1
|
Soni K, Horvath A, Dybkov O, Schwan M, Trakansuebkul S, Flemming D, Wild K, Urlaub H, Fischer T, Sinning I. Structures of aberrant spliceosome intermediates on their way to disassembly. Nat Struct Mol Biol 2025:10.1038/s41594-024-01480-7. [PMID: 39833470 DOI: 10.1038/s41594-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-Bact spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly. We identify the DEAH-box helicase-G-patch protein pair (Gih35-Gpl1, homologous to human DHX35-GPATCH1) and show how it maintains catalytic dormancy. In both structures, Gpl1 recognizes a remodeled active site introduced by an overstabilization of the U5 loop I interaction with the 5' exon leading to a single-nucleotide insertion at the 5' splice site. Remodeling is communicated to the spliceosome surface and the Ntr1 complex that mediates disassembly is recruited. Our data pave the way for a targeted analysis of splicing quality control.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Merlin Schwan
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sasanan Trakansuebkul
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
2
|
Senn KA, Lipinski KA, Zeps NJ, Griffin AF, Wilkinson ME, Hoskins AA. Control of 3' splice site selection by the yeast splicing factor Fyv6. eLife 2024; 13:RP100449. [PMID: 39688371 DOI: 10.7554/elife.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Pre-mRNA splicing is catalyzed in two steps: 5' splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6's impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3' SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3' SS.
Collapse
Affiliation(s)
- Katherine A Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Karli A Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Natalie J Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Amory F Griffin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
3
|
Senn KA, Lipinski KA, Zeps NJ, Griffin AF, Wilkinson ME, Hoskins AA. Control of 3' splice site selection by the yeast splicing factor Fyv6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592262. [PMID: 38746449 PMCID: PMC11092753 DOI: 10.1101/2024.05.04.592262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pre-mRNA splicing is catalyzed in two steps: 5' splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (1st and 2nd step factors). We recently identified Fyv6 (FAM192A in humans) as a 2nd step factor in S. cerevisiae; however, we did not determine how widespread Fyv6's impact is on the transcriptome. To answer this question, we have used RNA-seq to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3' SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-EM structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only 2nd step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the 1st step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3' SS.
Collapse
Affiliation(s)
- Katherine A. Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Karli A. Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Natalie J. Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Amory F. Griffin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Max E. Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH UK
- Present Addresses: Broad Institute of MIT and Harvard, Cambridge MA 02142 USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
4
|
Wu J, Chen W, Ge S, Liu X, Shan J, Zhang M, Su Y, Liu Y. ILP1 and NTR1 affect the stability of U6 snRNA during spliceosome complex disassembly in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112199. [PMID: 39038708 DOI: 10.1016/j.plantsci.2024.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
U6 snRNA is one of the uridine-rich non-coding RNAs, abundant and stable in various cells, function as core particles in the intron-lariat spliceosome (ILS) complex. The Increased Level of Polyploidy1-1D (ILP1) and NTC-related protein 1 (NTR1), two conserved disassembly factors of the ILS complex, facilitates the disintegration of the ILS complex after completing intron splicing. The functional impairment of ILP1 and NTR1 lead to increased U6 levels, while other snRNAs comprising the ILS complex remained unaffected. We revealed that ILP1 and NTR1 had no impact on the transcription, 3' end phosphate structure or oligo(U) tail of U6 snRNA. Moreover, we uncovered that the mutation of ILP1 and NTR1 resulted in the accumulation of ILS complexes, impeding the dissociation of U6 from splicing factors, leading to an extended half-life of U6 and ultimately causing an elevation in U6 snRNA levels. Our findings broaden the understanding of the functions of ILS disassembly factors ILP1 and NTR1, and providing insights into the dynamic disassembly between U6 and ILS.
Collapse
Affiliation(s)
- Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xueliang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi 530021, China.
| | - Meishan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Vorländer MK, Rothe P, Kleifeld J, Cormack ED, Veleti L, Riabov-Bassat D, Fin L, Phillips AW, Cochella L, Plaschka C. Mechanism for the initiation of spliceosome disassembly. Nature 2024; 632:443-450. [PMID: 38925148 PMCID: PMC7616679 DOI: 10.1038/s41586-024-07741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Precursor-mRNA (pre-mRNA) splicing requires the assembly, remodelling and disassembly of the multi-megadalton ribonucleoprotein complex called the spliceosome1. Recent studies have shed light on spliceosome assembly and remodelling for catalysis2-6, but the mechanism of disassembly remains unclear. Here we report cryo-electron microscopy structures of nematode and human terminal intron lariat spliceosomes along with biochemical and genetic data. Our results uncover how four disassembly factors and the conserved RNA helicase DHX15 initiate spliceosome disassembly. The disassembly factors probe large inner and outer spliceosome surfaces to detect the release of ligated mRNA. Two of these factors, TFIP11 and C19L1, and three general spliceosome subunits, SYF1, SYF2 and SDE2, then dock and activate DHX15 on the catalytic U6 snRNA to initiate disassembly. U6 therefore controls both the start5 and end of pre-mRNA splicing. Taken together, our results explain the molecular basis of the initiation of canonical spliceosome disassembly and provide a framework to understand general spliceosomal RNA helicase control and the discard of aberrant spliceosomes.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Patricia Rothe
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Justus Kleifeld
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Eric D Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lalitha Veleti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Daria Riabov-Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alex W Phillips
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
6
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 PMCID: PMC11585973 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Beusch I, Madhani HD. Understanding the dynamic design of the spliceosome. Trends Biochem Sci 2024; 49:583-595. [PMID: 38641465 DOI: 10.1016/j.tibs.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.
Collapse
Affiliation(s)
- Irene Beusch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Buerer L, Clark NE, Welch A, Duan C, Taggart AJ, Townley BA, Wang J, Soemedi R, Rong S, Lin CL, Zeng Y, Katolik A, Staley JP, Damha MJ, Mosammaparast N, Fairbrother WG. The debranching enzyme Dbr1 regulates lariat turnover and intron splicing. Nat Commun 2024; 15:4617. [PMID: 38816363 PMCID: PMC11139901 DOI: 10.1038/s41467-024-48696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/05/2024] [Indexed: 06/01/2024] Open
Abstract
The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.
Collapse
Affiliation(s)
- Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jing Wang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Rachel Soemedi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
9
|
Chung CS, Wai HL, Kao CY, Cheng SC. An ATP-independent role for Prp16 in promoting aberrant splicing. Nucleic Acids Res 2023; 51:10815-10828. [PMID: 37858289 PMCID: PMC10639067 DOI: 10.1093/nar/gkad861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
The spliceosome is assembled through a step-wise process of binding and release of its components to and from the pre-mRNA. The remodeling process is facilitated by eight DExD/H-box RNA helicases, some of which have also been implicated in splicing fidelity control. In this study, we unveil a contrasting role for the prototypic splicing proofreader, Prp16, in promoting the utilization of aberrant 5' splice sites and mutated branchpoints. Prp16 is not essential for the branching reaction in wild-type pre-mRNA. However, when a mutation is present at the 5' splice site or if Cwc24 is absent, Prp16 facilitates the reaction and encourages aberrant 5' splice site usage independently of ATP. Prp16 also promotes the utilization of mutated branchpoints while preventing the use of nearby cryptic branch sites. Our study demonstrates that Prp16 can either enhance or impede the utilization of faulty splice sites by stabilizing or destabilizing interactions with other splicing components. Thus, Prp16 exerts dual roles in 5' splice site and branch site selection, via ATP-dependent and ATP-independent activities. Furthermore, we provide evidence that these functions of Prp16 are mediated through the step-one factor Cwc25.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Ching-Yang Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
10
|
Feng Q, Krick K, Chu J, Burge CB. Splicing quality control mediated by DHX15 and its G-patch activator SUGP1. Cell Rep 2023; 42:113223. [PMID: 37805921 PMCID: PMC10842378 DOI: 10.1016/j.celrep.2023.113223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Pre-mRNA splicing is surveilled at different stages by quality control (QC) mechanisms. The leukemia-associated DExH-box family helicase hDHX15/scPrp43 is known to disassemble spliceosomes after splicing. Here, using rapid protein depletion and analysis of nascent and mature RNA to enrich for direct effects, we identify a widespread splicing QC function for DHX15 in human cells, consistent with recent in vitro studies. We find that suboptimal introns with weak splice sites, multiple branch points, and cryptic introns are repressed by DHX15, suggesting a general role in promoting splicing fidelity. We identify SUGP1 as a G-patch factor that activates DHX15's splicing QC function. This interaction is dependent on both DHX15's ATPase activity and on SUGP1's U2AF ligand motif (ULM) domain. Together, our results support a model in which DHX15 plays a major role in splicing QC when recruited and activated by SUGP1.
Collapse
Affiliation(s)
- Qing Feng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| | - Keegan Krick
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Jennifer Chu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Garbers TB, Enders M, Neumann P, Ficner R. Crystal structure of Prp16 in complex with ADP. Acta Crystallogr F Struct Biol Commun 2023; 79:200-207. [PMID: 37548918 PMCID: PMC10416764 DOI: 10.1107/s2053230x23005721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
DEAH-box helicases play a crucial role in pre-mRNA splicing as they are responsible for major rearrangements of the spliceosome and are involved in various quality-ensuring steps. Prp16 is the driving force during spliceosomal catalysis, remodeling the C state into the C* state. Here, the first crystal structure of Prp16 from Chaetomium thermophilum in complex with ADP is reported at 1.9 Å resolution. Comparison with the other spliceosomal DEAH-box helicases Prp2, Prp22 and Prp43 reveals an overall identical domain architecture. The β-hairpin, which is a structural element of the RecA2 domain, exhibits a unique position, punctuating its flexibility. Analysis of cryo-EM models of spliceosomal complexes containing Prp16 reveals that these models show Prp16 in its nucleotide-free state, rendering the model presented here the first structure of Prp16 in complex with a nucleotide.
Collapse
Affiliation(s)
- Tim Benedict Garbers
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Marieke Enders
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Beusch I, Rao B, Studer MK, Luhovska T, Šukytė V, Lei S, Oses-Prieto J, SeGraves E, Burlingame A, Jonas S, Madhani HD. Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles. Mol Cell 2023; 83:2578-2594.e9. [PMID: 37402368 PMCID: PMC10484158 DOI: 10.1016/j.molcel.2023.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.
Collapse
Affiliation(s)
- Irene Beusch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Michael K Studer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Tetiana Luhovska
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Viktorija Šukytė
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Susan Lei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, USA
| | - Em SeGraves
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, USA
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
13
|
Bohnsack KE, Kanwal N, Bohnsack MT. Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Nucleic Acids Res 2022; 50:9012-9022. [PMID: 35993807 PMCID: PMC9458436 DOI: 10.1093/nar/gkac687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Dynamic regulation of RNA folding and structure is critical for the biogenesis and function of RNAs and ribonucleoprotein (RNP) complexes. Through their nucleotide triphosphate-dependent remodelling functions, RNA helicases are key modulators of RNA/RNP structure. While some RNA helicases are dedicated to a specific target RNA, others are multifunctional and engage numerous substrate RNAs in different aspects of RNA metabolism. The discovery of such multitasking RNA helicases raises the intriguing question of how these enzymes can act on diverse RNAs but also maintain specificity for their particular targets within the RNA-dense cellular environment. Furthermore, the identification of RNA helicases that sit at the nexus between different aspects of RNA metabolism raises the possibility that they mediate cross-regulation of different cellular processes. Prominent and extensively characterized multifunctional DEAH/RHA-box RNA helicases are DHX15 and its Saccharomyces cerevisiae (yeast) homologue Prp43. Due to their central roles in key cellular processes, these enzymes have also served as prototypes for mechanistic studies elucidating the mode of action of this type of enzyme. Here, we summarize the current knowledge on the structure, regulation and cellular functions of Prp43/DHX15, and discuss the general concept and implications of RNA helicase multifunctionality.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Correspondence may also be addressed to Katherine E. Bohnsack. Tel: +49 551 3969305; Fax: +49 551 395960;
| | - Nidhi Kanwal
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- To whom correspondence should be addressed. Tel: +49 551 395968; Fax: +49 551 395960;
| |
Collapse
|
14
|
Obuća M, Cvačková Z, Kubovčiak J, Kolář M, Staněk D. Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity. PLoS One 2022; 17:e0265742. [PMID: 35385551 PMCID: PMC8985939 DOI: 10.1371/journal.pone.0265742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease affecting tens of thousands of people world-wide. Here we analyzed the effect of an amino acid substitution in the RNA helicase DHX38 (Prp16) causing RP. DHX38 has been proposed as the helicase important for the 2nd step of splicing. We showed that DHX38 associates with key splicing factors involved in both splicing steps but did not find any evidence that the RP mutations changes DHX38 interaction profile with the spliceosome. We further downregulated DHX38 and monitored changes in splicing. We observed only minor perturbations of general splicing but detected modulation of ~70 alternative splicing events. Next, we probed DHX38 function in splicing of retina specific genes and found that FSCN2 splicing is dependent on DHX38. In addition, RHO splicing was inhibited specifically by expression of DHX38 RP variant. Finally, we showed that overexpression of DHX38 promotes usage of canonical as well as cryptic 5' splice sites in HBB splicing reporter. Together, our data show that DHX38 is a splicing factor that promotes splicing of cryptic splice sites and regulate alternative splicing. We further provide evidence that the RP-linked substitution G332D modulates DHX38 splicing activity.
Collapse
Affiliation(s)
- Mina Obuća
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
15
|
Maul-Newby HM, Amorello AN, Sharma T, Kim JH, Modena MS, Prichard BE, Jurica MS. A model for DHX15 mediated disassembly of A-complex spliceosomes. RNA (NEW YORK, N.Y.) 2022; 28:583-595. [PMID: 35046126 PMCID: PMC8925973 DOI: 10.1261/rna.078977.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A critical step of pre-mRNA splicing is the recruitment of U2 snRNP to the branch point sequence of an intron. U2 snRNP conformation changes extensively during branch helix formation, and several RNA-dependent ATPases are implicated in the process. However, the molecular mechanisms involved remain to be fully dissected. We took advantage of the differential nucleotide triphosphates requirements for DExD/H-box enzymes to probe their contributions to in vitro spliceosome assembly. Both ATP and GTP hydrolysis support the formation of A-complex, indicating the activity of a DEAH-enzyme because DEAD-enzymes are selective for ATP. We immunodepleted DHX15 to assess its involvement, and although splicing efficiency decreases with reduced DHX15, A-complex accumulation incongruently increases. DHX15 depletion also results in the persistence of the atypical ATP-independent interaction between U2 snRNP and a minimal substrate that is otherwise destabilized in the presence of either ATP or GTP. These results lead us to hypothesize that DHX15 plays a quality control function in U2 snRNP's engagement with an intron. In efforts to identify the RNA target of DHX15, we determined that an extended polypyrimidine tract is not necessary for disruption of the atypical interaction between U2 snRNP and the minimal substrate. We also examined U2 snRNA by RNase H digestion and identified nucleotides in the branch binding region that become accessible with both ATP and GTP hydrolysis, again implicating a DEAH-enzyme. Together, our results demonstrate that multiple ATP-dependent rearrangements are likely involved in U2 snRNP addition to the spliceosome and that DHX15 may have an expanded role in maintaining splicing fidelity.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Angela N Amorello
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Turvi Sharma
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - John H Kim
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Matthew S Modena
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Beth E Prichard
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
16
|
Sahin I, George A, Seyhan AA. Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers. Int J Mol Sci 2021; 22:11790. [PMID: 34769221 PMCID: PMC8583749 DOI: 10.3390/ijms222111790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Recent comprehensive genomic studies including single-cell RNA sequencing and characterization have revealed multiple processes by which protein-coding and noncoding RNA processing are dysregulated in many cancers. More specifically, the abnormal regulation of mRNA and precursor mRNA (pre-mRNA) processing, which includes the removal of introns by splicing, is frequently altered in tumors, producing multiple different isoforms and diversifying protein expression. These alterations in RNA processing result in numerous cancer-specific mRNAs and pathogenically spliced events that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumor suppressor genes. Abnormally spliced pre-mRNAs are also associated with resistance to cancer treatment, and certain cancers are highly sensitive to the pharmacological inhibition of splicing. The discovery of these alterations in RNA processing has not only provided new insights into cancer pathogenesis but identified novel therapeutic vulnerabilities and therapeutic opportunities in targeting these aberrations in various ways (e.g., small molecules, splice-switching oligonucleotides (SSOs), and protein therapies) to modulate alternative RNA splicing or other RNA processing and modification mechanisms. Some of these strategies are currently progressing toward clinical development or are already in clinical trials. Additionally, tumor-specific neoantigens produced from these pathogenically spliced events and other abnormal RNA processes provide a potentially extensive source of tumor-specific therapeutic antigens (TAs) for targeted cancer immunotherapy. Moreover, a better understanding of the molecular mechanisms associated with aberrant RNA processes and the biological impact they play might provide insights into cancer initiation, progression, and metastasis. Our goal is to highlight key alternative RNA splicing and processing mechanisms and their roles in cancer pathophysiology as well as emerging therapeutic alternative splicing targets in cancer, particularly in gastrointestinal (GI) malignancies.
Collapse
Affiliation(s)
- Ilyas Sahin
- Division of Hematology Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL 32610, USA;
| | - Andrew George
- Department of Chemistry, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding. Proc Natl Acad Sci U S A 2021; 118:2101164118. [PMID: 34135123 DOI: 10.1073/pnas.2101164118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While RNAs are known to misfold, the underlying molecular causes have been mainly studied in fragments of biologically relevant larger RNAs. As these small RNAs are dominated by secondary structures, misfolding of these secondary structures remains the most-explored cause for global RNA misfolding. Conversely, how RNA chaperones function in a biological context to promote native folding beyond duplex annealing remains unknown. Here, in a combination of dimethylsulfate mutational profiling with sequencing (DMS-MaPseq), structural analyses, biochemical experiments, and yeast genetics, we show that three-helix junctions are prone to misfolding during assembly of the small ribosomal subunit in vivo. We identify ubiquitous roles for ribosome assembly factors in chaperoning their folding by preventing the formation of premature tertiary interactions, which otherwise kinetically trap misfolded junctions, thereby blocking further progress in the assembly cascade. While these protein chaperones act indirectly by binding the interaction partners of junctions, our analyses also suggest direct roles for small nucleolar RNAs (snoRNAs) in binding and chaperoning helical junctions during transcription. While these assembly factors do not utilize energy to ameliorate misfolding, our data demonstrate how their dissociation renders reversible folding steps irreversible, thereby driving native folding and assembly and setting up a timer that dictates the propensity of misfolded intermediates to escape quality control. Finally, the data demonstrate that RNA chaperones act locally on individual tertiary interactions, in contrast to protein chaperones, which globally unfold misfolded proteins.
Collapse
|
18
|
A single m 6A modification in U6 snRNA diversifies exon sequence at the 5' splice site. Nat Commun 2021; 12:3244. [PMID: 34050143 PMCID: PMC8163875 DOI: 10.1038/s41467-021-23457-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
N6-methyladenosine (m6A) is a modification that plays pivotal roles in RNA metabolism and function, although its functions in spliceosomal U6 snRNA remain unknown. To elucidate its role, we conduct a large-scale transcriptome analysis of a Schizosaccharomyces pombe strain lacking this modification and found a global change of pre-mRNA splicing. The most significantly impacted introns are enriched for adenosine at the fourth position pairing the m6A in U6 snRNA, and exon sequences weakly recognized by U5 snRNA. This suggests cooperative recognition of 5' splice site by U6 and U5 snRNPs, and also a role of m6A facilitating efficient recognition of the splice sites weakly interacting with U5 snRNA, indicating that U6 snRNA m6A relaxes the 5' exon constraint and allows protein sequence diversity along with explosively increasing number of introns over the course of eukaryotic evolution.
Collapse
|
19
|
Zhao M, Ying L, Wang R, Yao J, Zhu L, Zheng M, Chen Z, Yang Z. DHX15 Inhibits Autophagy and the Proliferation of Hepatoma Cells. Front Med (Lausanne) 2021; 7:591736. [PMID: 33644083 PMCID: PMC7904900 DOI: 10.3389/fmed.2020.591736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved process by which superfluous or harmful components in eukaryotic cells are degraded by autophagosomes. This cytoprotective mechanism is strongly related to various human diseases, such as cancer, autoimmune diseases, and diabetes. DEAH-box helicase 15 (DHX15), a member of the DEAH box family, is mainly involved in RNA splicing and ribosome maturation. Recently, DHX15 was identified as a tumor-related factor. Although both autophagy and DHX15 are involved in cellular metabolism and cancer progression, their exact relationship and mechanism remain elusive. In this study, we discovered a non-classic function of DHX15 and identified DHX15 as a suppressive protein in autophagy for the first time. We further found that mTORC1 is involved in DHX15-mediated regulation of autophagy and that DHX15 inhibits proliferation of hepatocellular carcinoma (HCC) cells by suppressing autophagy. In conclusion, our study demonstrates a non-classical function of DHX15 as a negative regulator of autophagy related to the mTORC1 pathway and reveals that DHX15-related autophagy dysfunction promotes HCC cell proliferation, indicating that DHX15 may be a target for liver cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lixiong Ying
- Pathology Department, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Rusha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liming Zhu
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhi Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
20
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
21
|
Abstract
RNA helicases exert mechanical force that changes RNA configurations in many essential cellular pathways, e.g., during mRNA maturation or assembly of ribosomes. DEAH helicases work by translocating along RNA and thereby unwind RNA duplexes or dissociate bound proteins. Because DEAH proteins are poor enzymes without intrinsic selectivity for target RNAs, they require adapter proteins that recruit them to functional sites and enhance their catalytic activity. One essential class of DEAH activators is formed by G-patch proteins, which bind helicases via their eponymous glycine-rich motif. We solved the structure of a G-patch bound to helicase DHX15. Our analysis suggests that G-patches tether mobile sections of DEAH helicases together and activate them by stabilizing a functional conformation with high RNA affinity. RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.
Collapse
|
22
|
Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. J Biol Chem 2019; 295:2097-2112. [PMID: 31914407 DOI: 10.1074/jbc.ra119.010964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/27/2019] [Indexed: 11/06/2022] Open
Abstract
The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.
Collapse
Affiliation(s)
- Karen Vester
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany
| | - Karine F Santos
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany
| | - Benno Kuropka
- Protein Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Christoph Weise
- Protein Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Markus C Wahl
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany; Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| |
Collapse
|
23
|
Abstract
The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5' splice site (5'SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5'SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5'SS, producing a free 5' exon. Removal of the BP adenosine from the active site allows the 3'SS to bind, so that the 5' exon attacks the 3'SS to produce mature mRNA and an excised lariat intron.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Clément Charenton
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
24
|
Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process. PLoS One 2019; 14:e0223132. [PMID: 31581208 PMCID: PMC6776343 DOI: 10.1371/journal.pone.0223132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing diversifies mRNA transcripts in human cells. While the spliceosome pairs exons with a high degree of accuracy, the rates of rare aberrant and non-canonical pre-mRNA splicing have not been evaluated at the nucleotide level to determine the quantity and identity of these events across splice junctions. Using ultra-deep sequencing the frequency of aberrant and non-canonical splicing events for three splice junctions flanking exon 7 of SMN1 were determined at single nucleotide resolution. After correction for background noise introduced by PCR amplification and sequencing steps, pre-mRNA splicing was shown to maintain a low overall rate of aberrant and non-canonically spliced events. Several previously unannotated splicing events across 3 exon|intron junctions in SMN1 were identified. Mutations within SMN exon 7 were shown to affect splicing fidelity by modulating RNA secondary structures, by altering the binding site of regulatory proteins and by changing the 5’ splice site strength. Mutations also create a truncated SMN1 exon 7 through the introduction of a de novo non-canonical 5’ splice site. The results from the ultra-deep sequencing approach highlight the impressive fidelity of pre-mRNA splicing and demonstrate that the immediate sequence context around splice sites is the main driving force behind non-canonical splice site pairing.
Collapse
|
25
|
Toroney R, Nielsen KH, Staley JP. Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Genes Dev 2019; 33:1555-1574. [PMID: 31558568 PMCID: PMC6824469 DOI: 10.1101/gad.328294.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
Abstract
In this study, Toroney et al. set out to identify the mechanism of Prp43p action in splicing. The authors use biochemical approaches to demonstrate that the 3' end of U6 acts as the key substrate by which Prp43p promotes disassembly and intron release, thereby terminating splicing. The termination of pre-mRNA splicing functions to discard suboptimal substrates, thereby enhancing fidelity, and to release excised introns in a manner coupled to spliceosome disassembly, thereby allowing recycling. The mechanism of termination, including the RNA target of the DEAH-box ATPase Prp43p, remains ambiguous. We discovered a critical role for nucleotides at the 3′ end of the catalytic U6 small nuclear RNA in splicing termination. Although conserved sequence at the 3′ end is not required, 2′ hydroxyls are, paralleling requirements for Prp43p biochemical activities. Although the 3′ end of U6 is not required for recruiting Prp43p to the spliceosome, the 3′ end cross-links directly to Prp43p in an RNA-dependent manner. Our data indicate a mechanism of splicing termination in which Prp43p translocates along U6 from the 3′ end to disassemble the spliceosome and thereby release suboptimal substrates or excised introns. This mechanism reveals that the spliceosome becomes primed for termination at the same stage it becomes activated for catalysis, implying a requirement for stringent control of spliceosome activity within the cell.
Collapse
Affiliation(s)
- Rebecca Toroney
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | - Klaus H Nielsen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| |
Collapse
|
26
|
Talkish J, Igel H, Hunter O, Horner SW, Jeffery NN, Leach JR, Jenkins JL, Kielkopf CL, Ares M. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. RNA (NEW YORK, N.Y.) 2019; 25:1020-1037. [PMID: 31110137 PMCID: PMC6633205 DOI: 10.1261/rna.070649.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 05/16/2023]
Abstract
Stable recognition of the intron branchpoint (BP) by the U2 snRNP to form the pre-spliceosome is the first ATP-dependent step of splicing. Genetic and biochemical data from yeast indicate that Cus2 aids U2 snRNA folding into the stem IIa conformation prior to pre-spliceosome formation. Cus2 must then be removed by an ATP-dependent function of Prp5 before assembly can progress. However, the location from which Cus2 is displaced and the nature of its binding to the U2 snRNP are unknown. Here, we show that Cus2 contains a conserved UHM (U2AF homology motif) that binds Hsh155, the yeast homolog of human SF3b1, through a conserved ULM (U2AF ligand motif). Mutations in either motif block binding and allow pre-spliceosome formation without ATP. A 2.0 Å resolution structure of the Hsh155 ULM in complex with the UHM of Tat-SF1, the human homolog of Cus2, and complementary binding assays show that the interaction is highly similar between yeast and humans. Furthermore, we show that Tat-SF1 can replace Cus2 function by enforcing ATP dependence of pre-spliceosome formation in yeast extracts. Cus2 is removed before pre-spliceosome formation, and both Cus2 and its Hsh155 ULM binding site are absent from available cryo-EM structure models. However, our data are consistent with the apparent location of the disordered Hsh155 ULM between the U2 stem-loop IIa and the HEAT repeats of Hsh155 that interact with Prp5. We propose a model in which Prp5 uses ATP to remove Cus2 from Hsh155 such that extended base-pairing between U2 snRNA and the intron BP can occur.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Steven W Horner
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Nazish N Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Justin R Leach
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
27
|
Xia X. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns. Methods 2019; 176:25-33. [PMID: 30926533 DOI: 10.1016/j.ymeth.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023] Open
Abstract
Introns in different genes, or even different introns within the same gene, often have different splice sites and differ in splicing efficiency (SE). One expects mass-transcribed genes to have introns with higher SE than weakly transcribed genes. However, such a simple expectation cannot be tested directly because variable SE for these genes is often not measured. Mechanistically, SE should depend on signal strength at key splice sites (SS) such as 5'SS, 3'SS and branchpoint site (BPS), i.e., SE = F(5'SS, 3'SS, BPS). However, without SE, we again cannot model how these splice sites contribute to SE. Here I present an RNA-Seq approach to quantify SE for each of the 304 introns in yeast (Saccharomyces cerevisiae) genes, including 24 in the 5'UTR, by measuring 1) number of reads mapped to exon-exon junctions (NEE) as a proxy for the abundance of spliced form, and 2) number of reads mapped to exon-intron junction (NEI5 and NEI3 at 5' and 3' ends of intron) as a proxy for the abundance of unspliced form. The total mRNA is NTotal = NEE + p * NEI5 + (1-p) * NEI3, with the simplest p = 0.5 but statistical methods were presented to estimate p from data. An estimated p is needed because NEI5 is expected to be smaller than NEI3 due to 1) step 1 splicing occurs before step 2 so EI5 is broken before EI3, 2) enrichment of poly(A) mRNA by oligo-dT, and 3) 5' degradation. SE is defined as the proportion (NEE/NTotal). Application of the method shows that ribosomal protein messages are efficiently and mostly cotranscriptionally spliced. Yeast genes with long introns are also spliced efficiently. HAC1/YFL031W is poorly spliced partly because its splicing involves a nonspliceosome mechanism and partly because Ire1p, which participate in splicing HAC1, is hardly expressed. Many putative yeast genes have low SE, and some splice sites are incorrectly annotated.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
28
|
Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U. Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. RNA Biol 2019; 16:754-769. [PMID: 30810475 DOI: 10.1080/15476286.2019.1585737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.
Collapse
Affiliation(s)
- Drisya Vijayakumari
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Amit Kumar Sharma
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Rakesh Kumar
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Usha Vijayraghavan
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
29
|
Wan R, Bai R, Yan C, Lei J, Shi Y. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. Cell 2019; 177:339-351.e13. [PMID: 30879786 DOI: 10.1016/j.cell.2019.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
30
|
Gautam A, Beggs JD. Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing. RNA Biol 2019; 16:185-195. [PMID: 30672374 PMCID: PMC6380292 DOI: 10.1080/15476286.2018.1561145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/23/2022] Open
Abstract
Snu114, a component of the U5 snRNP, plays a key role in activation of the spliceosome. It controls the action of Brr2, an RNA-stimulated ATPase/RNA helicase that disrupts U4/U6 snRNA base-pairing prior to formation of the spliceosome's catalytic centre. Snu114 has a highly conserved domain structure that resembles that of the GTPase EF-2/EF-G in the ribosome. It has been suggested that the regulatory function of Snu114 in activation of the spliceosome is mediated by its C-terminal region, however, there has been only limited characterisation of the interactions of the C-terminal domains. We show a direct interaction between protein phosphatase PP1 and Snu114 domain 'IVa' and identify sequence 'YGVQYK' as a PP1 binding motif. Interestingly, this motif is also required for Cwc21 binding. We provide evidence for mutually exclusive interaction of Cwc21 and PP1 with Snu114 and show that the affinity of Cwc21 and PP1 for Snu114 is influenced by the different nucleotide-bound states of Snu114. Moreover, we identify a novel mutation in domain IVa that, while not affecting vegetative growth of yeast cells, causes a defect in splicing transcripts of the meiotic genes, SPO22, AMA1 and MER2, thereby inhibiting an early stage of meiosis.
Collapse
Affiliation(s)
- Amit Gautam
- a Wellcome Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Jean D Beggs
- a Wellcome Centre for Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
31
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
32
|
Su YL, Chen HC, Tsai RT, Lin PC, Cheng SC. Cwc23 is a component of the NTR complex and functions to stabilize Ntr1 and facilitate disassembly of spliceosome intermediates. Nucleic Acids Res 2018; 46:3764-3773. [PMID: 29390077 PMCID: PMC6044358 DOI: 10.1093/nar/gky052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
Cwc23 is a member of the J protein family, and has been shown to interact with Ntr1, a scaffold protein that interacts with Ntr2 and Prp43 to form the NTR complex that mediates spliceosome disassembly. We show that Cwc23 is also an intrinsic component of the NTR complex, and that it interacts with the carboxyl terminus of Ntr1. Metabolic depletion of Cwc23 concurrently depleted Ntr1 and Ntr2, suggesting a role for Cwc23 in stabilizing these two proteins. Ntr1, Ntr2 and Cwc23 are stoichiometrically balanced, and form a stable heterotrimer. Depletion of Cwc23 from splicing extracts using antibodies resulted in depletion of all three proteins and accumulation of intron-lariat in the splicing reaction. Cwc23 is not required for disassembly of intron-lariat spliceosome (ILS), but facilitates disassembly of spliceosome intermediates after the actions of Prp2 and Prp16 by stabilizing the association of Ntr1 with the spliceosome. Cwc23 has a more limited effect on the association of Ntr1 with the ILS. Our data suggest that Cwc23 is important for maintaining the levels of Ntr1 and Ntr2, and that it also plays a regulatory role in targeting spliceosome intermediates for disassembly.
Collapse
Affiliation(s)
- Yu-Lun Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Rong-Tzong Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Pei-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
33
|
Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochem Soc Trans 2017; 45:1313-1321. [PMID: 29150525 DOI: 10.1042/bst20170095] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Structured RNAs and RNA-protein complexes (RNPs) fold through complex pathways that are replete with misfolded traps, and many RNAs and RNPs undergo extensive conformational changes during their functional cycles. These folding steps and conformational transitions are frequently promoted by RNA chaperone proteins, notably by superfamily 2 (SF2) RNA helicase proteins. The two largest families of SF2 helicases, DEAD-box and DEAH-box proteins, share evolutionarily conserved helicase cores, but unwind RNA helices through distinct mechanisms. Recent studies have advanced our understanding of how their distinct mechanisms enable DEAD-box proteins to disrupt RNA base pairs on the surfaces of structured RNAs and RNPs, while some DEAH-box proteins are adept at disrupting base pairs in the interior of RNPs. Proteins from these families use these mechanisms to chaperone folding and promote rearrangements of structured RNAs and RNPs, including the spliceosome, and may use related mechanisms to maintain cellular messenger RNAs in unfolded or partially unfolded conformations.
Collapse
|
34
|
Ito S, Koso H, Sakamoto K, Watanabe S. RNA helicase DHX15 acts as a tumour suppressor in glioma. Br J Cancer 2017; 117:1349-1359. [PMID: 28829764 PMCID: PMC5672939 DOI: 10.1038/bjc.2017.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common form of malignant brain cancer and has a poor prognosis in adults. We identified Dhx15 as a candidate tumour suppressor gene in glioma by transposon-based mutagenesis. Dhx15 is an adenosine triphosphate (ATP)-dependent RNA helicase belonging to the DEAH-box (DHX) helicase family, but its role in cancer remains elusive. METHODS DHX15 expression levels were examined in glioma cell lines. DHX15 functions were examined by gain- and loss-of-function analyses. Protein motifs required for the function of DHX15 were investigated by the analysis of mutant proteins. RESULTS DHX15 expression was lower in human glioma cell lines than in normal neural stem cells. Dhx15 knockdown resulted in enhanced proliferation of primary immortalised mouse astrocytes, supporting the notion that DHX15 is a tumour suppressor. Retroviral-mediated transduction of DHX15 into glioma cell lines suppressed proliferation and foci formation in vitro. Moreover, DHX15 suppressed tumour formation in a xenograft mouse model. ATPase activity was not required for the growth-inhibitory function of DHX15; however, the Ia, Ib, IV, and V motifs, which act as RNA-binding domains in DHX15, were essential. qPCR analysis revealed that DHX15 suppressed expression of NF-κB downstream target genes as well as the genes involved in splicing. CONCLUSIONS These findings provide evidence that DHX15 acts as a tumour suppressor gene in glioma.
Collapse
Affiliation(s)
- Shingo Ito
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
35
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|
36
|
Jing Y, Nguyen MM, Wang D, Pascal LE, Guo W, Xu Y, Ai J, Deng FM, Masoodi KZ, Yu X, Zhang J, Nelson JB, Xia S, Wang Z. DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 2017; 37:638-650. [PMID: 28991234 PMCID: PMC5794523 DOI: 10.1038/onc.2017.371] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/03/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022]
Abstract
Androgen receptor (AR) activation is critical for prostate cancer development and progression, including castration-resistance. The nuclear export signal of AR (NESAR) plays an important role in AR intracellular trafficking and proteasome-dependent degradation. Here, we identified the RNA helicase DHX15 as a novel AR co-activator using a yeast mutagenesis screen and revealed that DHX15 regulates AR activity by modulating E3 ligase Siah2-mediated AR ubiquitination independent of its ATPase activity. DHX15 and Siah2 form a complex with AR, through NESAR. DHX15 stabilized Siah2 and enhanced its E3 ubiquitin ligase activity, resulting in AR activation. Importantly, DHX15 was upregulated in prostate cancer specimens and its expression was correlated with Gleason scores and PSA recurrence. Furthermore, DHX15 immunostaining correlated with Siah2. Finally, DHX15 knockdown inhibited the growth of C4-2 prostate tumor xenografts in mice. Collectively, our data argue that DHX15 enhances AR transcriptional activity and contributes to prostate cancer progression through Siah2.
Collapse
Affiliation(s)
- Y Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M M Nguyen
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L E Pascal
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Guo
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Y Xu
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, The Second Xiangya Hospital of Central South University, Hunan, China.,The third Xiangya Hospital of Central South University, Changsha, China
| | - J Ai
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - F-M Deng
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - K Z Masoodi
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, J&K, India
| | - X Yu
- Department of Geriatrics, Guangzhou General Hospital of Guangzhou Military Command; Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support; Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support; Guangzhou, Guangdong, China.,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - J Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J B Nelson
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Z Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Wan R, Yan C, Bai R, Lei J, Shi Y. Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae. Cell 2017; 171:120-132.e12. [PMID: 28919079 DOI: 10.1016/j.cell.2017.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou 310064, Zhejiang Province, China.
| |
Collapse
|
38
|
Carrocci TJ, Zoerner DM, Paulson JC, Hoskins AA. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res 2017; 45:4837-4852. [PMID: 28062854 PMCID: PMC5416834 DOI: 10.1093/nar/gkw1349] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
RNA and protein components of the spliceosome work together to identify the 5΄ splice site, the 3΄ splice site, and the branchsite (BS) of nascent pre-mRNA. SF3b1 plays a key role in recruiting the U2 snRNP to the BS. Mutations in human SF3b1 have been linked to many diseases such as myelodysplasia (MDS) and cancer. We have used SF3b1 mutations associated with MDS to interrogate the role of the yeast ortholog, Hsh155, in BS selection and splicing. These alleles change how the spliceosome recognizes the BS and alter splicing when nonconsensus nucleotides are present at the −2, −1 and +1 positions relative to the branchpoint adenosine. This indicates that changes in BS usage observed in humans with SF3b1 mutations may result from perturbation of a conserved mechanism of BS recognition. Notably, different HSH155 alleles elicit disparate effects on splicing: some increase the fidelity of BS selection while others decrease fidelity. Our data support a model wherein conformational changes in SF3b1 promote U2 association with the BS independently of the action of the DEAD-box ATPase Prp5. We propose that SF3b1 functions to stabilize weak U2/BS duplexes to drive spliceosome assembly and splicing.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas M Zoerner
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
39
|
Nissen KE, Homer CM, Ryan CJ, Shales M, Krogan NJ, Patrick KL, Guthrie C. The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 2017; 31:688-701. [PMID: 28446597 PMCID: PMC5411709 DOI: 10.1101/gad.295287.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
In this study, Nissen et al. investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast S. pombe. The findings suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe. Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z.
Collapse
Affiliation(s)
- Kelly E Nissen
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Christina M Homer
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA.,J. David Gladstone Institutes, San Francisco 94158, California, USA
| | - Kristin L Patrick
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| |
Collapse
|
40
|
Chen Z, Gui B, Zhang Y, Xie G, Li W, Liu S, Xu B, Wu C, He L, Yang J, Yi X, Yang X, Sun L, Liang J, Shang Y. Identification of a 35S U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP) complex intermediate in spliceosome assembly. J Biol Chem 2017; 292:18113-18128. [PMID: 28878014 DOI: 10.1074/jbc.m117.797357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
The de novo assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding. We found that ZIP physically associates with the U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP). Remarkably, the ZIP-containing tri-snRNP, which has a sedimentation coefficient of ∼35S, is a tri-snRNP that has not been described previously. We also found that the 35S tri-snRNP contains hPrp24, indicative of a state in which the U4/U6 di-snRNP is integrating with the U5 snRNP. We found that the 35S tri-snRNP is enriched in the Cajal body, indicating that it is an assembly intermediate during 25S tri-snRNP maturation. We showed that the 35S tri-snRNP also contains hPrp43, in which ATPase/RNA helicase activities are stimulated by ZIP. Our study identified, for the first time, a tri-snRNP intermediate, shedding new light on the de novo assembly and recycling of the U4/U6.U5 tri-snRNP.
Collapse
Affiliation(s)
- Zhe Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shumeng Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chongyang Wu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Shang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China, .,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China, and.,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
41
|
Neves LT, Douglass S, Spreafico R, Venkataramanan S, Kress TL, Johnson TL. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae. Genes Dev 2017; 31:702-717. [PMID: 28446598 PMCID: PMC5411710 DOI: 10.1101/gad.295188.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio-temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5' ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing.
Collapse
Affiliation(s)
- Lauren T Neves
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA.,Graduate Program in Molecular Biology Interdepartmental Program, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Douglass
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Srivats Venkataramanan
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA
| | - Tracy L Kress
- Department of Biology, The College of New Jersey, Ewing, New Jersey 08628, USA
| | - Tracy L Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095 USA.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
42
|
Reimer KA, Stark MR, Aguilar LC, Stark SR, Burke RD, Moore J, Fahlman RP, Yip CK, Kuroiwa H, Oeffinger M, Rader SD. The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors. RNA (NEW YORK, N.Y.) 2017; 23:952-967. [PMID: 28325844 PMCID: PMC5435867 DOI: 10.1261/rna.058487.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga Cyanidioschyzon merolae and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the C. merolae LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Martha R Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Lisbeth-Carolina Aguilar
- Laboratory of RNP Biochemistry, Institut de Recherches Cliniques de Montréal (IRCM), Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sierra R Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Jack Moore
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Haruko Kuroiwa
- Kuroiwa Initiative Research Unit, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Marlene Oeffinger
- Laboratory of RNP Biochemistry, Institut de Recherches Cliniques de Montréal (IRCM), Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
43
|
Tseng CK, Chung CS, Chen HC, Cheng SC. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2017; 23:546-556. [PMID: 28057857 PMCID: PMC5340917 DOI: 10.1261/rna.059204.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Splicing of precursor mRNA occurs via two consecutive steps of transesterification reaction; both require ATP and several proteins. Despite the energy requirement in the catalytic phase, incubation of the purified spliceosome under proper ionic conditions can elicit competitive reversible transesterification, debranching, and spliced-exon-reopening reactions without the necessity for ATP or other factors, suggesting that small changes in the conformational state of the spliceosome can lead to disparate chemical consequences for the substrate. We show here that Cwc25 plays a central role in modulating the conformational state of the catalytic spliceosome during normal splicing reactions. Cwc25 binds tightly to the spliceosome after the reaction and is then removed from the spliceosome, which normally requires DExD/H-box protein Prp16 and ATP hydrolysis, to allow the occurrence of the second reaction. When deprived of Cwc25, the purified first-step spliceosome catalyzes both forward and reverse splicing reactions under normal splicing conditions without requiring energy. Both reactions are inhibited when Cwc25 is added back, presumably due to the stabilization of first-step conformation. Prp16 is dispensable for the second reaction when splicing is carried out under conditions that destabilize Cwc25. We also show that the purified precatalytic spliceosome can catalyze two steps of the reaction at a low efficiency without requiring Cwc25, Slu7, or Prp18 when incubated under proper conditions. Our study reveals conformational modulation of the spliceosome by Cwc25 and Prp16 in stabilization and destabilization of first-step conformation, respectively, to facilitate the splicing process.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
44
|
Mayerle M, Guthrie C. Genetics and biochemistry remain essential in the structural era of the spliceosome. Methods 2017; 125:3-9. [PMID: 28132896 DOI: 10.1016/j.ymeth.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
The spliceosome is not a single macromolecular machine. Rather it is a collection of dynamic heterogeneous subcomplexes that rapidly interconvert throughout the course of a typical splicing cycle. Because of this, for many years the only high resolution structures of the spliceosome available were of smaller, isolated protein or RNA components. Consequently much of our current understanding of the spliceosome derives from biochemical and genetic techniques. Now with the publication of multiple, high resolution structures of the spliceosome, some question the relevance of traditional biochemical and genetic techniques to the splicing field. We argue such techniques are not only relevant, but vital for an in depth mechanistic understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Tauchert MJ, Fourmann JB, Lührmann R, Ficner R. Structural insights into the mechanism of the DEAH-box RNA helicase Prp43. eLife 2017; 6. [PMID: 28092261 PMCID: PMC5262380 DOI: 10.7554/elife.21510] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/15/2017] [Indexed: 12/29/2022] Open
Abstract
The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43•ATP-analog•RNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a β-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases. DOI:http://dx.doi.org/10.7554/eLife.21510.001
Collapse
Affiliation(s)
- Marcel J Tauchert
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Absmeier E, Santos KF, Wahl MC. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 2016; 15:3362-3377. [PMID: 27792457 DOI: 10.1080/15384101.2016.1249549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
47
|
Rohlman CE, Blanco MR, Walter NG. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome. Methods Enzymol 2016; 581:257-283. [PMID: 27793282 DOI: 10.1016/bs.mie.2016.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly.
Collapse
Affiliation(s)
| | - M R Blanco
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - N G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
48
|
Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites. Cell 2016; 164:985-98. [PMID: 26919433 DOI: 10.1016/j.cell.2016.01.025] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
During pre-mRNA splicing, a central step in the expression and regulation of eukaryotic genes, the spliceosome selects splice sites for intron excision and exon ligation. In doing so, the spliceosome must distinguish optimal from suboptimal splice sites. At the catalytic stage of splicing, suboptimal splice sites are repressed by the DEAH-box ATPases Prp16 and Prp22. Here, using budding yeast, we show that these ATPases function further by enabling the spliceosome to search for and utilize alternative branch sites and 3' splice sites. The ATPases facilitate this search by remodeling the splicing substrate to disengage candidate splice sites. Our data support a mechanism involving 3' to 5' translocation of the ATPases along substrate RNA and toward a candidate site, but, surprisingly, not across the site. Thus, our data implicate DEAH-box ATPases in acting at a distance by pulling substrate RNA from the catalytic core of the spliceosome.
Collapse
Affiliation(s)
- Daniel R Semlow
- Graduate Program in Cell and Molecular Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Mario R Blanco
- Cellular and Molecular Biology, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA; Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
49
|
Wan R, Yan C, Bai R, Huang G, Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 2016; 353:895-904. [PMID: 27445308 DOI: 10.1126/science.aag2235] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of pre-messenger RNA splicing, carried out by the spliceosome, comprises two sequential transesterification reactions, which result in the removal of an intron and the joining of two exons. Here we report an atomic structure of a catalytic step I spliceosome (known as the C complex) from Saccharomyces cerevisiae, as determined by cryo-electron microscopy at an average resolution of 3.4 angstroms. In the structure, the 2'-OH of the invariant adenine nucleotide in the branch point sequence (BPS) is covalently joined to the phosphate at the 5' end of the 5' splice site (5'SS), forming an intron lariat. The freed 5' exon remains anchored to loop I of U5 small nuclear RNA (snRNA), and the 5'SS and BPS of the intron form duplexes with conserved U6 and U2 snRNA sequences, respectively. Specific placement of these RNA elements at the catalytic cavity of Prp8 is stabilized by 15 protein components, including Snu114 and the splicing factors Cwc21, Cwc22, Cwc25, and Yju2. These features, representing the conformation of the spliceosome after the first-step reaction, predict structural changes that are needed for the execution of the second-step transesterification reaction.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Hoskins AA, Rodgers ML, Friedman LJ, Gelles J, Moore MJ. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. eLife 2016; 5. [PMID: 27244240 PMCID: PMC4922858 DOI: 10.7554/elife.14166] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI:http://dx.doi.org/10.7554/eLife.14166.001 The genes in an organism’s DNA may be expressed to form a protein via an intermediate molecule called RNA. In many organisms including humans, gene expression often begins by making a precursor molecule called a pre-mRNA. The pre-mRNA contains regions called exons that code for the protein product and regions called introns that do not. A machine in the cell called the spliceosome has the job of removing the introns in the pre-mRNA and stitching the exons together by a process known as splicing. The spliceosome is made up of dozens of components that assemble on the pre-mRNAs. Before a newly assembled spliceosome can carry out splicing, it must be activated. The activation process involves several steps that are powered by the cell's universal power source (a molecule called ATP), including the release of many components from the spliceosome. Many of the details of the activation process are unclear. Spliceosomes in the yeast species Saccharomyces cerevisiae are similar to spliceosomes from humans, and so are often studied experimentally. Hoskins et al. have now used a technique called colocalization single molecule fluorescence spectroscopy to follow, in real time, a single yeast spliceosome molecule as it activates. This technique uses a specialized microscope and a number of colored lasers to detect different spliceosome proteins at the same time. Hoskins et al. found that one of the steps during activation is irreversible – once that step occurs, the spliceosome must either perform the next activation steps or start the processes of assembly and activation over again. Hoskins et al. also discovered that ATP causes some spliceosomes to be discarded during activation and not used for splicing. This indicates that before spliceosomes are allowed to activate, they may undergo 'quality control', which may be important for making sure that gene expression occurs efficiently and correctly. Future studies will investigate how this quality control process works in further detail. DOI:http://dx.doi.org/10.7554/eLife.14166.002
Collapse
Affiliation(s)
- Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|