mitochondrial DNA (mtDNA) replication and thereby OXPHOS. CDK1 was found to be part of the complex. Flow cytometry analyses of HeLa cells showed cell cycle regulation of the CKS2-SSBP1 complex consistent with mtDNA replication activity. Moreover, repression of mtDNA replication and OXPHOS by acute hypoxia decreased CKS2-SSBP1 complex abundance and expression of MYC targets. By immunohistochemistry, cytoplasmic CKS2 expression was found to add to the prognostic impact of nuclear CKS2 expression in patients, suggesting that the mitochondrial function promotes tumor aggressiveness. Our study uncovers a novel link between regulation of cell division by nuclear pathways and OXPHOS in the mitochondrion that involves CKS2 and promotes chemoradioresistance of cervical cancer.
Collapse
Affiliation(s)
- Marte Jonsson
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | | | - Ruth Holm
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Balle Kristensen
- Department of Gynaecologic Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
28
|
Levasseur MD, Thomas C, Davies OR, Higgins JMG, Madgwick S. Aneuploidy in Oocytes Is Prevented by Sustained CDK1 Activity through Degron Masking in Cyclin B1. Dev Cell 2019; 48:672-684.e5. [PMID: 30745144 PMCID: PMC6416240 DOI: 10.1016/j.devcel.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 01/10/2023]
Abstract
Successful mitosis requires that cyclin B1:CDK1 kinase activity remains high until chromosomes are correctly aligned on the mitotic spindle. It has therefore been unclear why, in mammalian oocyte meiosis, cyclin B1 destruction begins before chromosome alignment is complete. Here, we resolve this paradox and show that mouse oocytes exploit an imbalance in the ratio of cyclin B1 to CDK1 to control CDK1 activity; early cyclin B1 destruction reflects the loss of an excess of non-CDK1-bound cyclin B1 in late prometaphase, while CDK1-bound cyclin B1 is destroyed only during metaphase. The ordered destruction of the two forms of cyclin B1 is brought about by a previously unidentified motif that is accessible in free cyclin B1 but masked when cyclin B1 is in complex with CDK1. This protects the CDK1-bound fraction from destruction in prometaphase, ensuring a period of prolonged CDK1 activity sufficient to achieve optimal chromosome alignment and prevent aneuploidy. In mouse oocytes, an excess of cyclin B1 preserves CDK1 activity A motif in non-CDK1-bound cyclin B1 confers preferential APC/C targeting Non-CDK1-bound cyclin B1 is gradually destroyed before CDK1-bound cyclin B1 Prolonged CDK1 activity assists the spindle checkpoint and prevents aneuploidy
Collapse
Affiliation(s)
- Mark D Levasseur
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Thomas
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen R Davies
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jonathan M G Higgins
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Suzanne Madgwick
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
29
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
30
|
Gross F, Bonaiuti P, Hauf S, Ciliberto A. Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex. PLoS Comput Biol 2018; 14:e1006449. [PMID: 30199529 PMCID: PMC6157902 DOI: 10.1371/journal.pcbi.1006449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/26/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint) is a signaling pathway that ensures faithful chromosome segregation. Mitotic checkpoint proteins inhibit the anaphase-promoting complex (APC/C) and its activator Cdc20 to prevent precocious anaphase. Checkpoint signaling leads to a complex of APC/C, Cdc20, and checkpoint proteins, in which the APC/C is inactive. In principle, this final product of the mitotic checkpoint can be obtained via different pathways, whose relevance still needs to be fully ascertained experimentally. Here, we use mathematical models to compare the implications on checkpoint response of the possible pathways leading to APC/C inhibition. We identify a previously unrecognized funneling effect for Cdc20, which favors Cdc20 incorporation into the inhibitory complex and therefore promotes checkpoint activity. Furthermore, we find that the presence or absence of one specific assembly reaction determines whether the checkpoint remains functional at elevated levels of Cdc20, which can occur in cancer cells. Our results reveal the inhibitory logics behind checkpoint activity, predict checkpoint efficiency in perturbed situations, and could inform molecular strategies to treat malignancies that exhibit Cdc20 overexpression. Cell division is a fundamental event in the life of cells. It requires that a mother cell gives rise to two daughters which carry the same genetic material of their mother. Thus, during each cell cycle the genetic material needs to be replicated, compacted into chromosomes and redistributed to the two daughter cells. Any mistake in chromosome segregation would attribute the wrong number of chromosomes to the progeny. Hence, the process of chromosome segregation is closely watched by a surveillance mechanism known as the mitotic checkpoint. The molecular players of the checkpoint pathway are well known: we know both the input (ie, the species to be inhibited and their inhibitors), and the output (ie, the inhibited species). However, we do not exactly know the path that leads from the former to the latter. In this manuscript, we use a mathematical approach to explore the properties of plausible mitotic checkpoint networks. We find that seemingly similar circuits show very different behaviors for high levels of the protein targeted by the mitotic checkpoint, Cdc20. Interestingly, this protein is often overexpressed in cancer cells. For physiological levels of Cdc20, instead, all the models we have analyzed are capable to mount an efficient response. We find that this is due to a series of consecutive protein-protein binding reactions that funnel Cdc20 towards its inhibited state. We call this the funneling effect. Our analysis helps understanding the inhibitory logics underlying the checkpoint, and proposes new concepts that could be applied to other inhibitory pathways.
Collapse
Affiliation(s)
- Fridolin Gross
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail: (SH); (AC)
| | - Andrea Ciliberto
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
- * E-mail: (SH); (AC)
| |
Collapse
|
31
|
Wang GY, Li L, Liu B, Han X, Wang CH, Wang JW. Integrated bioinformatic analysis unveils significant genes and pathways in the pathogenesis of supratentorial primitive neuroectodermal tumor. Onco Targets Ther 2018; 11:1849-1859. [PMID: 29670360 PMCID: PMC5894672 DOI: 10.2147/ott.s148776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to explore significant genes and pathways involved in the pathogenesis of supratentorial primitive neuroectodermal tumor (sPNET). Materials and methods Gene expression profile of GSE14295 was downloaded from publicly available Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out in primary sPNET samples compared with normal fetal and adult brain reference samples (sPNET vs fetal brain and sPNET vs adult brain). Pathway enrichment analysis of these DEGs was conducted, followed by protein–protein interaction (PPI) network construction and significant module selection. Additionally, transcription factors (TFs) regulating the common DEGs in the two comparison groups were identified, and the regulatory network was constructed. Results In total, 526 DEGs (99 up- and 427 downregulated) in sPNET vs fetal brain and 815 DEGs (200 up- and 615 downregulated) in sPNET vs adult brain were identified. DEGs in sPNET vs fetal brain and sPNET vs adult brain were associated with calcium signaling pathway, cell cycle, and p53 signaling pathway. CDK1, CDC20, BUB1B, and BUB1 were hub nodes in the PPI networks of DEGs in sPNET vs fetal brain and sPNET vs adult brain. Significant modules were extracted from the PPI networks. In addition, 64 upregulated and 200 downregulated overlapping DEGs were identified in both sPNET vs fetal brain and sPNET vs adult brain. The genes involved in the regulatory network upon overlapping DEGs and the TFs were correlated with calcium signaling pathway. Conclusion Calcium signaling pathway and several genes (CDK1, CDC20, BUB1B, and BUB1) may play important roles in the pathogenesis of sPNET.
Collapse
Affiliation(s)
| | - Ling Li
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong
| | - Bo Liu
- Department of Neurosurgery
| | | | | | - Ji-Wen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Pudong New District, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Kucharski TJ, Minshall PE, Moustafa-Kamal M, Turnell AS, Teodoro JG. Reciprocal Regulation between 53BP1 and the Anaphase-Promoting Complex/Cyclosome Is Required for Genomic Stability during Mitotic Stress. Cell Rep 2017; 18:1982-1995. [PMID: 28228263 DOI: 10.1016/j.celrep.2017.01.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets substrates for degradation to promote mitotic progression. Here, we show that the DNA damage response protein 53BP1 contains conserved KEN boxes that are required for APC/C-dependent degradation in early mitosis. Mutation of the 53BP1 KEN boxes stabilized the protein and extended mitotic duration, whereas 53BP1 knockdown resulted in a shorter and delayed mitosis. Loss of 53BP1 increased APC/C activity, and we show that 53BP1 is a direct APC/C inhibitor. Although 53BP1 function is not absolutely required for normal cell cycle progression, knockdown was highly toxic in combination with mitotic spindle poisons. Moreover, chemical inhibition of the APC/C was able to rescue the lethality of 53BP1 loss. Our findings reveal a reciprocal regulation between 53BP1 and APC/C that is required for response to mitotic stress and may contribute to the tumor-suppressor functions of 53BP1.
Collapse
Affiliation(s)
- Thomas J Kucharski
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Paul E Minshall
- School of Cancer and Genomic Sciences, College of Medical and Dental Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mohamed Moustafa-Kamal
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Andrew S Turnell
- School of Cancer and Genomic Sciences, College of Medical and Dental Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jose G Teodoro
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Microbiology and Immunology, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
33
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
34
|
CKS Proteins Promote Checkpoint Recovery by Stimulating Phosphorylation of Treslin. Mol Cell Biol 2017; 37:MCB.00344-17. [PMID: 28739856 DOI: 10.1128/mcb.00344-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
CKS proteins are small (9-kDa) polypeptides that bind to a subset of the cyclin-dependent kinases. The two paralogs expressed in mammals, Cks1 and Cks2, share an overlapping function that is essential for early development. However, both proteins are frequently overexpressed in human malignancy. It has been shown that CKS protein overexpression overrides the replication stress checkpoint, promoting continued origin firing. This finding has led to the proposal that CKS protein-dependent checkpoint override allows premalignant cells to evade oncogene stress barriers, providing a causal link to oncogenesis. Here, we provide mechanistic insight into how overexpression of CKS proteins promotes override of the replication stress checkpoint. We show that CKS proteins greatly enhance the ability of Cdk2 to phosphorylate the key replication initiation protein treslin in vitro Furthermore, stimulation of treslin phosphorylation does not occur by the canonical adapter mechanism demonstrated for other substrates, as cyclin-dependent kinase (CDK) binding-defective mutants are capable of stimulating treslin phosphorylation. This effect is recapitulated in vivo, where silencing of Cks1 and Cks2 decreases treslin phosphorylation, and overexpression of wild-type or CDK binding-defective Cks2 prevents checkpoint-dependent dephosphorylation of treslin. Finally, we provide evidence that the role of CKS protein-dependent checkpoint override involves recovery from checkpoint-mediated arrest of DNA replication.
Collapse
|
35
|
Delayed APC/C activation extends the first mitosis of mouse embryos. Sci Rep 2017; 7:9682. [PMID: 28851945 PMCID: PMC5575289 DOI: 10.1038/s41598-017-09526-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
The correct temporal regulation of mitosis underpins genomic stability because it ensures the alignment of chromosomes on the mitotic spindle that is required for their proper segregation to the two daughter cells. Crucially, sister chromatid separation must be delayed until all the chromosomes have attached to the spindle; this is achieved by the Spindle Assembly Checkpoint (SAC) that inhibits the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase. In many species the first embryonic M-phase is significantly prolonged compared to the subsequent divisions, but the reason behind this has remained unclear. Here, we show that the first M-phase in the mouse embryo is significantly extended due to a delay in APC/C activation. Unlike in somatic cells, where the APC/C first targets cyclin A2 for degradation at nuclear envelope breakdown (NEBD), we find that in zygotes cyclin A2 remains stable for a significant period of time after NEBD. Our findings that the SAC prevents cyclin A2 degradation, whereas over-expressed Plk1 stimulates it, support our conclusion that the delay in cyclin A2 degradation is caused by low APC/C activity. As a consequence of delayed APC/C activation cyclin B1 stability in the first mitosis is also prolonged, leading to the unusual length of the first M-phase.
Collapse
|
36
|
Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J. Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 2017; 216:3133-3143. [PMID: 28819014 PMCID: PMC5626527 DOI: 10.1083/jcb.201607111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
Cyclin A2 is a crucial mitotic Cdk regulatory partner that coordinates entry into mitosis and is then destroyed in prometaphase within minutes of nuclear envelope breakdown. The role of cyclin A2 in female meiosis and its dynamics during the transition from meiosis I (MI) to meiosis II (MII) remain unclear. We found that cyclin A2 decreases in prometaphase I but recovers after the first meiotic division and persists, uniquely for metaphase, in MII-arrested oocytes. Conditional deletion of cyclin A2 from mouse oocytes has no discernible effect on MI but leads to disrupted MII spindles and increased merotelic attachments. On stimulation of exit from MII, there is a dramatic increase in lagging chromosomes and an inhibition of cytokinesis. These defects are associated with an increase in microtubule stability in MII spindles, suggesting that cyclin A2 mediates the fidelity of MII by maintaining microtubule dynamics during the rapid formation of the MII spindle.
Collapse
Affiliation(s)
- Qing-Hua Zhang
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Flegg
- Monash Academy for Cross and Interdisciplinary Mathematical Applications, Monash University, Melbourne, Victoria, Australia
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada
| | - Marco Conti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Piotr Sicinski
- Dana-Farber Cancer Institute, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Petros Marangos
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina, Greece
| | - John Carroll
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.,Department of Cell and Developmental Biology, University College London, London, England, UK
| |
Collapse
|
37
|
Rai U, Najm F, Tartakoff AM. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest. PLoS One 2017; 12:e0174306. [PMID: 28339487 PMCID: PMC5365125 DOI: 10.1371/journal.pone.0174306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle.
Collapse
Affiliation(s)
- Urvashi Rai
- Cell Biology Program/Department of Molecular and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fadi Najm
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan M. Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pavlides SC, Lecanda J, Daubriac J, Pandya UM, Gama P, Blank S, Mittal K, Shukla P, Gold LI. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Cell Cycle 2017; 15:931-47. [PMID: 26963853 DOI: 10.1080/15384101.2016.1150393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27(kip1)(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling.
Collapse
Affiliation(s)
- Savvas C Pavlides
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Jon Lecanda
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Julien Daubriac
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Unnati M Pandya
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Patricia Gama
- c Department of Cell and Developmental Biology , Institute of Biomedical Sciences, University of Sao Paolo , Brazil
| | - Stephanie Blank
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,d Gynecologic Oncology, New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Khushbakhat Mittal
- d Gynecologic Oncology, New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Pratibha Shukla
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,d Gynecologic Oncology, New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Leslie I Gold
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA.,f Department of Pathology , New York University School of Medicine Langone Medical Center , New York , NY , USA
| |
Collapse
|
39
|
Paiva SL, da Silva SR, de Araujo ED, Gunning PT. Regulating the Master Regulator: Controlling Ubiquitination by Thinking Outside the Active Site. J Med Chem 2017; 61:405-421. [DOI: 10.1021/acs.jmedchem.6b01346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Stacey-Lynn Paiva
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sara R. da Silva
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elvin D. de Araujo
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Patrick T. Gunning
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
40
|
Furqan MS, Siyal MY. Elastic-Net Copula Granger Causality for Inference of Biological Networks. PLoS One 2016; 11:e0165612. [PMID: 27792750 PMCID: PMC5085021 DOI: 10.1371/journal.pone.0165612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022] Open
Abstract
AIM In bioinformatics, the inference of biological networks is one of the most active research areas. It involves decoding various complex biological networks that are responsible for performing diverse functions in human body. Among these networks analysis, most of the research focus is towards understanding effective brain connectivity and gene networks in order to cure and prevent related diseases like Alzheimer and cancer respectively. However, with recent advances in data procurement technology, such as DNA microarray analysis and fMRI that can simultaneously process a large amount of data, it yields high-dimensional data sets. These high dimensional dataset analyses possess challenges for the analyst. BACKGROUND Traditional methods of Granger causality inference use ordinary least-squares methods for structure estimation, which confront dimensionality issues when applied to high-dimensional data. Apart from dimensionality issues, most existing methods were designed to capture only the linear inferences from time series data. METHOD AND CONCLUSION In this paper, we address the issues involved in assessing Granger causality for both linear and nonlinear high-dimensional data by proposing an elegant form of the existing LASSO-based method that we call "Elastic-Net Copula Granger causality". This method provides a more stable way to infer biological networks which has been verified using rigorous experimentation. We have compared the proposed method with the existing method and demonstrated that this new strategy outperforms the existing method on all measures: precision, false detection rate, recall, and F1 score. We have also applied both methods to real HeLa cell data and StarPlus fMRI datasets and presented a comparison of the effectiveness of both methods.
Collapse
Affiliation(s)
- Mohammad Shaheryar Furqan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- INFINITUS, Infocomm Centre of Excellence, Nanyang Technological University, Singapore, Singapore
| | - Mohammad Yakoob Siyal
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
41
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
42
|
Ghosh C, Gupta N, More P, Sengupta P, Mallick A, Santra MK, Basu S. Engineering and In VitroEvaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin-Proteasome System in Cancer. ChemistrySelect 2016. [DOI: 10.1002/slct.201601117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Neha Gupta
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Piyush More
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Poulomi Sengupta
- Physical Chemistry Division; CSIR National Chemical Laboratory; Academy of Scientific & Innovative Research (AcSIR); Dr. Homi Bhaba Road Pune 411008, Maharashtra India
| | - Abhik Mallick
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Manas Kumar Santra
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Sudipta Basu
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| |
Collapse
|
43
|
Feringa FM, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, Medema RH. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun 2016; 7:12618. [PMID: 27561326 PMCID: PMC5007458 DOI: 10.1038/ncomms12618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division.
Collapse
Affiliation(s)
- Femke M Feringa
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lenno Krenning
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht 3584CT, The Netherlands
| | - André Koch
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - René H Medema
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
44
|
Mi G, Gao Y, Liu S, Ye E, Li Y, Jin X, Yang H, Yang Z. Cyclin-dependent kinase inhibitor flavopiridol promotes remyelination in a cuprizone induced demyelination model. Cell Cycle 2016; 15:2780-91. [PMID: 27580304 DOI: 10.1080/15384101.2016.1220458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cuprizone (CPZ) model has been widely used for the studies of de-and remyelination. The CPZ-exposed mice show oligodendrocyte precursor cells (OPCs) increase and mature oligodendrocytes decrease, suggesting an imbalance between proliferation and differentiation of OPCs. In the first experiment of this study, we examined the expression of cell cycle related genes in brains of mice following CPZ administration for 5 weeks by means of microarray assay. In addition, we performed a double labeling of BrdU and Ki-67 to calculate cell cycle exit index in the mice. Our results showed that CPZ administration up-regulated the expression of 16 cell cycle related genes, but down-regulated the expression of only one in the prefrontal cortex (PFC) of mice compared to control group. The treatment inhibited potential precursor cells exit from cell cycle. In the second experiment, we evaluated effects of a CDK inhibitor flavopiridol (FLA) on CPZ-induced neuropathological changes and spatial working memory impairment in mice.FLA treatment for one week effectively attenuated the CPZ-induced increases in NG2 positive cells, microglia and astrocytes, alleviated the concurrent mature oligodendrocyte loss and myelin breakdown, and improved spatial working memory deficit in the CPZ-exposed mice. These results suggest that CPZ-induced neuropathological changes involve in dysregulation of cell cycle related genes. The therapeutic effects of FLA on CPZ-exposed mice may be related to its ability of cell cycle inhibition.
Collapse
Affiliation(s)
- Guiyun Mi
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Yunyun Gao
- b The 89 Hospital of PLA , WeiFang City Shandong Province , China
| | - Shuai Liu
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Enmao Ye
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Yanyan Li
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Xiao Jin
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Hongju Yang
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Zheng Yang
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| |
Collapse
|
45
|
Qin L, Guimarães DSPSF, Melesse M, Hall MC. Substrate Recognition by the Cdh1 Destruction Box Receptor Is a General Requirement for APC/CCdh1-mediated Proteolysis. J Biol Chem 2016; 291:15564-74. [PMID: 27226622 DOI: 10.1074/jbc.m116.731190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex, or cyclosome (APC/C), is a ubiquitin ligase that selectively targets proteins for degradation in mitosis and the G1 phase and is an important component of the eukaryotic cell cycle control system. How the APC/C specifically recognizes its substrates is not fully understood. Although well characterized degron motifs such as the destruction box (D-box) and KEN-box are commonly found in APC/C substrates, many substrates apparently lack these motifs. A variety of alternative APC/C degrons have been reported, suggesting either that multiple modes of substrate recognition are possible or that our definitions of degron structure are incomplete. We used an in vivo yeast assay to compare the G1 degradation rate of 15 known substrates of the APC/C co-activator Cdh1 under normal conditions and conditions that impair binding of D-box, KEN-box, and the recently identified ABBA motif degrons to Cdh1. The D-box receptor was required for efficient proteolysis of all Cdh1 substrates, despite the absence of canonical D-boxes in many. In contrast, the KEN-box receptor was only required for normal proteolysis of a subset of substrates and the ABBA motif receptor for a single substrate in our system. Our results suggest that binding to the D-box receptor may be a shared requirement for recognition and processing of all Cdh1 substrates.
Collapse
Affiliation(s)
- Liang Qin
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | | | - Michael Melesse
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Mark C Hall
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
46
|
Nakayama Y, Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016; 21:molecules21050663. [PMID: 27213315 PMCID: PMC6274067 DOI: 10.3390/molecules21050663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Toshiaki Inoue
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
47
|
Chang CC, Huang CC, Yang SH, Chien CC, Lee CL, Huang CJ. Data on clinical significance of GAS2 in colorectal cancer cells. Data Brief 2016; 8:82-6. [PMID: 27284567 PMCID: PMC4887555 DOI: 10.1016/j.dib.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 11/15/2022] Open
Abstract
The growth arrest-specific 2 (GAS2) was cloned and found to be upregulated in the feces of recurrent CRC patients. This overexpressed GAS2 induced different patterns of gene expressions in CRC cells. Briefly, one cell proliferation marker, Ki-67 antigen (Ki-67), was upregulated in the cells with overexpressed GAS2, "Correlation between proliferation markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in colorectal cancer" [1]. Whereas, the expression of another cell proliferation marker, proliferating cell nuclear antigen (PCNA), changed insignificantly [1]. In addition, the mRNA level of one cyclin involving in both cell cycle G1/S and G2/M transitions was also not affected by GAS2 overexpression, "Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A" [2]. The experimental design and procedures in this article can be helpful for understanding the molecular significance of GAS2 in SW480 and SW620 CRC cells.
Collapse
Affiliation(s)
- Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Cheng Huang
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan; Breast Center, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shung-Haur Yang
- Department of Surgery, Taipei-Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chih-Cheng Chien
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan; Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chia-Long Lee
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan; Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
48
|
Greil C, Follo M, Engelhardt M, Wäsch R. The Use of SNAP Labeling to Study Cell Cycle Oscillatory Proteins. Methods Mol Biol 2016; 1342:201-208. [PMID: 26254925 DOI: 10.1007/978-1-4939-2957-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tightly controlled degradation of specific regulatory proteins is crucial for transitioning to the next cell cycle phase, ensuring precise DNA replication and an equal distribution of chromosomes to provide genomic stability and avoid tumorigenesis. To study mitotic control at the metaphase-to-anaphase transition, a histone H2-GFP-based reporter system was established, allowing simultaneous monitoring of the alignment of mitotic chromosomes and cyclin B proteolysis. To depict the proteolytic profile, a chimeric cyclin B-SNAP reporter molecule that can be labeled with a fluorochrome-carrying SNAP substrate was generated for measurement of the decline in fluorescence intensity via live-cell imaging. This reporter system can be adapted for other cell cycle oscillatory proteins.
Collapse
Affiliation(s)
- Christine Greil
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | | | |
Collapse
|
49
|
Lu D, Girard JR, Li W, Mizrak A, Morgan DO. Quantitative framework for ordered degradation of APC/C substrates. BMC Biol 2015; 13:96. [PMID: 26573515 PMCID: PMC4647693 DOI: 10.1186/s12915-015-0205-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
Background During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/CCdc20, a key regulator of chromosome segregation in mitosis. Results We show experimentally that the rate of catalysis varies with different substrates of APC/CCdc20. Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/CCdc20 can alter the timing of degradation onset relative to APC/CCdc20 activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/CCdc20, their relative enzyme affinities and rates of catalysis influence the partitioning of APC/CCdc20 among substrates, resulting in substrate competition. Depending on how APC/CCdc20 is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/CCdc20 substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. Conclusions The degradation timing of APC/CCdc20 substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/CCdc20 interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0205-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Lu
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Juliet R Girard
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Weihan Li
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Arda Mizrak
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - David O Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
50
|
Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways. Mol Cell 2015; 60:446-59. [PMID: 26527280 DOI: 10.1016/j.molcel.2015.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/08/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
The splitting of chromosomes in anaphase and their delivery into the daughter cells needs to be accurately executed to maintain genome stability. Chromosome splitting requires the degradation of securin, whereas the distribution of the chromosomes into the daughter cells requires the degradation of cyclin B. We show that cells encounter and tolerate variations in the abundance of securin or cyclin B. This makes the concurrent onset of securin and cyclin B degradation insufficient to guarantee that early anaphase events occur in the correct order. We uncover that the timing of chromosome splitting is not determined by reaching a fixed securin level, but that this level adapts to the securin degradation kinetics. In conjunction with securin and cyclin B competing for degradation during anaphase, this provides robustness to the temporal order of anaphase events. Our work reveals how parallel cell-cycle pathways can be temporally coordinated despite variability in protein concentrations.
Collapse
Affiliation(s)
- Julia Kamenz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA; Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | | | - Armin Kubis
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA; Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany.
| |
Collapse
|