1
|
Mindel V, Brodsky S, Yung H, Manadre W, Barkai N. Revisiting the model for coactivator recruitment: Med15 can select its target sites independent of promoter-bound transcription factors. Nucleic Acids Res 2024; 52:12093-12111. [PMID: 39187372 PMCID: PMC11551773 DOI: 10.1093/nar/gkae718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Activation domains (ADs) within transcription factors (TFs) induce gene expression by recruiting coactivators such as the Mediator complex. Coactivators lack DNA binding domains (DBDs) and are assumed to passively follow their recruiting TFs. This is supported by direct AD-coactivator interactions seen in vitro but has not yet been tested in living cells. To examine that, we targeted two Med15-recruiting ADs to a range of budding yeast promoters through fusion with different DBDs. The DBD-AD fusions localized to hundreds of genomic sites but recruited Med15 and induced transcription in only a subset of bound promoters, characterized by a fuzzy-nucleosome architecture. Direct DBD-Med15 fusions shifted DBD localization towards fuzzy-nucleosome promoters, including promoters devoid of the endogenous Mediator. We propose that Med15, and perhaps other coactivators, possess inherent promoter preference and thus actively contribute to the selection of TF-induced genes.
Collapse
Affiliation(s)
- Vladimir Mindel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Yung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wajd Manadre
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Komives E, Sanchez-Rodriguez R, Taghavi H, Fuxreiter M. Fuzzy protein-DNA interactions and beyond: A common theme in transcription? Curr Opin Struct Biol 2024; 89:102941. [PMID: 39423710 DOI: 10.1016/j.sbi.2024.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Gene expression regulation requires both diversity and specificity. How can these two contradictory conditions be reconciled? Dynamic DNA recognition mechanisms lead to heterogeneous bound conformations, which can be shifted by the cellular cues. Here we summarise recent experimental evidence on how fuzzy interactions contribute to chromatin remodelling, regulation of DNA replication and repair and transcription factor binding. We describe how the binding mode continuum between DNA and regulatory factors lead to variable, multisite contact patterns; polyelectrolyte competitions; on-the-fly shape readouts; autoinhibition controlled by posttranslational modifications or dynamic oligomerisation mechanisms. Increasing experimental evidence supports the rugged energy landscape of the bound protein-DNA assembly, modulation of which leads to distinct functional outcomes. Recent results suggest the evolutionary conservation of these combinatorial mechanisms with moderate sequence constraints in the malleable transcriptional machinery.
Collapse
Affiliation(s)
- Elisabeth Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | | | - Hamed Taghavi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Physics and Astronomy, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Kribelbauer-Swietek JF, Pushkarev O, Gardeux V, Faltejskova K, Russeil J, van Mierlo G, Deplancke B. Context transcription factors establish cooperative environments and mediate enhancer communication. Nat Genet 2024; 56:2199-2212. [PMID: 39363017 PMCID: PMC11525195 DOI: 10.1038/s41588-024-01892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, 'context-only' TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, 'context-initiator' TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity.
Collapse
Affiliation(s)
- Judith F Kribelbauer-Swietek
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Katerina Faltejskova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
4
|
DelRosso N, Suzuki PH, Griffith D, Lotthammer JM, Novak B, Kocalar S, Sheth MU, Holehouse AS, Bintu L, Fordyce P. High-throughput affinity measurements of direct interactions between activation domains and co-activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608698. [PMID: 39229005 PMCID: PMC11370418 DOI: 10.1101/2024.08.19.608698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4 and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500 K ds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g. enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, and in vitro affinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.
Collapse
Affiliation(s)
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Kocalar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya U Sheth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Lacramioara Bintu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| |
Collapse
|
5
|
Waterbury AL, Kwok HS, Lee C, Narducci DN, Freedy AM, Su C, Raval S, Reiter AH, Hawkins W, Lee K, Li J, Hoenig SM, Vinyard ME, Cole PA, Hansen AS, Carr SA, Papanastasiou M, Liau BB. An autoinhibitory switch of the LSD1 disordered region controls enhancer silencing. Mol Cell 2024; 84:2238-2254.e11. [PMID: 38870936 PMCID: PMC11193646 DOI: 10.1016/j.molcel.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.
Collapse
Affiliation(s)
- Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Domenic N Narducci
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Allyson M Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Cindy Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shaunak Raval
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew H Reiter
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Hawkins
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiaming Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuel M Hoenig
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anders S Hansen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Ginell GM, Emenecker RJ, Lotthammer JM, Usher ET, Holehouse AS. Direct prediction of intermolecular interactions driven by disordered regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597104. [PMID: 38895487 PMCID: PMC11185574 DOI: 10.1101/2024.06.03.597104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Intrinsically disordered regions (IDRs) are critical for a wide variety of cellular functions, many of which involve interactions with partner proteins. Molecular recognition is typically considered through the lens of sequence-specific binding events. However, a growing body of work has shown that IDRs often interact with partners in a manner that does not depend on the precise order of the amino acid order, instead driven by complementary chemical interactions leading to disordered bound-state complexes. Despite this emerging paradigm, we lack tools to describe, quantify, predict, and interpret these types of structurally heterogeneous interactions from the underlying amino acid sequences. Here, we repurpose the chemical physics developed originally for molecular simulations to develop an approach for predicting intermolecular interactions between IDRs and partner proteins. Our approach enables the direct prediction of phase diagrams, the identification of chemically-specific interaction hotspots on IDRs, and a route to develop and test mechanistic hypotheses regarding IDR function in the context of molecular recognition. We use our approach to examine a range of systems and questions to highlight its versatility and applicability.
Collapse
Affiliation(s)
- Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Ryan. J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Jeffrey M. Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
7
|
Hadži S, Živič Z, Kovačič M, Zavrtanik U, Haesaerts S, Charlier D, Plavec J, Volkov AN, Lah J, Loris R. Fuzzy recognition by the prokaryotic transcription factor HigA2 from Vibrio cholerae. Nat Commun 2024; 15:3105. [PMID: 38600130 PMCID: PMC11006873 DOI: 10.1038/s41467-024-47296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Disordered protein sequences can exhibit different binding modes, ranging from well-ordered folding-upon-binding to highly dynamic fuzzy binding. The primary function of the intrinsically disordered region of the antitoxin HigA2 from Vibrio cholerae is to neutralize HigB2 toxin through ultra-high-affinity folding-upon-binding interaction. Here, we show that the same intrinsically disordered region can also mediate fuzzy interactions with its operator DNA and, through interplay with the folded helix-turn-helix domain, regulates transcription from the higBA2 operon. NMR, SAXS, ITC and in vivo experiments converge towards a consistent picture where a specific set of residues in the intrinsically disordered region mediate electrostatic and hydrophobic interactions while "hovering" over the DNA operator. Sensitivity of the intrinsically disordered region to scrambling the sequence, position-specific contacts and absence of redundant, multivalent interactions, point towards a more specific type of fuzzy binding. Our work demonstrates how a bacterial regulator achieves dual functionality by utilizing two distinct interaction modes within the same disordered sequence.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Zala Živič
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Matic Kovačič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova, 19, 1000, Ljubljana, Slovenia
| | - Uroš Zavrtanik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Daniel Charlier
- Research group of Microbiology, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova, 19, 1000, Ljubljana, Slovenia
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
8
|
Monté D, Lens Z, Dewitte F, Villeret V, Verger A. Assessment of machine-learning predictions for the Mediator complex subunit MED25 ACID domain interactions with transactivation domains. FEBS Lett 2024; 598:758-773. [PMID: 38436147 DOI: 10.1002/1873-3468.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
The human Mediator complex subunit MED25 binds transactivation domains (TADs) present in various cellular and viral proteins using two binding interfaces, named H1 and H2, which are found on opposite sides of its ACID domain. Here, we use and compare deep learning methods to characterize human MED25-TAD interfaces and assess the predicted models to published experimental data. For the H1 interface, AlphaFold produces predictions with high-reliability scores that agree well with experimental data, while the H2 interface predictions appear inconsistent, preventing reliable binding modes. Despite these limitations, we experimentally assess the validity of MED25 interface predictions with the viral transcriptional activators Lana-1 and IE62. AlphaFold predictions also suggest the existence of a unique hydrophobic pocket for the Arabidopsis MED25 ACID domain.
Collapse
Affiliation(s)
- Didier Monté
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Zoé Lens
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Frédérique Dewitte
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Vincent Villeret
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Alexis Verger
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| |
Collapse
|
9
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Udupa A, Kotha SR, Staller MV. Commonly asked questions about transcriptional activation domains. Curr Opin Struct Biol 2024; 84:102732. [PMID: 38056064 PMCID: PMC11193542 DOI: 10.1016/j.sbi.2023.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Eukaryotic transcription factors activate gene expression with their DNA-binding domains and activation domains. DNA-binding domains bind the genome by recognizing structurally related DNA sequences; they are structured, conserved, and predictable from protein sequences. Activation domains recruit chromatin modifiers, coactivator complexes, or basal transcriptional machinery via structurally diverse protein-protein interactions. Activation domains and DNA-binding domains have been called independent, modular units, but there are many departures from modularity, including interactions between these regions and overlap in function. Compared to DNA-binding domains, activation domains are poorly understood because they are poorly conserved, intrinsically disordered, and difficult to predict from protein sequences. This review, organized around commonly asked questions, describes recent progress that the field has made in understanding the sequence features that control activation domains and predicting them from sequence.
Collapse
Affiliation(s)
- Aditya Udupa
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | - Sanjana R Kotha
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA; Center for Computational Biology, University of California, Berkeley, 94720, USA
| | - Max V Staller
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA; Center for Computational Biology, University of California, Berkeley, 94720, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Basu S, Martínez-Cristóbal P, Frigolé-Vivas M, Pesarrodona M, Lewis M, Szulc E, Bañuelos CA, Sánchez-Zarzalejo C, Bielskutė S, Zhu J, Pombo-García K, Garcia-Cabau C, Zodi L, Dockx H, Smak J, Kaur H, Batlle C, Mateos B, Biesaga M, Escobedo A, Bardia L, Verdaguer X, Ruffoni A, Mawji NR, Wang J, Obst JK, Tam T, Brun-Heath I, Ventura S, Meierhofer D, García J, Robustelli P, Stracker TH, Sadar MD, Riera A, Hnisz D, Salvatella X. Rational optimization of a transcription factor activation domain inhibitor. Nat Struct Mol Biol 2023; 30:1958-1969. [PMID: 38049566 PMCID: PMC10716049 DOI: 10.1038/s41594-023-01159-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.
Collapse
Affiliation(s)
- Shaon Basu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paula Martínez-Cristóbal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Pesarrodona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elzbieta Szulc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - C Adriana Bañuelos
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stasė Bielskutė
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jiaqi Zhu
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Levente Zodi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jordann Smak
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Harpreet Kaur
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cristina Batlle
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain
| | - Alessandro Ruffoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nasrin R Mawji
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jun Wang
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jon K Obst
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Teresa Tam
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain.
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
12
|
Chen A, Ling J, Peng X, Liu X, Mao S, Chen Y, Qin M, Zhang S, Bai Y, Song J, Feng Z, Ma L, He D, Mei L, He C, Feng Y. A Novel EYA1 Mutation Causing Alternative RNA Splicing in a Chinese Family With Branchio-Oto Syndrome: Implications for Molecular Diagnosis and Clinical Application. Clin Exp Otorhinolaryngol 2023; 16:342-358. [PMID: 37817567 DOI: 10.21053/ceo.2023.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES Branchio-oto syndrome (BOS) primarily manifests as hearing loss, preauricular pits, and branchial defects. EYA1 is the most common pathogenic gene, and splicing mutations account for a substantial proportion of cases. However, few studies have addressed the structural changes in the protein caused by splicing mutations and potential pathogenic factors, and several studies have shown that middle-ear surgery has limited effectiveness in improving hearing in these patients. BOS has also been relatively infrequently reported in the Chinese population. This study explored the genetic etiology in the family of a proband with BOS and provided clinical treatment to improve the patient's hearing. METHODS We collected detailed clinical features and peripheral blood samples from the patients and unaffected individuals within the family. Pathogenic mutations were identified by whole-exome sequencing and cosegregation analysis and classified according to the American College of Medical Genetics and Genomics guidelines. Alternative splicing was verified through a minigene assay. The predicted three-dimensional protein structure and biochemical experiments were used to investigate the pathogenicity of the mutation. The proband underwent middle-ear surgery and was followed up at 1 month and 6 months postoperatively to monitor auditory improvement. RESULTS A novel heterozygous EYA1 splicing variant (c.1050+4 A>C) was identified and classified as pathogenic (PVS1(RNA), PM2, PP1). Skipping of exon 11 of the EYA1 pre-mRNA was confirmed using a minigene assay. This mutation may impair EYA1-SIX1 interactions, as shown by an immunoprecipitation assay. The EYA1-Mut protein exhibited cellular mislocalization and decreased protein expression in cytological experiments. Middle-ear surgery significantly improved hearing loss caused by bone-conduction abnormalities in the proband. CONCLUSION We reported a novel splicing variant of EYA1 in a Chinese family with BOS and revealed the potential molecular pathogenic mechanism. The significant hearing improvement observed in the proband after middle-ear surgery provides a reference for auditory rehabilitation in similar patients.
Collapse
Affiliation(s)
- Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha, China
| | - Xin Peng
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Liu
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Mao
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongjia Chen
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mengyao Qin
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Zhang
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Lu Ma
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, China
| | - Dinghua He
- Department of Otorhinolaryngology, The Affiliated Maternal and Child Health Hospital of Hunan Province, Hengyang Medical School, University of South China, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- Department of Otorhinolaryngology, The Affiliated Maternal and Child Health Hospital of Hunan Province, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
13
|
Kotha SR, Staller MV. Clusters of acidic and hydrophobic residues can predict acidic transcriptional activation domains from protein sequence. Genetics 2023; 225:iyad131. [PMID: 37462277 PMCID: PMC10550315 DOI: 10.1093/genetics/iyad131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 10/06/2023] Open
Abstract
Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation domains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and accurate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function. When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings into a new set of activation domain predictions on human transcription factors.
Collapse
Affiliation(s)
- Sanjana R Kotha
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Max Valentín Staller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Triandafillou CG, Pan RW, Dinner AR, Drummond DA. Pervasive, conserved secondary structure in highly charged protein regions. PLoS Comput Biol 2023; 19:e1011565. [PMID: 37844070 PMCID: PMC10602382 DOI: 10.1371/journal.pcbi.1011565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.
Collapse
Affiliation(s)
- Catherine G. Triandafillou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rosalind Wenshan Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Aaron R. Dinner
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
15
|
Park GT, Moon JK, Park S, Park SK, Baek J, Seo MS. Genome-wide analysis of KIX gene family for organ size regulation in soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252016. [PMID: 37828927 PMCID: PMC10565003 DOI: 10.3389/fpls.2023.1252016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The KIX domain, conserved among various nuclear and co-activator factors, acts as a binding site that interacts with other transcriptional activators and co-activators, playing a crucial role in gene expression regulation. In plants, the KIX domain is involved in plant hormone signaling, stress response regulation, cell cycle control, and differentiation, indicating its potential relevance to crop productivity. This study aims to identify and characterize KIX domains within the soybean (Glycine max L.) genome to predict their potential role in improving crop productivity. The conservation and evolutionary history of the KIX domains were explored in 59 plant species, confirming the presence of the KIX domains in diverse plants. Specifically, 13 KIX domains were identified within the soybean genome and classified into four main groups, namely GmKIX8/9, GmMED15, GmHAC, and GmRECQL, through sequence alignment, structural analysis, and phylogenetic tree construction. Association analysis was performed between KIX domain haplotypes and soybean seed-related agronomic traits using re-sequencing data from a core collection of 422 accessions. The results revealed correlations between SNP variations observed in GmKIX8-3 and GmMED15-4 and soybean seed phenotypic traits. Additionally, transcriptome analysis confirmed significant expression of the KIX domains during the early stages of soybean seed development. This study provides the first characterization of the structural, expression, genomic haplotype, and molecular features of the KIX domain in soybean, offering a foundation for functional analysis of the KIX domain in soybean and other plants.
Collapse
Affiliation(s)
- Gyu Tae Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Jung-Kyung Moon
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Sewon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Soo-Kwon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - JeongHo Baek
- Gene Engineering Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Mi-Suk Seo
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| |
Collapse
|
16
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Surprising connections between DNA binding and function for the near-complete set of yeast transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550593. [PMID: 37546716 PMCID: PMC10402042 DOI: 10.1101/2023.07.25.550593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes. How TFs locate their DNA targets and how multiple TFs cooperate to regulate individual genes is still unclear. Most yeast TFs are thought to regulate transcription via binding to upstream activating sequences, situated within a few hundred base pairs upstream of the regulated gene. While this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way with the large set of yeast TFs. Here, we have integrated information on the binding and expression targets for the near-complete set of yeast TFs. While we found many instances of functional TF binding sites in upstream regulatory regions, we found many more instances that do not fit this model. In many cases, rapid TF depletion affects gene expression where there is no detectable binding of that TF to the upstream region of the affected gene. In addition, for most TFs, only a small fraction of bound TFs regulates the nearby gene, showing that TF binding does not automatically correspond to regulation of the linked gene. Finally, we found that only a small percentage of TFs are exclusively strong activators or repressors with most TFs having dual function. Overall, our comprehensive mapping of TF binding and regulatory targets have both confirmed known TF relationships and revealed surprising properties of TF function.
Collapse
|
17
|
Hummel NFC, Zhou A, Li B, Markel K, Ornelas IJ, Shih PM. The trans-regulatory landscape of gene networks in plants. Cell Syst 2023; 14:501-511.e4. [PMID: 37348464 DOI: 10.1016/j.cels.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.
Collapse
Affiliation(s)
- Niklas F C Hummel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA; Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Andy Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Baohua Li
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Izaiah J Ornelas
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Vendruscolo M, Fuxreiter M. Towards sequence-based principles for protein phase separation predictions. Curr Opin Chem Biol 2023; 75:102317. [PMID: 37207400 DOI: 10.1016/j.cbpa.2023.102317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
The phenomenon of protein phase separation, which underlies the formation of biomolecular condensates, has been associated with numerous cellular functions. Recent studies indicate that the amino acid sequences of most proteins may harbour not only the code for folding into the native state but also for condensing into the liquid-like droplet state and the solid-like amyloid state. Here we review the current understanding of the principles for sequence-based methods for predicting the propensity of proteins for phase separation. A guiding concept is that entropic contributions are generally more important to stabilise the droplet state than they are for the native and amyloid states. Although estimating these entropic contributions has proven difficult, we describe some progress that has been recently made in this direction. To conclude, we discuss the challenges ahead to extend sequence-based prediction methods of protein phase separation to include quantitative in vivo characterisations of this process.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, PD 35131, Italy; Department of Physics and Astronomy, University of Padova, PD 35131, Italy.
| |
Collapse
|
19
|
Alternatively spliced exon regulates context-dependent MEF2D higher-order assembly during myogenesis. Nat Commun 2023; 14:1329. [PMID: 36898987 PMCID: PMC10006080 DOI: 10.1038/s41467-023-37017-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
During muscle cell differentiation, the alternatively spliced, acidic β-domain potentiates transcription of Myocyte-specific Enhancer Factor 2 (Mef2D). Sequence analysis by the FuzDrop method indicates that the β-domain can serve as an interaction element for Mef2D higher-order assembly. In accord, we observed Mef2D mobile nuclear condensates in C2C12 cells, similar to those formed through liquid-liquid phase separation. In addition, we found Mef2D solid-like aggregates in the cytosol, the presence of which correlated with higher transcriptional activity. In parallel, we observed a progress in the early phase of myotube development, and higher MyoD and desmin expression. In accord with our predictions, the formation of aggregates was promoted by rigid β-domain variants, as well as by a disordered β-domain variant, capable of switching between liquid-like and solid-like higher-order states. Along these lines, NMR and molecular dynamics simulations corroborated that the β-domain can sample both ordered and disordered interactions leading to compact and extended conformations. These results suggest that β-domain fine-tunes Mef2D higher-order assembly to the cellular context, which provides a platform for myogenic regulatory factors and the transcriptional apparatus during the developmental process.
Collapse
|
20
|
Gorbea Colón JJ, Palao L, Chen SF, Kim HJ, Snyder L, Chang YW, Tsai KL, Murakami K. Structural basis of a transcription pre-initiation complex on a divergent promoter. Mol Cell 2023; 83:574-588.e11. [PMID: 36731470 PMCID: PMC10162435 DOI: 10.1016/j.molcel.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Collapse
Affiliation(s)
- Jose J Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Fu Y, Bedő J, Papenfuss AT, Rubin AF. Integrating deep mutational scanning and low-throughput mutagenesis data to predict the impact of amino acid variants. Gigascience 2022; 12:giad073. [PMID: 37721410 PMCID: PMC10506130 DOI: 10.1093/gigascience/giad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/02/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Evaluating the impact of amino acid variants has been a critical challenge for studying protein function and interpreting genomic data. High-throughput experimental methods like deep mutational scanning (DMS) can measure the effect of large numbers of variants in a target protein, but because DMS studies have not been performed on all proteins, researchers also model DMS data computationally to estimate variant impacts by predictors. RESULTS In this study, we extended a linear regression-based predictor to explore whether incorporating data from alanine scanning (AS), a widely used low-throughput mutagenesis method, would improve prediction results. To evaluate our model, we collected 146 AS datasets, mapping to 54 DMS datasets across 22 distinct proteins. CONCLUSIONS We show that improved model performance depends on the compatibility of the DMS and AS assays, and the scale of improvement is closely related to the correlation between DMS and AS results.
Collapse
Affiliation(s)
- Yunfan Fu
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| | - Justin Bedő
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Alan F Rubin
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| |
Collapse
|
22
|
Protein interactions: anything new? Essays Biochem 2022; 66:821-830. [PMID: 36416856 PMCID: PMC9760424 DOI: 10.1042/ebc20220044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
How do proteins interact in the cellular environment? Which interactions stabilize liquid-liquid phase separated condensates? Are the concepts, which have been developed for specific protein complexes also applicable to higher-order assemblies? Recent discoveries prompt for a universal framework for protein interactions, which can be applied across the scales of protein communities. Here, we discuss how our views on protein interactions have evolved from rigid structures to conformational ensembles of proteins and discuss the open problems, in particular related to biomolecular condensates. Protein interactions have evolved to follow changes in the cellular environment, which manifests in multiple modes of interactions between the same partners. Such cellular context-dependence requires multiplicity of binding modes (MBM) by sampling multiple minima of the interaction energy landscape. We demonstrate that the energy landscape framework of protein folding can be applied to explain this phenomenon, opening a perspective toward a physics-based, universal model for cellular protein behaviors.
Collapse
|
23
|
Saleh MM, Hundley HA, Zentner GE. Involvement of the SAGA and TFIID coactivator complexes in transcriptional dysregulation caused by the separation of core and tail Mediator modules. G3 (BETHESDA, MD.) 2022; 12:jkac290. [PMID: 36331351 PMCID: PMC9713439 DOI: 10.1093/g3journal/jkac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Regulation of RNA polymerase II transcription requires the concerted efforts of several multisubunit coactivator complexes, which interact with the RNA polymerase II preinitiation complex to stimulate transcription. We previously showed that separation of the Mediator core from Mediator's tail module results in modest overactivation of genes annotated as highly dependent on TFIID for expression. However, it is unclear if other coactivators are involved in this phenomenon. Here, we show that the overactivation of certain genes by Mediator core/tail separation is blunted by disruption of the Spt-Ada-Gcn5-Acetyl transferase complex through the removal of its structural Spt20 subunit, though this downregulation does not appear to completely depend on reduced Spt-Ada-Gcn5-Acetyl transferase association with the genome. Consistent with the enrichment of TFIID-dependent genes among genes overactivated by Mediator core/tail separation, depletion of the essential TFIID subunit Taf13 suppressed the overactivation of these genes when Med16 was simultaneously removed. As with Spt-Ada-Gcn5-Acetyl transferase, this effect did not appear to be fully dependent on the reduced genomic association of TFIID. Given that the observed changes in gene expression could not be clearly linked to alterations in Spt-Ada-Gcn5-Acetyl transferase or TFIID occupancy, our data may suggest that the Mediator core/tail connection is important for the modulation of Spt-Ada-Gcn5-Acetyl transferase and/or TFIID conformation and/or function at target genes.
Collapse
Affiliation(s)
- Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Warfield L, Donczew R, Mahendrawada L, Hahn S. Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism. Mol Cell 2022; 82:4033-4048.e7. [PMID: 36208626 PMCID: PMC9637718 DOI: 10.1016/j.molcel.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Mediator (MED) is a conserved factor with important roles in basal and activated transcription. Here, we investigate the genome-wide roles of yeast MED by rapid depletion of its activator-binding domain (Tail) and monitoring changes in nascent transcription. Rapid Tail depletion surprisingly reduces transcription from only a small subset of genes. At most of these Tail-dependent genes, in unperturbed conditions, MED is detected at both the UASs and promoters. In contrast, at most Tail-independent genes, we find MED primarily at promoters but not at the UASs. These results suggest that MED Tail and activator-mediated MED recruitment regulates only a small subset of genes. Furthermore, we define three classes of genes that differ in PIC assembly pathways and the requirements for MED Tail, SAGA, TFIID, and BET factors Bdf1/2. Our combined results have broad implications for the roles of MED, other coactivators, and mechanisms of transcriptional regulation at different gene classes.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Rafal Donczew
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Lakshmi Mahendrawada
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
“Structure”-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Mol Cell 2022; 82:3970-3984. [DOI: 10.1016/j.molcel.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
26
|
Staller MV. Transcription factors perform a 2-step search of the nucleus. Genetics 2022; 222:iyac111. [PMID: 35939561 PMCID: PMC9526044 DOI: 10.1093/genetics/iyac111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 01/02/2023] Open
Abstract
Transcription factors regulate gene expression by binding to regulatory DNA and recruiting regulatory protein complexes. The DNA-binding and protein-binding functions of transcription factors are traditionally described as independent functions performed by modular protein domains. Here, I argue that genome binding can be a 2-part process with both DNA-binding and protein-binding steps, enabling transcription factors to perform a 2-step search of the nucleus to find their appropriate binding sites in a eukaryotic genome. I support this hypothesis with new and old results in the literature, discuss how this hypothesis parsimoniously resolves outstanding problems, and present testable predictions.
Collapse
Affiliation(s)
- Max Valentín Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
|
28
|
Abstract
"De novo" genes evolve from previously non-genic DNA. This strikes many of us as remarkable, because it seems extraordinarily unlikely that random sequence would produce a functional gene. How is this possible? In this two-part review, I first summarize what is known about the origins and molecular functions of the small number of de novo genes for which such information is available. I then speculate on what these examples may tell us about how de novo genes manage to emerge despite what seem like enormous opposing odds.
Collapse
Affiliation(s)
- Caroline M Weisman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
29
|
Clementel D, Del Conte A, Monzon AM, Camagni GF, Minervini G, Piovesan D, Tosatto SCE. RING 3.0: fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res 2022; 50:W651-W656. [PMID: 35554554 PMCID: PMC9252747 DOI: 10.1093/nar/gkac365] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
Residue interaction networks (RINs) are used to represent residue contacts in protein structures. Thanks to the advances in network theory, RINs have been proved effective as an alternative to coordinate data in the analysis of complex systems. The RING server calculates high quality and reliable non-covalent molecular interactions based on geometrical parameters. Here, we present the new RING 3.0 version extending the previous functionality in several ways. The underlying software library has been re-engineered to improve speed by an order of magnitude. RING now also supports the mmCIF format and provides typed interactions for the entire PDB chemical component dictionary, including nucleic acids. Moreover, RING now employs probabilistic graphs, where multiple conformations (e.g. NMR or molecular dynamics ensembles) are mapped as weighted edges, opening up new ways to analyze structural data. The web interface has been expanded to include a simultaneous view of the RIN alongside a structure viewer, with both synchronized and clickable. Contact evolution across models (or time) is displayed as a heatmap and can help in the discovery of correlating interaction patterns. The web server, together with an extensive help and tutorial, is available from URL: https://ring.biocomputingup.it/.
Collapse
Affiliation(s)
- Damiano Clementel
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | | | - Giorgia F Camagni
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| |
Collapse
|
30
|
Staller MV, Ramirez E, Kotha SR, Holehouse AS, Pappu RV, Cohen BA. Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Syst 2022; 13:334-345.e5. [PMID: 35120642 PMCID: PMC9241528 DOI: 10.1016/j.cels.2022.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023]
Abstract
Acidic activation domains are intrinsically disordered regions of the transcription factors that bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains have made it difficult to identify the sequence features that control activity. To address this problem, we designed thousands of variants in seven acidic activation domains and measured their activities with a high-throughput assay in human cell culture. We found that strong activation domain activity requires a balance between the number of acidic residues and aromatic and leucine residues. These findings motivated a predictor of acidic activation domains that scans the human proteome for clusters of aromatic and leucine residues embedded in regions of high acidity. This predictor identifies known activation domains and accurately predicts previously unidentified ones. Our results support a flexible acidic exposure model of activation domains in which the acidic residues solubilize hydrophobic motifs so that they can interact with coactivators. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Max V Staller
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Eddie Ramirez
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Sanjana R Kotha
- Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Barak A Cohen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
31
|
Mediator Engineering of Saccharomyces cerevisiae To Improve Multidimensional Stress Tolerance. Appl Environ Microbiol 2022; 88:e0162721. [PMID: 35369708 DOI: 10.1128/aem.01627-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is a well-performing workhorse in chemical production, which encounters complex environmental stresses during industrial processes. We constructed a multiple stress tolerance mutant, Med15V76R/R84K, that was obtained by engineering the KIX domain of Mediator tail subunit Med15. Med15V76R/R84K interacted with transcription factor Hap5 to improve ARV1 expression for sterol homeostasis for decreasing membrane fluidity and thereby enhancing acid tolerance. Med15V76R/R84K interacted with transcription factor Mga2 to improve GIT1 expression for phospholipid biosynthesis for increasing membrane integrity and thereby improving oxidative tolerance. Med15V76R/R84K interacted with transcription factor Aft1 to improve NFT1 expression for inorganic ion transport for reducing membrane permeability and thereby enhancing osmotic tolerance. Based on this Med15 mutation, Med15V76R/R84K, the engineered S. cerevisiae strain, showed a 28.1% increase in pyruvate production in a 1.0-L bioreactor compared to that of S. cerevisiae with its native Med15. These results indicated that Mediator engineering provides a potential alternative for improving multidimensional stress tolerance in S. cerevisiae. IMPORTANCE This study identified the role of the KIX domain of Mediator tail subunit Med15 in response to acetic acid, H2O2, and NaCl in S. cerevisiae. Engineered KIX domain by protein engineering, the mutant strain Med15V76R/R84K, increased multidimensional stress tolerance and pyruvate production compared with that of S. cerevisiae with its native Med15. The Med15V76R/R84K could increase membrane related genes expression possibly by enhancing interaction with transcription factor to improve membrane physiological functions under stress conditions.
Collapse
|
32
|
Su BG, Henley MJ. Drugging Fuzzy Complexes in Transcription. Front Mol Biosci 2022; 8:795743. [PMID: 34993233 PMCID: PMC8724552 DOI: 10.3389/fmolb.2021.795743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) are one of the most promising but underutilized classes of drug targets. The high degree of intrinsic disorder in both the structure and the interactions (i.e., “fuzziness”) of TFs is one of the most important challenges to be addressed in this context. Here, we discuss the impacts of fuzziness on transcription factor drug discovery, describing how disorder poses fundamental problems to the typical drug design, and screening approaches used for other classes of proteins such as receptors or enzymes. We then speculate on ways modern biophysical and chemical biology approaches could synergize to overcome many of these challenges by directly addressing the challenges imposed by TF disorder and fuzziness.
Collapse
Affiliation(s)
- Bonnie G Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
33
|
Monzon AM, Piovesan D, Fuxreiter M. Molecular Determinants of Selectivity in Disordered Complexes May Shed Light on Specificity in Protein Condensates. Biomolecules 2022; 12:biom12010092. [PMID: 35053240 PMCID: PMC8773858 DOI: 10.3390/biom12010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023] Open
Abstract
Biomolecular condensates challenge the classical concepts of molecular recognition. The variable composition and heterogeneous conformations of liquid-like protein droplets are bottlenecks for high-resolution structural studies. To obtain atomistic insights into the organization of these assemblies, here we have characterized the conformational ensembles of specific disordered complexes, including those of droplet-driving proteins. First, we found that these specific complexes exhibit a high degree of conformational heterogeneity. Second, we found that residues forming contacts at the interface also sample many conformations. Third, we found that different patterns of contacting residues form the specific interface. In addition, we observed a wide range of sequence motifs mediating disordered interactions, including charged, hydrophobic and polar contacts. These results demonstrate that selective recognition can be realized by variable patterns of weakly defined interaction motifs in many different binding configurations. We propose that these principles also play roles in determining the selectivity of biomolecular condensates.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.M.M.); (D.P.)
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.M.M.); (D.P.)
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.M.M.); (D.P.)
- Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
34
|
Roterman I, Stapor K, Fabian P, Konieczny L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int J Mol Sci 2021; 22:10587. [PMID: 34638925 PMCID: PMC8508659 DOI: 10.3390/ijms221910587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The role of the environment in amyloid formation based on the fuzzy oil drop model (FOD) is discussed here. This model assumes that the hydrophobicity distribution within a globular protein is consistent with a 3D Gaussian (3DG) distribution. Such a distribution is interpreted as the idealized effect of the presence of a polar solvent-water. A chain with a sequence of amino acids (which are bipolar molecules) determined by evolution recreates a micelle-like structure with varying accuracy. The membrane, which is a specific environment with opposite characteristics to the polar aquatic environment, directs the hydrophobic residues towards the surface. The modification of the FOD model to the FOD-M form takes into account the specificity of the cell membrane. It consists in "inverting" the 3DG distribution (complementing the Gaussian distribution), which expresses the exposure of hydrophobic residues on the surface. It turns out that the influence of the environment for any protein (soluble or membrane-anchored) is the result of a consensus factor expressing the participation of the polar environment and the "inverted" environment. The ratio between the proportion of the aqueous and the "reversed" environment turns out to be a characteristic property of a given protein, including amyloid protein in particular. The structure of amyloid proteins has been characterized in the context of prion, intrinsically disordered, and other non-complexing proteins to cover a wider spectrum of molecules with the given characteristics based on the FOD-M model.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Medyczna 7, 30-688 Kraków, Poland
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
35
|
Direct photoresponsive inhibition of a p53-like transcription activation domain in PIF3 by Arabidopsis phytochrome B. Nat Commun 2021; 12:5614. [PMID: 34556672 PMCID: PMC8460787 DOI: 10.1038/s41467-021-25909-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3’s transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms. Photoactivated phytochrome B regulates gene expression by interacting with PIF transcription factors. Here the authors show that PIF3 contains a p53-like transcription activation domain (AD) and that PHYB can directly suppress PIF3 transactivation activity by binding adjacent to the AD.
Collapse
|
36
|
Theisen FF, Staby L, Tidemand FG, O'Shea C, Prestel A, Willemoës M, Kragelund BB, Skriver K. Quantification of Conformational Entropy Unravels Effect of Disordered Flanking Region in Coupled Folding and Binding. J Am Chem Soc 2021; 143:14540-14550. [PMID: 34473923 DOI: 10.1021/jacs.1c04214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intrinsic disorder (ID) constitutes a new dimension to the protein structure-function relationship. The ability to undergo conformational changes upon binding is a key property of intrinsically disordered proteins and remains challenging to study using conventional methods. A 1994 paper by R. S. Spolar and M. T. Record presented a thermodynamic approach for estimating changes in conformational entropy based on heat capacity changes, allowing quantification of residues folding upon binding. Here, we adapt the method for studies of intrinsically disordered proteins. We integrate additional data to provide a broader experimental foundation for the underlying relations and, based on >500 protein-protein complexes involving disordered proteins, reassess a key relation between polar and nonpolar surface area changes, previously determined using globular protein folding. We demonstrate the improved suitability of the adapted method to studies of the folded αα-hub domain RST from radical-induced cell death 1, whose interactome is characterized by ID. From extensive thermodynamic data, quantifying the conformational entropy changes upon binding, and comparison to the NMR structure, the adapted method improves accuracy for ID-based studies. Furthermore, we apply the method, in conjunction with NMR, to reveal hitherto undetected effects of interaction-motif context. Thus, inclusion of the disordered context of the DREB2A RST-binding motif induces structuring of the binding motif, resulting in major enthalpy-entropy compensation in the interaction interface. This study, also evaluating additional interactions, demonstrates the strength of the ID-adapted Spolar-Record thermodynamic approach for dissection of structural features of ID-based interactions, easily overlooked in traditional studies, and for translation of these into mechanistic knowledge.
Collapse
Affiliation(s)
| | | | - Frederik Grønbæk Tidemand
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
The sequence-ensemble relationship in fuzzy protein complexes. Proc Natl Acad Sci U S A 2021; 118:2020562118. [PMID: 34504009 DOI: 10.1073/pnas.2020562118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) interact with globular proteins through a variety of mechanisms, resulting in the structurally heterogeneous ensembles known as fuzzy complexes. While there exists a reasonable comprehension on how IDP sequence determines the unbound IDP ensemble, little is known about what shapes the structural characteristics of IDPs bound to their targets. Using a statistical thermodynamic model, we show that the target-bound ensembles are determined by a simple code that combines the IDP sequence and the distribution of IDP-target interaction hotspots. These two parameters define the conformational space of target-bound IDPs and rationalize the observed structural heterogeneity of fuzzy complexes. The presented model successfully reproduces the dynamical signatures of target-bound IDPs from the NMR relaxation experiments as well as the changes of interaction affinity and the IDP helicity induced by mutations. The model explains how the target-bound IDP ensemble adapts to mutations in order to achieve an optimal balance between conformational freedom and interaction energy. Taken together, the presented sequence-ensemble relationship of fuzzy complexes explains the different manifestations of IDP disorder in folding-upon-binding processes.
Collapse
|
38
|
Cho B, Choi J, Kim R, Yun JN, Choi Y, Lee HH, Koh J. Thermodynamic Models for Assembly of Intrinsically Disordered Protein Hubs with Multiple Interaction Partners. J Am Chem Soc 2021; 143:12509-12523. [PMID: 34362249 DOI: 10.1021/jacs.1c00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prevalent in diverse protein interactomes, intrinsically disordered proteins or regions (IDPs or IDRs) often drive assembly of higher-order macromolecular complexes, using multiple target-binding motifs. Such IDP hubs are suggested to process various cellular signals and coordinate relevant biological processes. However, the mechanism of assembly and functional regulation of IDP hubs remains elusive due to the challenges in dissecting their intricate protein-protein interaction networks. Here we present basic thermodynamic models for the assembly of simple IDP hubs with multiple target proteins, constructing partition functions from fundamental binding parameters. We combined these basic functions to develop advanced thermodynamic models to analyze the assembly of the Nup153 hubs interacting with multiple karyopherin β1 (Kap) molecules, critical components of nucleocytoplasmic transport. The thermodynamic analysis revealed a complex organization of the Kap binding sites within the C-terminal IDR of Nup153 including a high-affinity 1:1 interaction site and a series of low-affinity sites for binding of multiple Kaps with negative cooperativity. The negative cooperativity arises from the overlapping nature of the low-affinity sites where Kap occupies multiple dipeptide motifs. The quantitative dissection culminated in construction of the Nup153 hub ensemble, elucidating how distribution among various Kap-bound states is modulated by Kap concentration and competing nuclear proteins. In particular, the Kap occupancy of the IDR can be fine-tuned by varying the location of competition within the overlapping sites, suggesting coupling of specific nuclear processes to distinct transport activities. In general, our results demonstrate the feasibility and a potential mechanism for manifold regulation of IDP functions by diverse cellular signals.
Collapse
Affiliation(s)
- ByeongJin Cho
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaejun Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - RyeongHyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jean Nyoung Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
39
|
Stanek TJ, Gennaro VJ, Tracewell MA, Di Marcantonio D, Pauley KL, Butt S, McNair C, Wang F, Kossenkov AV, Knudsen KE, Butt T, Sykes SM, McMahon SB. The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO J 2021; 40:e102509. [PMID: 34155658 PMCID: PMC8365265 DOI: 10.15252/embj.2019102509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.
Collapse
Affiliation(s)
- Timothy J Stanek
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Victoria J Gennaro
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Mason A Tracewell
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Kristen L Pauley
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Sabrina Butt
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Christopher McNair
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | | | - Karen E Knudsen
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Stephen M Sykes
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Steven B McMahon
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
40
|
Connection of core and tail Mediator modules restrains transcription from TFIID-dependent promoters. PLoS Genet 2021; 17:e1009529. [PMID: 34383744 PMCID: PMC8384189 DOI: 10.1371/journal.pgen.1009529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
The Mediator coactivator complex is divided into four modules: head, middle, tail, and kinase. Deletion of the architectural subunit Med16 separates core Mediator (cMed), comprising the head, middle, and scaffold (Med14), from the tail. However, the direct global effects of tail/cMed disconnection are unclear. We find that rapid depletion of Med16 downregulates genes that require the SAGA complex for full expression, consistent with their reported tail dependence, but also moderately overactivates TFIID-dependent genes in a manner partly dependent on the separated tail, which remains associated with upstream activating sequences. Suppression of TBP dynamics via removal of the Mot1 ATPase partially restores normal transcriptional activity to Med16-depleted cells, suggesting that cMed/tail separation results in an imbalance in the levels of PIC formation at SAGA-requiring and TFIID-dependent genes. We propose that the preferential regulation of SAGA-requiring genes by tailed Mediator helps maintain a proper balance of transcription between these genes and those more dependent on TFIID. Composed of over two dozen subunits, the Mediator complex plays several roles in RNA polymerase II (RNAPII) transcription in eukaryotes. In yeast, deletion of Med16, which splits Mediator into two stable subcomplexes, both increases and decreases transcript levels, suggesting that Med16 might play a repressive role. However, the direct effects of Med16 removal on RNAPII transcription have not been assessed, owing to the use of deletion mutants and measurement of steady-state RNA levels in prior studies. Here, using a combination of inducible protein depletion and analysis of nascent RNA, we find that Med16 removal 1) downregulates a small group of genes reported to be highly dependent on the SAGA complex and 2) upregulates a larger set of genes reported to be more dependent on the TFIID complex in a manner dependent on another component of Mediator. We find that artificially altering the balance of transcription pre-initiation complex (PIC) formation toward SAGA-requiring promoters and away from TFIID-dependent promoters partially restores normal transcription, indicating a contribution of altered PIC formation to the transcriptional alterations observed with Med16 loss. Taken together, our results indicate that the structural integrity of Mediator is important for maintaining balanced transcription between different gene classes.
Collapse
|
41
|
Lindorff-Larsen K, Kragelund BB. On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. J Mol Biol 2021; 433:167196. [PMID: 34390736 DOI: 10.1016/j.jmb.2021.167196] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) constitute a broad set of proteins with few uniting and many diverging properties. IDPs-and intrinsically disordered regions (IDRs) interspersed between folded domains-are generally characterized as having no persistent tertiary structure; instead they interconvert between a large number of different and often expanded structures. IDPs and IDRs are involved in an enormously wide range of biological functions and reveal novel mechanisms of interactions, and while they defy the common structure-function paradigm of folded proteins, their structural preferences and dynamics are important for their function. We here discuss open questions in the field of IDPs and IDRs, focusing on areas where machine learning and other computational methods play a role. We discuss computational methods aimed to predict transiently formed local and long-range structure, including methods for integrative structural biology. We discuss the many different ways in which IDPs and IDRs can bind to other molecules, both via short linear motifs, as well as in the formation of larger dynamic complexes such as biomolecular condensates. We discuss how experiments are providing insight into such complexes and may enable more accurate predictions. Finally, we discuss the role of IDPs in disease and how new methods are needed to interpret the mechanistic effects of genomic variants in IDPs.
Collapse
Affiliation(s)
- Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
42
|
Ramberger E, Sapozhnikova V, Kowenz-Leutz E, Zimmermann K, Nicot N, Nazarov PV, Perez-Hernandez D, Reimer U, Mertins P, Dittmar G, Leutz A. PRISMA and BioID disclose a motifs-based interactome of the intrinsically disordered transcription factor C/EBPα. iScience 2021; 24:102686. [PMID: 34189442 PMCID: PMC8220391 DOI: 10.1016/j.isci.2021.102686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 01/27/2023] Open
Abstract
C/EBPα represents a paradigm intrinsically disordered transcription factor containing short linear motifs and post-translational modifications (PTM). Unraveling C/EBPα protein interaction networks is a prerequisite for understanding the multi-modal functions of C/EBPα in hematopoiesis and leukemia. Here, we combined arrayed peptide matrix screening (PRISMA) with BioID to generate an in vivo validated and isoform specific interaction map of C/EBPα. The myeloid C/EBPα interactome comprises promiscuous and PTM-regulated interactions with protein machineries involved in gene expression, epigenetics, genome organization, DNA replication, RNA processing, and nuclear transport. C/EBPα interaction hotspots coincide with homologous conserved regions of the C/EBP family that also score as molecular recognition features. PTMs alter the interaction spectrum of C/EBP-motifs to configure a multi-valent transcription factor hub that interacts with multiple co-regulatory components, including BAF/SWI-SNF or Mediator complexes. Combining PRISMA and BioID is a powerful strategy to systematically explore the PTM-regulated interactomes of intrinsically disordered transcription factors.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Valeria Sapozhnikova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Karin Zimmermann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Nathalie Nicot
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Petr V. Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
43
|
Molecular Dynamics Simulations of Human FOXO3 Reveal Intrinsically Disordered Regions Spread Spatially by Intramolecular Electrostatic Repulsion. Biomolecules 2021; 11:biom11060856. [PMID: 34201262 PMCID: PMC8228108 DOI: 10.3390/biom11060856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
The human transcription factor FOXO3 (a member of the 'forkhead' family of transcription factors) controls a variety of cellular functions that make it a highly relevant target for intervention in anti-cancer and anti-aging therapies. FOXO3 is a mostly intrinsically disordered protein (IDP). Absence of knowledge of its structural properties outside the DNA-binding domain constitutes a considerable obstacle to a better understanding of structure/function relationships. Here, I present extensive molecular dynamics (MD) simulation data based on implicit solvation models of the entire FOXO3/DNA complex, and accelerated MD simulations under explicit solvent conditions of a central region of particular structural interest (FOXO3120-530). A new graphical tool for studying and visualizing the structural diversity of IDPs, the Local Compaction Plot (LCP), is introduced. The simulations confirm the highly disordered nature of FOXO3 and distinguish various degrees of folding propensity. Unexpectedly, two 'linker' regions immediately adjacent to the DNA-binding domain are present in a highly extended conformation. This extended conformation is not due to their amino acid composition, but rather is caused by electrostatic repulsion of the domains connected by the linkers. FOXO3 is thus an IDP present in an unusually extended conformation to facilitate interaction with molecular interaction partners.
Collapse
|
44
|
Sanborn AL, Yeh BT, Feigerle JT, Hao CV, Townshend RJ, Lieberman Aiden E, Dror RO, Kornberg RD. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. eLife 2021; 10:68068. [PMID: 33904398 PMCID: PMC8137143 DOI: 10.7554/elife.68068] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/25/2021] [Indexed: 01/07/2023] Open
Abstract
Gene activator proteins comprise distinct DNA-binding and transcriptional activation domains (ADs). Because few ADs have been described, we tested domains tiling all yeast transcription factors for activation in vivo and identified 150 ADs. By mRNA display, we showed that 73% of ADs bound the Med15 subunit of Mediator, and that binding strength was correlated with activation. AD-Mediator interaction in vitro was unaffected by a large excess of free activator protein, pointing to a dynamic mechanism of interaction. Structural modeling showed that ADs interact with Med15 without shape complementarity (‘fuzzy’ binding). ADs shared no sequence motifs, but mutagenesis revealed biochemical and structural constraints. Finally, a neural network trained on AD sequences accurately predicted ADs in human proteins and in other yeast proteins, including chromosomal proteins and chromatin remodeling complexes. These findings solve the longstanding enigma of AD structure and function and provide a rationale for their role in biology. Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast and humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty.
Collapse
Affiliation(s)
- Adrian L Sanborn
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States.,Department of Computer Science, Stanford University, Stanford, United States
| | - Benjamin T Yeh
- Department of Computer Science, Stanford University, Stanford, United States
| | - Jordan T Feigerle
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Cynthia V Hao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, United States.,Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
45
|
Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4. Nat Commun 2021; 12:2220. [PMID: 33850123 PMCID: PMC8044209 DOI: 10.1038/s41467-021-22441-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a “fuzzy” protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein–protein interaction. The intrinsically disordered acidic activation domain (AD) of the yeast transcription factor Gal4 acts through binding to the Med15 subunit of the Mediator complex. Here, the authors show that Gal4 interacts with Med15 through an identical fuzzy binding mechanism as Gcn4 AD, which has a different sequence, revealing a common sequence-independent mechanism for AD-Mediator binding. In contrast, Gal4 AD binds to the Gal80 repressor as a structured polypeptide, which strongly suggests that the structured binding partner dictates the type of protein–protein interaction for an intrinsically disordered protein.
Collapse
|
46
|
Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF. A high-resolution protein architecture of the budding yeast genome. Nature 2021; 592:309-314. [PMID: 33692541 PMCID: PMC8035251 DOI: 10.1038/s41586-021-03314-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
The genome-wide architecture of chromatin-associated proteins that maintains chromosome integrity and gene regulation is not well defined. Here we use chromatin immunoprecipitation, exonuclease digestion and DNA sequencing (ChIP-exo/seq)1,2 to define this architecture in Saccharomyces cerevisiae. We identify 21 meta-assemblages consisting of roughly 400 different proteins that are related to DNA replication, centromeres, subtelomeres, transposons and transcription by RNA polymerase (Pol) I, II and III. Replication proteins engulf a nucleosome, centromeres lack a nucleosome, and repressive proteins encompass three nucleosomes at subtelomeric X-elements. We find that most promoters associated with Pol II evolved to lack a regulatory region, having only a core promoter. These constitutive promoters comprise a short nucleosome-free region (NFR) adjacent to a +1 nucleosome, which together bind the transcription-initiation factor TFIID to form a preinitiation complex. Positioned insulators protect core promoters from upstream events. A small fraction of promoters evolved an architecture for inducibility, whereby sequence-specific transcription factors (ssTFs) create a nucleosome-depleted region (NDR) that is distinct from an NFR. We describe structural interactions among ssTFs, their cognate cofactors and the genome. These interactions include the nucleosomal and transcriptional regulators RPD3-L, SAGA, NuA4, Tup1, Mediator and SWI-SNF. Surprisingly, we do not detect interactions between ssTFs and TFIID, suggesting that such interactions do not stably occur. Our model for gene induction involves ssTFs, cofactors and general factors such as TBP and TFIIB, but not TFIID. By contrast, constitutive transcription involves TFIID but not ssTFs engaged with their cofactors. From this, we define a highly integrated network of gene regulation by ssTFs.
Collapse
Affiliation(s)
- Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Prashant K Kuntala
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Naomi Yamada
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Guray Kuzu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Kylie Bocklund
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Nina P Farrell
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Blanda
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Joshua D Mairose
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ann V Basting
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Katelyn S Mistretta
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - David J Rocco
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Emily S Perkinson
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gretta D Kellogg
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
47
|
Zhao H, Young N, Kalchschmidt J, Lieberman J, El Khattabi L, Casellas R, Asturias FJ. Structure of mammalian Mediator complex reveals Tail module architecture and interaction with a conserved core. Nat Commun 2021; 12:1355. [PMID: 33649303 PMCID: PMC7921410 DOI: 10.1038/s41467-021-21601-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The Mediator complex plays an essential and multi-faceted role in regulation of RNA polymerase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex. The mammalian Mediator structure reveals that the previously unresolved Tail module, which includes a number of metazoan specific subunits, interacts extensively with core Mediator and has the potential to influence its conformation and interactions.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Natalie Young
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | | | | | - Laila El Khattabi
- Institut Cochin Laboratoire de Cytogénétique Constitutionnelle Pré et Post Natale, Paris, France
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.,Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Francisco J Asturias
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO, USA.
| |
Collapse
|
48
|
What do Transcription Factors Interact With? J Mol Biol 2021; 433:166883. [PMID: 33621520 DOI: 10.1016/j.jmb.2021.166883] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Although we have made significant progress, we still possess a limited understanding of how genomic and epigenomic information directs gene expression programs through sequence-specific transcription factors (TFs). Extensive research has settled on three general classes of TF targets in metazoans: promoter accessibility via chromatin regulation (e.g., SAGA), assembly of the general transcription factors on promoter DNA (e.g., TFIID), and recruitment of RNA polymerase (Pol) II (e.g., Mediator) to establish a transcription pre-initiation complex (PIC). Here we discuss TFs and their targets. We also place this in the context of our current work with Saccharomyces (yeast), where we find that promoters typically lack an architecture that supports TF function. Moreover, yeast promoters that support TF binding also display interactions with cofactors like SAGA and Mediator, but not TFIID. It is unknown to what extent all genes in metazoans require TFs and their cofactors.
Collapse
|
49
|
Zhang H, Chen DH, Mattoo RUH, Bushnell DA, Wang Y, Yuan C, Wang L, Wang C, Davis RE, Nie Y, Kornberg RD. Mediator structure and conformation change. Mol Cell 2021; 81:1781-1788.e4. [PMID: 33571424 DOI: 10.1016/j.molcel.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023]
Abstract
Mediator is a universal adaptor for transcription control. It serves as an interface between gene-specific activator or repressor proteins and the general RNA polymerase II (pol II) transcription machinery. Previous structural studies revealed a relatively small part of Mediator and none of the gene activator-binding regions. We have determined the cryo-EM structure of the Mediator at near-atomic resolution. The structure reveals almost all amino acid residues in ordered regions, including the major targets of activator proteins, the Tail module, and the Med1 subunit of the Middle module. Comparison of Mediator structures with and without pol II reveals conformational changes that propagate across the entire Mediator, from Head to Tail, coupling activator- and pol II-interacting regions.
Collapse
Affiliation(s)
- Heqiao Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yannan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chunnian Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Ralph E Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China.
| | - Roger D Kornberg
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Koh J. Probing coupled conformational transitions of intrinsically disordered proteins in their interactions with target proteins. Anal Biochem 2021; 619:114126. [PMID: 33567297 DOI: 10.1016/j.ab.2021.114126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins or regions (IDPs or IDRs) are abundant in the eukaryotic proteome and critical in regulation of dynamic cellular processes. Intensive structural investigations have proposed the molecular mechanisms of the interaction between IDRs and their binding partners. Here we extract the distinct thermodynamic features of coupled conformational transitions of IDRs founding the interaction mechanisms. We also present simulation tools to facilitate a design of the calorimetric experiments probing and quantifying the conformational transitions of IDRs. The suggested thermodynamic approach will further advance our understanding of distribution among multiple states of IDRs in their interactions with target molecules.
Collapse
Affiliation(s)
- Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|