1
|
Zhang Z, Yang M, Zhou T, Chen Y, Zhou X, Long K. Emerging trends and hotspots in intestinal microbiota research in sepsis: bibliometric analysis. Front Med (Lausanne) 2024; 11:1510463. [PMID: 39606629 PMCID: PMC11598531 DOI: 10.3389/fmed.2024.1510463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background The association between the gut microbiota and sepsis has garnered attention in the field of intestinal research in sepsis. This study utilizes bibliometric methods to visualize and analyze the literature on gut microbiota research in sepsis from 2011 to 2024, providing a scientific foundation for research directions and key issues in this domain. Methods Original articles and reviews of gut microbiota research in sepsis, which published in English between 2011 and 2024, were obtained from the Web of Science Core Collection on June 21, 2024. Python, VOSviewer, and CiteSpace software were used for the visual analysis of the retrieved data. Results A total of 1,031 articles were analyzed, originating from 72 countries or regions, 1,614 research institutions, and 6,541 authors. The articles were published in 434 different journals, covering 89 different research fields. The number of publications and citations in this research area showed a significant growth trend from 2011 to 2024, with China, the United States, and the United Kingdom being the main research forces. Asada Leelahavanichkul from Thailand was identified as the most prolific author, making him the most authoritative expert in this field. "Nutrients" had the highest number of publications, while "Frontiers in Cellular and Infection Microbiology," "Frontiers in Immunology" and "the International Journal of Molecular Sciences" have shown increasing attention to this field in the past 2 years. Author keywords appearing more than 100 times included "gut microbiota (GM)," "sepsis" and "microbiota." Finally, this study identified "lipopolysaccharides (LPS)," "short-chain fatty acids (SCFAs)," "probiotics," "fecal microbiota transplantation (FMT)" and "gut-liver axis" as the research hotspots and potential frontier directions in this field. Conclusion This bibliometric study summarizes current important perspectives and offers comprehensive guidance between sepsis and intestinal microbiota, which may help researchers choose the most appropriate research directions.
Collapse
Affiliation(s)
- Zhengyi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meijie Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Rathore D, Marino MJ, Issara-Amphorn J, Yoon SH, Manes NP, Nita-Lazar A. Lipopolysaccharide Regulates the Macrophage RNA-Binding Proteome. J Proteome Res 2024; 23:3280-3293. [PMID: 38527097 PMCID: PMC11296930 DOI: 10.1021/acs.jproteome.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
RNA-protein interactions within cellular signaling pathways have significant modulatory effects on RNA binding proteins' (RBPs') effector functions. During the innate immune response, specific RNA-protein interactions have been reported as a regulatory layer of post-transcriptional control. We investigated changes in the RNA-bound proteome of immortalized mouse macrophages (IMM) following treatment with lipopolysaccharide (LPS). Stable isotope labeling by amino acids in cell culture (SILAC) of cells followed by unbiased purification of RNP complexes at two time points after LPS stimulation and bottom-up proteomic analysis by LC-MS/MS resulted in a set of significantly affected RBPs. Global RNA sequencing and LFQ proteomics were used to characterize the correlation of transcript and protein abundance changes in response to LPS at different time points with changes in protein-RNA binding. Il1α, MARCKS, and ACOD1 were noted as RBP candidates involved in innate immune signaling. The binding sites of the RBP and RNA conjugates at amino acid resolution were investigated by digesting the cross-linked oligonucleotide from peptides remaining after elution using Nuclease P1. The combined data sets provide directions for further studies of innate immune signaling regulation by RBP interactions with different classes of RNA.
Collapse
Affiliation(s)
- Deepali Rathore
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Matthew J. Marino
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sung Hwan Yoon
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Waltimo E, Eray M, Mäkitie A, Haglund C, Atula T, Hagström J. Toll-like receptors 2 and 4, and bacterial proteins in IgG4-related sialadenitis, other types of chronic sialadenitis and sialolithiasis. J Oral Microbiol 2024; 16:2382633. [PMID: 39055281 PMCID: PMC11271128 DOI: 10.1080/20002297.2024.2382633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Background The association of chronic sclerosing sialadenitis and IgG4-related disease (IgG4-RD) has resulted in the more frequent identification of IgG4-positivity in submandibular gland inflammations, also uncovering IgG4 overexpression in nonspecific inflammations. These findings lead us to hypothesise that IgG4-positive sialadenitis represents a continuous inflammatory process overlapping histologically with IgG4-RD, possibly differing in aetiology. However, the antigen underlying IgG4 overexpression in IgG4-positive sialadenitis and IgG4-RD remains unknown. Materials and methods Here, we investigated toll-like receptor (TLR) - mediated bacterial inflammation in submandibular gland tissues of patients with IgG4-positive and IgG4-negative chronic inflammatory lesions of the submandibular gland (n = 61), with noninflamed submandibular glands serving as controls (n = 4). Utilising immunohistochemistry, we assessed the expression of TLR2 and TLR4, lipopolysaccharide (LPS) and the P. gingivalis-specific antigen gingipain R1. Results We observed TLR2- and TLR4-immunopositivity in 64 (98%) samples. However, TLR2 and TLR4 staining intensity was significantly stronger in the IgG4-positive group. LPS- and gingipain R1 immunopositivity were observed in 56 (86%) and 58 (89%) samples, respectively. LPS-positivity localised exclusively in mast cell-like cells, while gingipain R1-positivity remained scarce. Conclusions A stronger TLR2 or TLR4 expression in IgG4-positive sialadenitis may indicate a tissue-related factor underlying this form of chronic sialadenitis. LPS- and P. gingivalis immunopositivity remained weak throughout this series. Thus, gram-negative bacteria may not represent pathogens underlying these forms of chronic sialadenitis.
Collapse
Affiliation(s)
- Elin Waltimo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Mine Eray
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programmes Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Atula
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programmes Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Chiba N, Tada R, Ohnishi T, Matsuguchi T. TLR4/7-mediated host-defense responses of gingival epithelial cells. J Cell Biochem 2024; 125:e30576. [PMID: 38726711 DOI: 10.1002/jcb.30576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
Gingival epithelial cells (GECs) are physical and immunological barriers against outward pathogens while coping with a plethora of non-pathogenic commensal bacteria. GECs express several members of Toll-like receptors (TLRs) and control subsequent innate immune responses. TLR4 senses lipopolysaccharide (LPS) while TLR7/8 recognizes single-strand RNA (ssRNA) playing important roles against viral infection. However, their distinct roles in GECs have not been fully demonstrated. Here, we analyzed biological responses of GECs to LPS and CL075, a TLR7/8 agonist. GE1, a mouse gingival epithelial cell line, constitutively express TLR4 and TLR7, but not TLR8, like primary skin keratinocytes. Stimulation of GE1 cells with CL075 induced cytokine, chemokine, and antimicrobial peptide expressions, the pattern of which is rather different from that with LPS: higher mRNA levels of interferon (IFN) β, CXCL10, and β-defensin (BD) 14 (mouse homolog of human BD3); lower levels of tumor necrosis factor (TNF), CCL5, CCL11, CCL20, CXCL2, and CX3CL1. As for the intracellular signal transduction of GE1 cells, CL075 rapidly induced significant AKT phosphorylation but failed to activate IKKα/β-NFκB pathway, whereas LPS induced marked IKKα/β-NFκB activation without significant AKT phosphorylation. In contrast, both CL075 and LPS induced rapid IKKα/β-NFκB activation and AKT phosphorylation in a macrophage cell line. Furthermore, specific inhibition of AKT activity abrogated CL075-induced IFNβ, CXCL10, and BD14 mRNA expression in GE1 cells. Thus, TLR4/7 ligands appear to induce rather different host-defense responses of GECs through distinct intracellular signaling mechanisms.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryohei Tada
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
5
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Zhang S, Chen Q, Jin M, Ren J, Sun X, Zhang Z, Luo Y, Sun X. Notoginsenoside R1 alleviates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway through microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155530. [PMID: 38493723 DOI: 10.1016/j.phymed.2024.155530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/10/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.
Collapse
Affiliation(s)
- Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qiuyan Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Meiqi Jin
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Jiahui Ren
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Zhixiu Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
7
|
Metwally H, Elbrashy MM, Ozawa T, Okuyama K, White JT, Tulyeu J, Søndergaard JN, Wing JB, Muratsu A, Matsumoto H, Ikawa M, Kishi H, Taniuchi I, Kishimoto T. Threonine phosphorylation of STAT1 restricts interferon signaling and promotes innate inflammatory responses. Proc Natl Acad Sci U S A 2024; 121:e2402226121. [PMID: 38621137 PMCID: PMC11046697 DOI: 10.1073/pnas.2402226121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024] Open
Abstract
Since its discovery over three decades ago, signal transducer and activator of transcription 1 (STAT1) has been extensively studied as a central mediator for interferons (IFNs) signaling and antiviral defense. Here, using genetic and biochemical assays, we unveil Thr748 as a conserved IFN-independent phosphorylation switch in Stat1, which restricts IFN signaling and promotes innate inflammatory responses following the recognition of the bacterial-derived toxin lipopolysaccharide (LPS). Genetically engineered mice expressing phospho-deficient threonine748-to-alanine (T748A) mutant Stat1 are resistant to LPS-induced lethality. Of note, T748A mice exhibited undisturbed IFN signaling, as well as total expression of Stat1. Further, the T748A point mutation of Stat1 recapitulates the safeguard effect of the genetic ablation of Stat1 following LPS-induced lethality, indicating that the Thr748 phosphorylation contributes inflammatory functionalities of Stat1. Mechanistically, LPS-induced Toll-like receptor 4 endocytosis activates a cell-intrinsic IκB kinase-mediated Thr748 phosphorylation of Stat1, which promotes macrophage inflammatory response while restricting the IFN and anti-inflammatory responses. Depletion of macrophages restores the sensitivity of the T748A mice to LPS-induced lethality. Together, our study indicates a phosphorylation-dependent modular functionality of Stat1 in innate immune responses: IFN phospho-tyrosine dependent and inflammatory phospho-threonine dependent. Better understanding of the Thr748 phosphorylation of Stat1 may uncover advanced pharmacologically targetable molecules and offer better treatment modalities for sepsis, a disease that claims millions of lives annually.
Collapse
Affiliation(s)
- Hozaifa Metwally
- Laboratory of Immune Regulation, The World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Maha M. Elbrashy
- Laboratory of Immune Regulation, The World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Biochemistry Department, Biotechnology Research Institute, National Research Center, GizaP.O. 12622, Egypt
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama930-0194, Japan
| | - Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Jason T. White
- Laboratory of Experimental Immunology, The World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Janyerkye Tulyeu
- Human Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita565-0871, Japan
| | - Jonas Nørskov Søndergaard
- Human Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita565-0871, Japan
| | - James Badger Wing
- Laboratory of Human Single Cell Immunology, The World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Arisa Muratsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka565-0871, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama930-0194, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, The World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| |
Collapse
|
8
|
Wang K, Gao X, Yang H, Tian H, Zhang Z, Wang Z. Transcriptome analysis on pulmonary inflammation between periodontitis and COPD. Heliyon 2024; 10:e28828. [PMID: 38601631 PMCID: PMC11004760 DOI: 10.1016/j.heliyon.2024.e28828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Objective The aim of this study is to investigate the correlation between periodontal disease and chronic obstructive pulmonary disease (COPD) from the perspective of gene regulation, as well as the inflammatory pathways involved. Methods Forty C57BL/6 mice were randomly divided into four groups: control group, chronic periodontitis (CP) group, COPD group, and CP&COPD group. Lung tissue samples were selected for messenger ribonucleic acid (mRNA) sequencing analysis, and differential genes were screened out. Gene enrichment analysis was carried out, and then crosstalk gene enrichment analysis was conducted to explore the pathogenesis related to periodontal disease and COPD. Results Results of enrichment analysis showed that the differentially expressed genes (DEGs) in the CP group were concentrated in response to bacterial origin molecules. The DEGs in the COPD group gene were enriched in positive regulation of B cell activation. The DEGs in the CP&COPD group were concentrated in neutrophil extravasation and neutrophil migration. The mice in the three experimental groups had 19 crosstalk genes, five of which were key genes. Conclusions Lcn2, S100a8, S100a9, Irg1, Clec4d are potential crossover genes of periodontal disease and COPD. Lcn2, S100a8, S100a9 are correlated with neutrophils in both diseases. Irg1 and Clec4d may bind to receptors on the surface of lymphocytes to produce cytokines and activate inflammatory pathways, this requires further research.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, Beijing You 'an Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Gao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan Tian
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Srinontong P, Aengwanich W, Somphon S, Khonwai S, Nitsinsakul T, Wu Z, Chalalai T, Saraphol B, Srisanyong W. Comparison of lipopolysaccharide-mediated peripheral blood mononuclear cell activation between Brahman and Brahman × Thai native crossbreed cattle. Vet World 2024; 17:804-810. [PMID: 38798282 PMCID: PMC11111707 DOI: 10.14202/vetworld.2024.804-810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/21/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aims Lipopolysaccharide (LPS) is a robust endotoxin known to activate the immune system in cattle. The objective of this study was to investigate the effect of LPS on the morphology, cell viability, malondialdehyde (MDA), nitric oxide (NO), and total antioxidant capacity (TAC) of peripheral blood mononuclear cells (PBMCs) in Brahman and Brahman × Thai native crossbreed cattle. Materials and Methods PBMCs were isolated from Brahman and Brahman × Thai native crossbreed cattle and treated with 0, 0.1, 1, and 10 μg/mL Escherichia coli LPS, respectively. Morphological changes in PBMCs were assessed at 24 and 48 h. In addition, we measured PBMC cell viability, MDA, NO, and TAC. Results LPS stimulation caused cell deformation and partial PBMC area enlargement, but there were no differences between Brahman and Brahman × Thai native crossbreed cattle. Stimulation at all levels did not affect the viability of PBMCs (p > 0.05). MDA and NO levels were significantly higher in Brahman cattle than in Brahman Thai native crossbred cattle (p < 0.05). TAC was significantly higher in Brahman × Thai native crossbred cattle than in Brahman cattle (p < 0.05). Conclusion Immune cells of crossbreed cattle have a higher activation response to LPS than those of purebred cattle, and native crossbreed beef cattle have a higher antioxidant capacity than purebred beef cattle. This result may explain why hybrid cattle of indigenous breeds are more resistant to disease than purebred cattle.
Collapse
Affiliation(s)
- Piyarat Srinontong
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
- Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Worapol Aengwanich
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
- Stress and Oxidative Stress in Animal Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Sattabongkod Somphon
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Siriyakorn Khonwai
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Thanasorn Nitsinsakul
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Zhiliang Wu
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu 5011194, Japan
| | - Thanyakorn Chalalai
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Bhuripit Saraphol
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Wilasinee Srisanyong
- Department of Veterinary Technology, Faculty of Agriculture Technology, Kalasin University, Kalasin 46000, Thailand
| |
Collapse
|
11
|
Krivoruchko AA, Zdorovenko EL, Ivanova MF, Kostina EE, Fedonenko YP, Shashkov AS, Dmitrenok AS, Ul’chenko EA, Tkachenko OV, Astankova AS, Burygin GL. Structure, Physicochemical Properties and Biological Activity of Lipopolysaccharide from the Rhizospheric Bacterium Ochrobactrum quorumnocens T1Kr02, Containing d-Fucose Residues. Int J Mol Sci 2024; 25:1970. [PMID: 38396650 PMCID: PMC10888714 DOI: 10.3390/ijms25041970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of Ochrobactrum quorumnocens T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical-chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-β-d-Fucf-(1→3)-β-d-Fucp-(1→. The structure of the periplasmic glucan coextracted with LPS was established by NMR spectroscopy and chemical methods: →2)-β-d-Glcp-(1→. Non-stoichiometric modifications were identified in both polysaccharides: 50% of d-fucofuranose residues at position 3 were O-acetylated, and 15% of d-Glcp residues at position 6 were linked with succinate. This is the first report of a polysaccharide containing both d-fucopyranose and d-fucofuranose residues. The fatty acid analysis of the LPS showed the prevalence of 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, lactobacillic, and 27-hydroxyoctacosanoic acids. The dynamic light scattering demonstrated that LPS (in an aqueous solution) formed supramolecular particles with a size of 72.2 nm and a zeta-potential of -21.5 mV. The LPS solution (10 mkg/mL) promoted the growth of potato microplants under in vitro conditions. Thus, LPS of O. quorumnocens T1Kr02 can be recommended as a promoter for plants and as a source of biotechnological production of d-fucose.
Collapse
Affiliation(s)
- Aleksandra A. Krivoruchko
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Maria F. Ivanova
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Ekaterina E. Kostina
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Yulia P. Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 410049 Saratov, Russia
- Department of Biochemistry and Biophysics, Faculty of Biology, Saratov State University, 410012 Saratov, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Elizaveta A. Ul’chenko
- Department of Biomedical Products, Faculty of Chemical Pharmaceutical Technologies, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Oksana V. Tkachenko
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Anastasia S. Astankova
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Gennady L. Burygin
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 410049 Saratov, Russia
| |
Collapse
|
12
|
Hu W, He Z, Du L, Zhang L, Li J, Ma Y, Bi S. Biomarkers of oxidative stress in broiler chickens attacked by lipopolysaccharide: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115606. [PMID: 37866038 DOI: 10.1016/j.ecoenv.2023.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Oxidative stress (OS) constitutes a pivotal factor in the initiation and progression of lipopolysaccharide (LPS) challenges in broiler chickens. Increasing studies have demonstrated that Alleviation of oxidative stress seems to be a reasonable strategy to alleviate LPS-mediated afflictions in broilers. Nonetheless, the relationship between OS-related indicators and exposure to LPS remains a topic of debate. The aim of this investigation was to precisely and holistically evaluate the effect of LPS exposure on OS-associated markers. We conducted a systematic search of four electronic databases-PubMed, Web of Science, Scopus, and Cochrane for relevant studies, and a total of 31 studies were included. The overall results showed that the LPS treatment significantly increased the levels of oxygen radicals and their products, such as malondialdehydes (MDA), reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG), while significantly reduced the levels of antioxidants, such as total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH), in the chickens. Intriguingly, though the observed trends in alterations were not strictly correlated with LPS concentrations, the enzyme activity levels were indeed influenced by the concentration of LPS. This observation highlights the complex relationship between LPS exposure and the body's antioxidant response. Despite some limitations, all the included studies were deemed credible. Subgroup evaluations revealed that the jejunum and duodenum has demonstrated stronger antioxidant capability compared to other tissues. Overall, our study presents compelling evidence that exposure to LPS induces significant OS in chickens. And we also found that the extent of OS was related to LPS doses, target tissues, and dietary ingredients.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Yue Ma
- Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
13
|
Ge S, Lian W, Bai Y, Wang L, Zhao F, Li H, Wang D, Pang Q. TMT-based quantitative proteomics reveals the targets of andrographolide on LPS-induced liver injury. BMC Vet Res 2023; 19:199. [PMID: 37817228 PMCID: PMC10563216 DOI: 10.1186/s12917-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Andrographolide (Andro) is a diterpenoid derived from Andrographis paniculate, which has anti-inflammatory, antibacterial, antiviral and hepatoprotective activities. Gram-negative bacterial infections can cause varying degrees of liver injury in chickens, although Andro has been shown to have a protective effect on the liver, its underlying mechanism of action and effects on liver proteins are not known. METHODS The toxicity of Andro on the viability of leghorn male hepatoma (LMH) cells at different concentrations and times was analyzed by CCK-8 assays. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the culture supernatants were measured using an automatic biochemical analyzer to evaluate the protective effect of androscopolide on LPS-induced injury of LMH cells. Subsequently, TMT proteomics analysis were performed on the negative control group (NC group), LPS, and LPS-Andro groups, and bioinformatics analysis was performed on the differentially expressed proteins (DEPs). RESULTS It was found that Andro reduced ALT and AST levels in the cell supernatant and alleviated LPS-induced injury in LMH cells. Proteomic analysis identified 50 and 166 differentially expressed proteins in the LPS vs. NC group and LPS-Andro vs. LPS group, respectively. Andro may be involved in steroid metabolic processes, negative regulation of MAPK cascade, oxidative stress, and other processes to protect against LPS-induced liver injury. CONCLUSIONS Andro protects against LPS-induced liver injury, HMGCS1, HMGCR, FDPS, PBK, CAV1, PRDX1, PRDX4, and PRDX6, which were identified by differential proteomics, may be the targets of Andro. Our study may provide new theoretical support for Andro protection against liver injury.
Collapse
Affiliation(s)
- Shihao Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Wenqi Lian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongjiang Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shangdong, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Houmei Li
- Shuozhou grass and animal husbandry development center, ShuoZhou, 036000, Shanxi, China
| | - Dongliang Wang
- ShuoZhou Vocational Technology College, ShuoZhou, 036000, Shanxi, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
14
|
Zhang H, Zhang Z, Li J, Qin G. New Strategies for Biocontrol of Bacterial Toxins and Virulence: Focusing on Quorum-Sensing Interference and Biofilm Inhibition. Toxins (Basel) 2023; 15:570. [PMID: 37755996 PMCID: PMC10536320 DOI: 10.3390/toxins15090570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The overuse of antibiotics and the emergence of multiple-antibiotic-resistant pathogens are becoming a serious threat to health security and the economy. Reducing antimicrobial resistance requires replacing antibiotic consumption with more biocontrol strategies to improve the immunity of animals and humans. Probiotics and medicinal plants have been used as alternative treatments or preventative therapies for a variety of diseases caused by bacterial infections. Therefore, we reviewed some of the anti-virulence and bacterial toxin-inhibiting strategies that are currently being developed; this review covers strategies focused on quenching pathogen quorum sensing (QS) systems, the disruption of biofilm formation and bacterial toxin neutralization. It highlights the probable mechanism of action for probiotics and medicinal plants. Although further research is needed before a definitive statement can be made on the efficacy of any of these interventions, the current literature offers new hope and a new tool in the arsenal in the fight against bacterial virulence factors and bacterial toxins.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China;
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Zhen Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Jing Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China;
| |
Collapse
|
15
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
16
|
Li X, Qu S, Song X, Wu C, Shen J, Zhu K. In Situ Neutralization and Detoxification of LPS to Attenuate Hyperinflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302950. [PMID: 37428467 PMCID: PMC10502683 DOI: 10.1002/advs.202302950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/11/2023]
Abstract
Hyperinflammation elicited by lipopolysaccharide (LPS) that derives from multidrug-resistant Gram-negative pathogens, leads to a sharp increase in mortality globally. However, monotherapies aiming to neutralize LPS often fail to improve the prognosis. Here, an all-in-one drug delivery strategy equipped with bactericidal activity, LPS neutralization, and detoxification is shown to recognize, kill pathogens, and attenuate hyperinflammation by abolishing the activation of LPS-triggered acute inflammatory responses. First, bactericidal colistin results in rapid bacterial killing, and the released LPS is subsequently sequestered. The neutralized LPS is further cleared by acyloxyacyl hydrolase to remove secondary fatty chains and detoxify LPS in situ. Last, such a system shows high efficacy in two mouse infection models challenged with Pseudomonas aeruginosa. This approach integrates direct antibacterial activity with in situ LPS neutralizing and detoxifying properties, shedding light on the development of alternative interventions to treat sepsis-associated infections.
Collapse
Affiliation(s)
- Xiaoyu Li
- National Key Laboratory of Veterinary Public Health SecurityCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Shaoqi Qu
- National Key Laboratory of Veterinary Public Health SecurityCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xiangbin Song
- National Key Laboratory of Veterinary Public Health SecurityCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health SecurityCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health SecurityCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health SecurityCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| |
Collapse
|
17
|
Wang S, Zhang K, Song X, Huang Q, Lin S, Deng S, Qi M, Yang Y, Lu Q, Zhao D, Meng F, Li J, Lian Z, Luo C, Yao Y. TLR4 Overexpression Aggravates Bacterial Lipopolysaccharide-Induced Apoptosis via Excessive Autophagy and NF-κB/MAPK Signaling in Transgenic Mammal Models. Cells 2023; 12:1769. [PMID: 37443803 PMCID: PMC10340758 DOI: 10.3390/cells12131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Gram-negative bacterial infections pose a significant threat to public health. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and induces innate immune responses, autophagy, and cell death, which have major impacts on the body's physiological homeostasis. However, the role of TLR4 in bacterial LPS-induced autophagy and apoptosis in large mammals, which are closer to humans than rodents in many physiological characteristics, remains unknown. So far, few reports focus on the relationship between TLR, autophagy, and apoptosis in large mammal levels, and we urgently need more tools to further explore their crosstalk. Here, we generated a TLR4-enriched mammal model (sheep) and found that a high-dose LPS treatment blocked autophagic degradation and caused strong innate immune responses and severe apoptosis in monocytes/macrophages of transgenic offspring. Excessive accumulation of autophagosomes/autolysosomes might contribute to LPS-induced apoptosis in monocytes/macrophages of transgenic animals. Further study demonstrated that inhibiting TLR4 downstream NF-κB or p38 MAPK signaling pathways reversed the LPS-induced autophagy activity and apoptosis. These results indicate that the elevated TLR4 aggravates LPS-induced monocytes/macrophages apoptosis by leading to lysosomal dysfunction and impaired autophagic flux, which is associated with TLR4 downstream NF-κB and MAPK signaling pathways. This study provides a novel TLR4-enriched mammal model to study its potential effects on autophagy activity, inflammation, oxidative stress, and cell death. These findings also enrich the biological functions of TLR4 and provide powerful evidence for bacterial infection.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (C.L.)
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xuting Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (C.L.)
| | - Sen Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Meiyu Qi
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yecheng Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (C.L.)
| | - Qi Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Duowei Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (C.L.)
| | - Jianhao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (C.L.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (C.L.)
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Sorini C, Tripathi KP, Wu S, Higdon SM, Wang J, Cheng L, Banerjee S, Reinhardt A, Kreslavsky T, Thorell A, Engstrand L, Du J, Villablanca EJ. Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-infected stomach in asymptomatic individuals. JCI Insight 2023; 8:161042. [PMID: 36810249 PMCID: PMC9977493 DOI: 10.1172/jci.insight.161042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host-microbiota environment in H. pylori-infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa-associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.
Collapse
Affiliation(s)
- Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Shawn M Higdon
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Sanghita Banerjee
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | | | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
19
|
Francis MR, El-Sheakh AR, Suddek GM. Saroglitazar, a dual PPAR-α/γ agonist, alleviates LPS-induced hepatic and renal injury in rats. Int Immunopharmacol 2023; 115:109688. [PMID: 36681027 DOI: 10.1016/j.intimp.2023.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS), an endotoxin within gram-negative bacteria, is associated with systemic acute inflammatory response after invading living tissues and results in sepsis. The liver and kidney are both major target organs in sepsis. Septic acute hepatic-renal injury is a serious clinical condition with high risk of morbidity and mortality. Nevertheless, effective treatment is still lacking. AIM This study highlights saroglitazar (SAR), a dual PPAR-α/γ agonist, as a proposed prophylactic drug against LPS-induced hepatic-renal injury. MAIN METHODS Rats were pretreated with SAR (2 and 4 mg/kg/day) for 15 days, while sepsis was induced by LPS injection (10 mg/kg) on day 15 one hour following SAR oral administration. KEY FINDINGS SAR pretreatment could successfully mitigate LPS-induced hepatic-renal injury, evidenced by enhancement of renal and hepatic functions and a decrease of tissue pathological injury. Meanwhile, SAR alleviated LPS-induced oxidative stress; it reduced malondialdehyde (MDA) levels and ameliorated decreased levels of superoxide dismutase (SOD) and glutathione (GSH). LPS-induced elevations in hepatic and renal nuclear factor-kappa B (NF-κB), phosphorylated inhibitor of kappa B alpha (p-IκBα), interferon-beta (IFN-β), and hepatic high mobility group box-1 (HMGB-1) contents were significantly attenuated in SAR-treated groups. SAR showed an advantageous impact against LPS-induced activation of non-canonical inflammasome and pyroptosis via a significant reduction in cysteinyl aspartate-specific proteinase-11 (Caspase-11) and gasdermin D (GSDMD) expressions. Moreover, Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Protein 3 (NLRP3) inflammasome activation with concomitant expression and activation of caspase-1 and release of interleukin-1beta (IL-1β) were considerably diminished following SAR pretreatment. SIGNIFICANCE SAR could be considered a prophylactic anti-inflammatory antioxidant drug against LPS-induced liver and kidney injury.
Collapse
Affiliation(s)
- Marina R Francis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Cao Y, Li R, Du Y, Jin N, Fang T, Ma F, Jin P. miR-92b-5p negatively regulates IKK through targeting its ORF region in the innate immune responses of amphioxus (Branchiostoma belcheri). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104556. [PMID: 36167145 DOI: 10.1016/j.dci.2022.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cephalochordate (Amphioxus), situated at a key phylogenetic position in the phylum Chordata, serves as a model organism for studying the origin and evolution of the vertebrate innate immune. In this study, five members of precursor miR-92 family (miR-92a-1, miR-92a-2, miR-92b, miR-92c and miR-92d) are identified in Branchiostoma belcheri, and their evolutionary conservation and potential molecular functions in innate immunity are analyzed. Among them, miR-92b-5p was validated in HEK293 cells to target the coding region but not classic 3'UTR of IKK (inhibitor of nuclear factor kappa-B kinase) mRNA, one integral component of MAPK and TLR4 immune signaling. Furthermore, the spatiotemporal expression patterns of miR-92b-5p and IKK were examined in different tissues or different time points (2 h, 4 h, 8 h, 12 h, 24 h and 48 h) post LPS stimulation at RNA and protein level in vivo. The seemingly inverse expression pattern between miR-92b-5p and IKK supports the involvement of miR-92b-5p in Branchiostoma belcheri innate immune response. In conclusion, our work not only illustrates the evolutionary pattern of Branchiostoma belcheri miR-92 family across chordates, but also reveals that miR-92b-5p could target IKK expression to regulate innate immune response.
Collapse
Affiliation(s)
- Yunpeng Cao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ranting Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Yongxin Du
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Na Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Tao Fang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
21
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
22
|
Xiang W, Ji B, Jiang Y, Xiang H. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review. Front Vet Sci 2022; 9:938629. [PMID: 36172610 PMCID: PMC9510893 DOI: 10.3389/fvets.2022.938629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Background Currently, many studies have been published on the relationship between the gut microbiome and knee osteoarthritis. However, the evidence for the association of gut microbiota with knee osteoarthritis has not been comprehensively evaluated. Objective This review aimed to assess existing results and provide scientific evidence for the association of low-grade inflammation caused by gut microbiota disturbances with knee osteoarthritis. Methods This study conducted an extensive review of the current literature using four databases, PubMed, EMBASE, Cochrane Library and Web of Science before 31 December 2021. Risk of bias was determined using ROBINS and SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES criteria. Twelve articles were included. Results Studies have shown that a high-fat diet leads to a disturbance of the gut microbiota, mainly manifested by an increase in the abundance of Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain or loss caused by high fat. These changes are associated with elevated levels of serum lipopolysaccharide (LPS) and its binding proteins, as well as various inflammatory factors, leading to osteoarthritis (OA). Conclusion This systematic review shows that a correlation between low-grade inflammation caused by gut microbiota disturbances and severity of knee osteoarthritis radiology and dysfunction. However, there was a very small number of studies that could be included in the review. Thus, further studies with large sample sizes are warranted to elucidate the association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis, and to explore the possible mechanisms for ameliorating osteoarthritis by modulating gut microbiota.
Collapse
Affiliation(s)
- Wu Xiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Bingjin Ji
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Yiqin Jiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Han Xiang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Han Xiang
| |
Collapse
|
23
|
Lopez P, Bridel S, Saulnier D, David R, Magariños B, Torres BS, Bernardet JF, Duchaud E. Genomic characterization of Tenacibaculum maritimum O-antigen gene cluster and development of a multiplex PCR-based serotyping scheme. Transbound Emerg Dis 2022; 69:e2876-e2888. [PMID: 35731505 PMCID: PMC9796276 DOI: 10.1111/tbed.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023]
Abstract
Tenacibaculum maritimum is a devastating bacterial pathogen affecting a large variety of marine fish species. It is responsible for significant economic losses in aquaculture farms worldwide. Different typing methods have been proposed to analyse bacterial diversity and population structure. Serological heterogeneity has been observed and up to four different serotypes have been described so far. However, the underlying molecular factors remain unknown. By combining conventional serotyping and genome-wide association study, we identified the genomic loci likely involved in the O-antigen biosynthesis. This finding allowed the development of a robust multiplex PCR-based serotyping scheme able to detect subgroups within each serotype and therefore performs better than conventional serotyping. This scheme was successfully applied to a large number of isolates from worldwide origin and retrieved from a large variety of fish species. No obvious correlations were observed between the mPCR-based serotype and the host species or the geographic origin of the isolates. Strikingly, the distribution of mPCR-based serotypes does not follow the core genome phylogeny. Nevertheless, this simple and cost-effective mPCR-based serotyping method could be useful for different applications such as population structure analysis, disease surveillance, vaccine formulation and efficacy follow-up.
Collapse
Affiliation(s)
- Pierre Lopez
- IfremerIRDInstitut Louis MalardéUniv Polynésie FrançaiseEIOLabex CorailTaravaoFrench Polynesia,Université Paris‐SaclayINRAEUVSQVIMJouy‐en‐JosasFrance
| | - Sébastien Bridel
- Université Paris‐SaclayINRAEUVSQVIMJouy‐en‐JosasFrance,Biodiversity and Epidemiology of Bacterial PathogensInstitut Pasteur, Université de ParisParis75015France
| | - Denis Saulnier
- IfremerIRDInstitut Louis MalardéUniv Polynésie FrançaiseEIOLabex CorailTaravaoFrench Polynesia
| | - Rarahu David
- DRM, Direction des Ressources MarinesFare Ute Immeuble Le caillPapeeteFrench Polynesia
| | - Beatriz Magariños
- Departamento de Microbiología, Facultad de Biología/CIBUSUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Beatriz S. Torres
- Departamento de Microbiología, Facultad de Biología/CIBUSUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
| | | | - Eric Duchaud
- Université Paris‐SaclayINRAEUVSQVIMJouy‐en‐JosasFrance
| |
Collapse
|
24
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
25
|
Che J, Sun L, Shan J, Shi Y, Zhou Q, Zhao Y, Sun L. Artificial Lipids and Macrophage Membranes Coassembled Biomimetic Nanovesicles for Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201280. [PMID: 35616035 DOI: 10.1002/smll.202201280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Tissue bacterial infections are a major pathological factor in many diseases. Effects on this aspect are in focus for the development of coordinated therapeutic strategies for bacterial killing and anti-inflammation. Here, inspired by the biodetoxification capacity of immune cells, multifunctional biomimetic nanovesicles (MϕM-LPs) that are co-assembled by macrophage membranes and artificial lipids to deliver antibiotics for treating bacterial infections, are presented. The macrophage membrane endows the MϕM-LPs with the capacity of lipopolysaccharide and inflammatory cytokine neutralization, while the artificial lipid membrane can be further engineered to increase the fluidity and anchor to bacteria. In addition, the MϕM-LPs can deliver sufficient ciprofloxacin with controllable release to accomplish an excellent antibacterial activity and biodetoxification capacity in vitro. Based on these advantages, it is demonstrated in a mouse model of Staphylococcus aureus (S. aureus) focal infection, that a single injection of the biomimetic nanovesicles can effectively anchor to and eliminate S. aureus in the infected tissue and reduce inflammatory cytokine levels. Thus, the tissue regeneration and collagen deposition can be accelerated. These results indicate the potential values of integrating natural and artificial membrane materials as a multifunctional biomimetic drug delivery system to treat bacterial infections.
Collapse
Affiliation(s)
- Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingyang Shan
- Department of Neurology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Yong Shi
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
26
|
Antioxidant and Anti-Inflammatory Properties of Rubber Seed Oil in Lipopolysaccharide-Induced RAW 267.4 Macrophages. Nutrients 2022; 14:nu14071349. [PMID: 35405962 PMCID: PMC9003255 DOI: 10.3390/nu14071349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Rubber seed oil (RSO) is a typical PUFA-enriched plant oil, but it has not been widely used as a healthy edible oil resource due to the lack of understanding of its nutritional values, health biological effects, and action mechanisms. This work was conducted to characterize the basic physicochemical properties, evaluate the antioxidant and anti-inflammatory properties, and explore the involved mechanisms of RSO in LPS-induced RAW 264.7 cells. In the present study, the basic physicochemical parameters of RSO indicated that RSO has good qualities as a potential edible plant oil resource. In LPS-induced macrophages, RSO supplementation displayed a significant antioxidant effect by decreasing ROS and MDA levels as well as elevating T-AOC. In addition, RSO supplementation showed an anti-inflammatory effect by reducing the production of NO, IL-1β, IL-6, and TNF-α while promoting the production of IL-10. Moreover, RSO supplementation decreased the mRNA expression of IL-6, IL-1β, TNF-α, iNOS, and MCP-1 genes while increasing the mRNA expression of the IL-10 gene. Furthermore, RSO supplementation increased Nrf2 protein expression and up-regulated antioxidant genes (HO-1 and NQO-1), which was accompanied by the decrease in TLR4 protein expression and NF-κB p65 phosphorylation as well as IκBα phosphorylation. This study provided some insight into the applications of RSO as a healthy edible oil resource.
Collapse
|
27
|
Ajish C, Yang S, Kumar SD, Kim EY, Min HJ, Lee CW, Shin SH, Shin SY. A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities. Sci Rep 2022; 12:4365. [PMID: 35288606 PMCID: PMC8921290 DOI: 10.1038/s41598-022-08247-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hybridizing two known antimicrobial peptides (AMPs) is a simple and effective strategy for designing antimicrobial agents with enhanced cell selectivity against bacterial cells. Here, we generated a hybrid peptide Lf-KR in which LfcinB6 and KR-12-a4 were linked with a Pro hinge to obtain a novel AMP with potent antimicrobial, anti-inflammatory, and anti-biofilm activities. Lf-KR exerted superior cell selectivity for bacterial cells over sheep red blood cells. Lf-KR showed broad-spectrum antimicrobial activities (MIC: 4–8 μM) against tested 12 bacterial strains and retained its antimicrobial activity in the presence of salts at physiological concentrations. Membrane depolarization and dye leakage assays showed that the enhanced antimicrobial activity of Lf-KR was due to increased permeabilization and depolarization of microbial membranes. Lf-KR significantly inhibited the expression and production of pro-inflammatory cytokines (nitric oxide and tumor necrosis factor‐α) in LPS-stimulated mouse macrophage RAW264.7 cells. In addition, Lf-KR showed a powerful eradication effect on preformed multidrug-resistant Pseudomonas aeruginosa (MDRPA) biofilms. We confirmed using confocal laser scanning microscopy that a large portion of the preformed MDRPA biofilm structure was perturbed by the addition of Lf-KR. Collectively, our results suggest that Lf-KR can be an antimicrobial, anti-inflammatory, and anti-biofilm candidate as a pharmaceutical agent.
Collapse
|
28
|
Acute Inflammation Is a Predisposing Factor for Weight Gain and Insulin Resistance. Pharmaceutics 2022; 14:pharmaceutics14030623. [PMID: 35335996 PMCID: PMC8954490 DOI: 10.3390/pharmaceutics14030623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
In the course of infection and intense endotoxemia processes, induction of a catabolic state leading to weight loss is observed in mice and humans. However, the late effects of acute inflammation on energy homeostasis, regulation of body weight and glucose metabolism are yet to be elucidated. Here, we addressed whether serial intense endotoxemia, characterized by an acute phase response and weight loss, could be an aggravating or predisposing factor to weight gain and associated metabolic complications. Male Swiss Webster mice were submitted to 8 consecutive doses of lipopolysaccharide (10 mg/kg LPS), followed by 10 weeks on a high-fat diet (HFD). LPS-treated mice did not show changes in weight when fed standard chow. However, when challenged by a high-fat diet, LPS-treated mice showed greater weight gain, with larger fat depot areas, increased serum leptin and insulin levels and impaired insulin sensitivity when compared to mice on HFD only. Acute endotoxemia caused a long-lasting increase in mRNA expression of inflammatory markers such as TLR-4, CD14 and serum amyloid A (SAA) in the adipose tissue, which may represent the key factors connecting inflammation to increased susceptibility to weight gain and impaired glucose homeostasis. In an independent experimental model, and using publicly available microarray data from adipose tissue from mice infected with Gram-negative bacteria, we performed gene set enrichment analysis and confirmed upregulation of a set of genes responsible for cell proliferation and inflammation, including TLR-4 and SAA. Together, we showed that conditions leading to intense and recurring endotoxemia, such as common childhood bacterial infections, may resound for a long time and aggravate the effects of a western diet. If confirmed in humans, infections should be considered an additional factor contributing to obesity and type 2 diabetes epidemics.
Collapse
|
29
|
Bezhaeva T, Karper J, Quax PHA, de Vries MR. The Intriguing Role of TLR Accessory Molecules in Cardiovascular Health and Disease. Front Cardiovasc Med 2022; 9:820962. [PMID: 35237675 PMCID: PMC8884272 DOI: 10.3389/fcvm.2022.820962] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of Toll like receptors (TLR) plays an important role in cardiovascular disease development, progression and outcomes. Complex TLR mediated signaling affects vascular and cardiac function including tissue remodeling and repair. Being central components of both innate and adaptive arms of the immune system, TLRs interact as pattern recognition receptors with a series of exogenous ligands and endogenous molecules or so-called danger associated molecular patterns (DAMPs) that are released upon tissue injury and cellular stress. Besides immune cells, a number of structural cells within the cardiovascular system, including endothelial cells, smooth muscle cells, fibroblasts and cardiac myocytes express TLRs and are able to release or sense DAMPs. Local activation of TLR-mediated signaling cascade induces cardiovascular tissue repair but in a presence of constant stimuli can overshoot and cause chronic inflammation and tissue damage. TLR accessory molecules are essential in guiding and dampening these responses toward an adequate reaction. Furthermore, accessory molecules assure specific and exclusive TLR-mediated signal transduction for distinct cells and pathways involved in the pathogenesis of cardiovascular diseases. Although much has been learned about TLRs activation in cardiovascular remodeling, the exact role of TLR accessory molecules is not entirely understood. Deeper understanding of the role of TLR accessory molecules in cardiovascular system may open therapeutic avenues aiming at manipulation of inflammatory response in cardiovascular disease. The present review outlines accessory molecules for membrane TLRs that are involved in cardiovascular disease progression. We first summarize the up-to-date knowledge on TLR signaling focusing on membrane TLRs and their ligands that play a key role in cardiovascular system. We then survey the current evidence of the contribution of TLRs accessory molecules in vascular and cardiac remodeling including myocardial infarction, heart failure, stroke, atherosclerosis, vein graft disease and arterio-venous fistula failure.
Collapse
Affiliation(s)
- Taisiya Bezhaeva
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacco Karper
- Department of Cardiology, Wilhelmina Hospital Assen, Assen, Netherlands
| | - Paul H. A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R. de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Margreet R. de Vries
| |
Collapse
|
30
|
Abstract
Environmental chemicals can alter gut microbial community composition, known as dysbiosis. However, the gut microbiota is a highly dynamic system and its functions are still largely underexplored. Likewise, it is unclear whether xenobiotic exposure affects host health through impairing host-microbiota interactions. Answers to this question not only can lead to a more precise understanding of the toxic effects of xenobiotics but also can provide new targets for the development of new therapeutic strategies. Here, we aim to identify the major challenges in the field of microbiota-exposure research and highlight the need to exam the health effects of xenobiotic-induced gut microbiota dysbiosis in host bodies. Although the changes of gut microbiota frequently co-occur with the xenobiotic exposure, the causal relationship of xenobiotic-induced microbiota dysbiosis and diseases is rarely established. The high dynamics of the gut microbiota and the complex interactions among exposure, microbiota, and host, are the major challenges to decipher the specific health effects of microbiota dysbiosis. The next stage of study needs to combine various technologies to precisely assess the xenobiotic-induced gut microbiota perturbation and the subsequent health effects in host bodies. The exposure, gut microbiota dysbiosis, and disease outcomes have to be causally linked. Many microbiota-host interactions are established by previous studies, including signaling metabolites and response pathways in the host, which may use as start points for future research to examine the mechanistic interactions of exposure, gut microbiota, and host health. In conclusion, to precisely understand the toxicity of xenobiotics and develop microbiota-based therapies, the causal and mechanistic links of exposure and microbiota dysbiosis have to be established in the next stage study.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States,CONTACT Kun Lu Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC27599, United States
| |
Collapse
|
31
|
Page MJ, Kell DB, Pretorius E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221076390. [PMID: 35155966 PMCID: PMC8829728 DOI: 10.1177/24705470221076390] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is the main structural component of the outer membrane of most Gram-negative bacteria and has diverse immunostimulatory and procoagulant effects. Even though LPS is well described for its role in the pathology of sepsis, considerable evidence demonstrates that LPS-induced signalling and immune dysregulation are also relevant in the pathophysiology of many diseases, characteristically where endotoxaemia is less severe. These diseases are typically chronic and progressive in nature and span broad classifications, including neurodegenerative, metabolic, and cardiovascular diseases. This Review reappraises the mechanisms of LPS-induced signalling and emphasises the crucial contribution of LPS to the pathology of multiple chronic diseases, beyond conventional sepsis. This perspective asserts that new ways of approaching chronic diseases by targeting LPS-driven pathways may be of therapeutic benefit in a wide range of chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Douglas B Kell
- Stellenbosch University, Stellenbosch, South Africa.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
32
|
Fang C, Wang L, Qiao J, Chang L, He Q, Zhang X, Liu M. Differential regulation of lipopolysaccharide-induced IL-1β and TNF-α production in macrophages by palmitate via modulating TLR4 downstream signaling. Int Immunopharmacol 2021; 103:108456. [PMID: 34923420 DOI: 10.1016/j.intimp.2021.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
Diabetic patients are susceptible to infectious diseases. Bacterial invasion activates immune cells such as macrophages through interaction between LPS and TLR4, and induces the expression of inflammatory mediators, including IL-1β and TNF-α, which play key roles in the elimination of infections. Unregulated overproduction or underproduction of these cytokines has been reported as a major factor in the development of septic shock, immune deficiency, and autoimmunity. Recent studies found that metabolic abnormalities of diabetes, such as hyperglycemia and dyslipidemia, played a major role in modulating the immune response. In this study, we studied the effects of palmitic acid (PA) pretreatment on LPS-induced IL-1β and TNF-α production and LPS-TLR4 signaling in macrophages. Compared with control, PA pretreatment significantly increased LPS-induced TNF-α production and secretion in macrophages. In contrast, LPS-induced IL-1β production and secretion was significantly suppressed by PA pretreatment. PA pretreatment did not affect the expression levels of TLR4 or Myd88, or the endocytosis of TLR4 in macrophages. However, PA pretreatment significantly suppressed the phosphorylation level and nuclear translocation of NF-κB, and the phosphorylation level of ERK1/2, whereas increased the phosphorylation levels of p38 and JNK. The activation of IKK which was upstream of NF-κB and ERK1/2 was attenuated, while the activation of TAK1 which was upstream of JNK and p38 was augmented by PA pretreatment. Inhibitors of NF-κB, MEK1/2, and p38 significantly decreased IL-1β expression, while JNK and p38 pathway inhibitors significantly inhibited TNF-α expression. The differential regulation of LPS-induced TNF-α and IL-1β production by PA was associated with cellular metabolism of PA, because inhibiting metabolism of PA with etomoxir or pretreatment with Br-PA which cannot be metabolized reversed these effects. We also showed that PA treatment increased acetylated IKK level which might contribute to the suppressed activation of IKK. The present study showed that LPS-induced production of TNF-α and IL-1β was regulated by different TLR4 downstream pathways in macrophages. PA differentially affected LPS-induced production of TNF-α and IL-1β in macrophages through differentially modulating these pathways. Further experiments will be needed to determine how these phenomena lead to the impaired immune response in patients with diabetes.
Collapse
Affiliation(s)
- Chunyun Fang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Lixia Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xiaona Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
33
|
Hoshiko H, Zeinstra GG, Lenaerts K, Oosterink E, Ariens RMC, Mes JJ, de Wit NJW. An Observational Study to Evaluate the Association between Intestinal Permeability, Leaky Gut Related Markers, and Metabolic Health in Healthy Adults. Healthcare (Basel) 2021; 9:healthcare9111583. [PMID: 34828628 PMCID: PMC8623210 DOI: 10.3390/healthcare9111583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
We explored whether metabolic health is linked to intestinal permeability, using a multi-sugar (MS) permeability test, and whether intestinal permeability is correlated with the leaky gut-related markers (LGM) zonulin, LBP, and sCD14. Metabolically healthy (n = 15) and unhealthy subjects (n = 15) were recruited based on waist circumference, fasting glucose, and high-density lipoprotein cholesterol levels. Participants underwent an MS permeability test that assessed site-specific permeabilities of the gastroduodenum and small and large intestines. The test was performed with/without an acetylsalicylic acid challenge to measure and correlate the gut permeability, LGM, and metabolic health. At baseline, metabolic health showed no correlation with gut permeability. Significant correlations were found between the metabolic health parameters and LGM. In the acetylsalicylic acid challenged MS permeability test, low-density lipoprotein cholesterol was correlated with the sucralose/erythritol ratio, reflecting the whole intestinal permeability. Correlations between most metabolic health parameters and LGM during the acetylsalicylic acid challenge were less pronounced than at baseline. In both MS permeability tests, no significant correlations were found between LGM (plasma and serum) and gut permeability. Thus, correlations between LGM and metabolic health might not be linked with paracellular gut permeability. Transcellular translocation and/or lipoprotein-related transportation is a more likely mechanism underlying the association between LGM and metabolic health.
Collapse
Affiliation(s)
- Hiroyuki Hoshiko
- HE Center, Suntory MONOZUKURI Expert Limited, Kyoto 619-0284, Japan
- Correspondence:
| | - Gertrude G. Zeinstra
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Els Oosterink
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Renata M. C. Ariens
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Nicole J. W. de Wit
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| |
Collapse
|
34
|
Chen SN, Tan Y, Xiao XC, Li Q, Wu Q, Peng YY, Ren J, Dong ML. Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis. Acta Pharmacol Sin 2021; 42:1610-1619. [PMID: 33495514 PMCID: PMC8463538 DOI: 10.1038/s41401-020-00597-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Septic acute liver injury is one of the leading causes of fatalities in patients with sepsis. Toll-like receptor 4 (TLR4) plays a vital role in response to lipopolysaccharide (LPS) challenge, but the mechanisms underlying TLR4 function in septic injury remains unclear. In this study, we investigated the role of TLR4 in LPS-induced acute liver injury (ALI) in mice with a focus on inflammation and apoptosis. Wild-type (WT) and TLR4-knockout (TLR4-/-) mice were challenged with LPS (4 mg/kg) for 6 h. TLR4 signaling cascade markers (TLR4, MyD88, and NF-κB), inflammatory markers (TNFα, IL-1β, and IL-6), and apoptotic markers (Bax, Bcl-2, and caspase 3) were evaluated. We showed that LPS challenge markedly increased the levels of serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) and other liver pathological changes in WT mice. In addition, LPS challenge elevated the levels of liver carbonyl proteins and serum inflammatory cytokines, upregulated the expression of TLR4, MyD88, and phosphorylated NF-κB in liver tissues. Moreover, LPS challenge significantly increased hepatocyte apoptosis, caspase 3 activity, and Bax level while suppressing Bcl-2 expression in liver tissues. These pathological changes were greatly attenuated in TLR4-/- mice. Similar pathological responses were provoked in primary hepatic Kupffer cells isolated from WT and TLR4-/- mice following LPS (1 μg/mL, 6 h) challenge. In summary, these results demonstrate that silencing of TLR4 attenuates LPS-induced liver injury through inhibition of inflammation and apoptosis via TLR4/MyD88/NF-κB signaling pathway. TLR4 deletion confers hepatoprotection against ALI induced by LPS, possibly by repressing macrophage inflammation and apoptosis.
Collapse
Affiliation(s)
- Sai-Nan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Chan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - You-You Peng
- Shanghai Hongrun Boyuan School, Shanghai, 201713, China
| | - Jun Ren
- Department of Cardiology, and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Mao-Long Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Hudson SB, Virgin EE, Kepas ME, French SS. Energy expenditure across immune challenge severities in a lizard: consequences for innate immunity, locomotor performance and oxidative status. J Exp Biol 2021; 224:271845. [PMID: 34402514 DOI: 10.1242/jeb.242608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Reptiles, like other vertebrates, rely on immunity to defend themselves from infection. The energetic cost of an immune response is liable to scale with infection severity, prompting constraints on other self-maintenance traits if immune prioritization exceeds energy budget. In this study, adult male side-blotched lizards (Uta stansburiana) were injected with saline (control) or high (20 µg g-1 body mass) or low (10 µg g-1 body mass) concentrations of lipopolysaccharide (LPS) to simulate bacterial infections of discrete severities. The costs and consequences of the immune response were assessed through comparisons of change in resting metabolic rate (RMR), energy metabolites (glucose, glycerol, triglycerides), innate immunity (bactericidal ability), sprint speed and oxidative status (antioxidant capacity, reactive oxygen metabolites). High-LPS lizards had the lowest glucose levels and greatest sprint reductions, while their RMR and bactericidal ability were similar to those of control lizards. Low-LPS lizards had elevated RMR and bactericidal ability, but glucose levels and sprint speed changes between those of high-LPS and control lizards. Levels of glycerol, triglycerides, reactive oxygen metabolites and antioxidant capacity did not differ by treatment. Taken together, energy expenditure for the immune response varies in a non-linear fashion with challenge severity, posing consequences for performance and self-maintenance processes in a reptile.
Collapse
Affiliation(s)
- Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Megen E Kepas
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| |
Collapse
|
36
|
Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms. mSystems 2021; 6:e0091320. [PMID: 34342537 PMCID: PMC8409726 DOI: 10.1128/msystems.00913-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is becoming one of the largest threats to public health worldwide, with the opportunistic pathogen Escherichia coli playing a major role in the AMR global health crisis. Unravelling the complex interplay between drug resistance and metabolic rewiring is key to understand the ability of bacteria to adapt to new treatments and to the development of new effective solutions to combat resistant infections. We developed a computational pipeline that combines machine learning with genome-scale metabolic models (GSMs) to elucidate the systemic relationships between genetic determinants of resistance and metabolism beyond annotated drug resistance genes. Our approach was used to identify genetic determinants of 12 AMR profiles for the opportunistic pathogenic bacterium E. coli. Then, to interpret the large number of identified genetic determinants, we applied a constraint-based approach using the GSM to predict the effects of genetic changes on growth, metabolite yields, and reaction fluxes. Our computational platform leads to multiple results. First, our approach corroborates 225 known AMR-conferring genes, 35 of which are known for the specific antibiotic. Second, integration with the GSM predicted 20 top-ranked genetic determinants (including accA, metK, fabD, fabG, murG, lptG, mraY, folP, and glmM) essential for growth, while a further 17 top-ranked genetic determinants linked AMR to auxotrophic behavior. Third, clusters of AMR-conferring genes affecting similar metabolic processes are revealed, which strongly suggested that metabolic adaptations in cell wall, energy, iron and nucleotide metabolism are associated with AMR. The computational solution can be used to study other human and animal pathogens. IMPORTANCEEscherichia coli is a major public health concern given its increasing level of antibiotic resistance worldwide and extraordinary capacity to acquire and spread resistance via horizontal gene transfer with surrounding species and via mutations in its existing genome. E. coli also exhibits a large amount of metabolic pathway redundancy, which promotes resistance via metabolic adaptability. In this study, we developed a computational approach that integrates machine learning with metabolic modeling to understand the correlation between AMR and metabolic adaptation mechanisms in this model bacterium. Using our approach, we identified AMR genetic determinants associated with cell wall modifications for increased permeability, virulence factor manipulation of host immunity, reduction of oxidative stress toxicity, and changes to energy metabolism. Unravelling the complex interplay between antibiotic resistance and metabolic rewiring may open new opportunities to understand the ability of E. coli, and potentially of other human and animal pathogens, to adapt to new treatments.
Collapse
|
37
|
Marcano R, Rojo MÁ, Cordoba-Diaz D, Garrosa M. Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease. Toxins (Basel) 2021; 13:533. [PMID: 34437404 PMCID: PMC8402370 DOI: 10.3390/toxins13080533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the "bioactive center" of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases. This response is not coordinated, favoring the dissemination of LPS through blood vessels, as well as binding mainly to Toll-like receptor 4 (TLR4) expressed in the host cells, leading to the destruction of the tissues and the detrimental effect in some systemic pathologies. Lipid A can also act as a TLRs antagonist eliciting immune deregulation. Although bacterial endotoxins have been extensively studied clinically and in a laboratory, their effects on the oral cavity and particularly on periodontium deserve special attention since they affect the connective tissue that supports the tooth, and can be linked to advanced medical conditions. This review addresses the distribution of endotoxins associated with periodontal pathogenic bacteria and its relationship with systemic diseases, as well as the effect of some therapeutic alternatives.
Collapse
Affiliation(s)
- Rosalia Marcano
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| | - M. Ángeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, and IUFI, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Garrosa
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
38
|
Luo Q, Shi H, Xu X. Cryo-EM structures of LptB 2FG and LptB 2FGC from Klebsiella pneumoniae in complex with lipopolysaccharide. Biochem Biophys Res Commun 2021; 571:20-25. [PMID: 34303191 DOI: 10.1016/j.bbrc.2021.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/28/2023]
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) in most Gram-negative bacteria. LPS transport from the inner membrane (IM) to the OM is achieved by seven lipopolysaccharide transport proteins (LptA-G). LptB2FG, an type VI ATP-binding cassette (ABC) transporter, forms a stable complex with LptC, extracts LPS from the IM and powers LPS transport to the OM. Here we report the cryo-EM structures of LptB2FG and LptB2FGC from Klebsiella pneumoniae in complex with LPS. The KpLptB2FG-LPS structure provides detailed interactions between LPS and the transporter, while the KpLptB2FGC-LPS structure may represent an intermediate state that the transmembrane helix of LptC has not been fully inserted into the transmembrane domains of LptB2FG.
Collapse
Affiliation(s)
- Qingshan Luo
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518133, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huigang Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqing Xu
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518133, China.
| |
Collapse
|
39
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
40
|
Huang J, Li W, Liao W, Hao Q, Tang D, Wang D, Wang Y, Ge G. Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet. Food Funct 2021; 11:9924-9935. [PMID: 33095225 DOI: 10.1039/d0fo02152k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green tea polyphenol epigallocatechin-3-gallate (EGCG) may help prevent metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its protective effects are complicated and remain unclear. With the gut-liver axis theory as a foundation, the present study investigated the effects of EGCG on intestinal mucosal immunity in male C57BL/6 mice fed a high-fat Western diet or the diet supplemented with 0.4% dietary EGCG (w/w) for 14 weeks. Dietary EGCG supplementation effectively prevented changes-including excessive accumulation of visceral and hepatic fat, abnormal liver function, and elevated concentrations of serum and liver inflammatory cytokines-known to be caused by high-fat diets. In addition, serum lipopolysaccharide concentrations decreased by 94.3%. RNA sequencing data of differentially expressed genes in ileal samples among three groups indicated that most of the pathways in the Kyoto Encyclopedia of Genes and Genomes in the first 20 enrichment levels were related to immunity and inflammatory reactions. Real-time reverse transcription quantitative polymerase chain reaction was used to determine alterations in expression levels of key genes related to intestinal immune function and inflammatory responses from ileal and colonic samples. Changes in secretory immunoglobulin A in the small intestine, serum, and feces further demonstrated improved intestinal mucosal immunity in the EGCG-treated mice. In conclusion, dietary EGCG effectively prevented the development of NAFLD and significantly improved intestinal mucosal immunity in mice with obesity induced by a high-fat diet. However, whether improved intestinal immune function is the key mechanism underlying the health benefits of dietary EGCG warrants further research.
Collapse
Affiliation(s)
- Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pérez-Hernández EG, Delgado-Coello B, Luna-Reyes I, Mas-Oliva J. New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomed Pharmacother 2021; 141:111890. [PMID: 34229252 DOI: 10.1016/j.biopha.2021.111890] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The complex pathophysiology of sepsis makes it a syndrome with limited therapeutic options and a high mortality rate. Gram-negative bacteria containing lipopolysaccharides (LPS) in their outer membrane correspond to the most common cause of sepsis. Since the gut is considered an important source of LPS, intestinal damage has been considered a cause and a consequence of sepsis. Although important in the maintenance of the intestinal epithelial cell homeostasis, the microbiota has been considered a source of LPS. Recent studies have started to shed light on how sepsis is triggered by dysbiosis, and an increased inflammatory state of the intestinal epithelial cells, expanding the understanding of the gut-liver axis in sepsis. Here, we review the gut-liver interaction in Gram-negative sepsis, exploring the mechanisms of LPS inactivation, including the recently described contribution of an isoform of the cholesteryl-ester transfer protein (CETPI). Although several key questions remain to be answered when the pathophysiology of sepsis is reviewed, new contributions coming to light exploring the way LPS might be inactivated in vivo, suggest that new applications might soon reach the clinical setting.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Ismael Luna-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
42
|
Zamora R, Chavan S, Zanos T, Simmons RL, Billiar TR, Vodovotz Y. Spatiotemporally specific roles of TLR4, TNF, and IL-17A in murine endotoxin-induced inflammation inferred from analysis of dynamic networks. Mol Med 2021; 27:65. [PMID: 34167455 PMCID: PMC8223370 DOI: 10.1186/s10020-021-00333-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial lipopolysaccharide (LPS) induces a multi-organ, Toll-like receptor 4 (TLR4)-dependent acute inflammatory response. Methods Using network analysis, we defined the spatiotemporal dynamics of 20, LPS-induced, protein-level inflammatory mediators over 0–48 h in the heart, gut, lung, liver, spleen, kidney, and systemic circulation, in both C57BL/6 (wild-type) and TLR4-null mice. Results Dynamic Network Analysis suggested that inflammation in the heart is most dependent on TLR4, followed by the liver, kidney, plasma, gut, lung, and spleen, and raises the possibility of non-TLR4 LPS signaling pathways at defined time points in the gut, lung, and spleen. Insights from computational analyses suggest an early role for TLR4-dependent tumor necrosis factor in coordinating multiple signaling pathways in the heart, giving way to later interleukin-17A—possibly derived from pathogenic Th17 cells and effector/memory T cells—in the spleen and blood. Conclusions We have derived novel, systems-level insights regarding the spatiotemporal evolution acute inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sangeeta Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Theodoros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
43
|
Ma X, Li X, Di Q, Zhao X, Zhang R, Xiao Y, Sun P, Tang H, Quan J, Xiao W, Chen W. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother 2021; 138:111543. [PMID: 34311538 DOI: 10.1016/j.biopha.2021.111543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) is a severe lung disease with limited therapeutic strategies. Munronoid I, a limonoid, which is extracted and purified from Munronia sinica, exhibits effective anti-neoplastic activities. In this study, we attempted to determine the anti-inflammatory effects of Munronoid I using both the lipopolysaccharide (LPS)-induced in vivo murine ALI models and in vitro assays. Our results demonstrated that Munronoid I treatment ameliorated LPS-induced ALI and inflammation in mice. Moreover, it also significantly inhibited LPS-induced pathological injuries, infiltration of inflammatory cells, and production of IL-1β and IL-6. Furthermore, the in vitro assay showed that Munronoid I could inhibit the LPS-induced expression of inflammatory mediators such as iNOS, COX2, and production of pro-inflammatory cytokines by suppressing the activation of NF-κB signaling pathway in mouse peritoneal macrophages. Munronoid I reduced the LPS-, tumor necrosis factor alpha (TNF-α)- or interleukin 1 beta (IL-1β)-induced transforming growth factor beta-activated kinase 1 (TAK1) phosphorylation and protein expression. Furthermore, the Munronoid I also promoted K48-linked ubiquitination and proteasomal degradation of TAK1. Taken together, these results demonstrated that Munronoid I exhibited anti-inflammatory activities both in vitro and in vivo, which might be a potential therapeutic candidate for the treatment of ALI and pulmonary inflammation.
Collapse
Affiliation(s)
- Xingyu Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China.
| |
Collapse
|
44
|
IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4 + T cell responses. Sci Rep 2021; 11:9686. [PMID: 33958642 PMCID: PMC8102524 DOI: 10.1038/s41598-021-88956-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mast cells are potent mediators of allergy and asthma, yet their role in regulating adaptive immunity remains ambiguous. On the surface of mast cells, the crosslinking of IgE bound to FcεRI by a specific antigen recognized by that IgE triggers the release of immune mediators such as histamine and cytokines capable of activating other immune cells; however, little is known about the mast cell contribution to the induction of endogenous, antigen-specific CD4+ T cells. Here we examined the effects of specific mast cell activation in vivo on the initiation of an antigen-specific CD4+ T cell response. While CD4+ T cells were not enhanced by FcεRI stimulation alone, their activation was synergistically enhanced when FcεRI activation was combined with TLR4 stimulation. This enhanced activation was dependent on global TLR4 stimulation but appeared to be less dependent on mast cell expressed TLR4. This study provides important new evidence to support the role of mast cells as mediators of the antigen-specific adaptive immune response.
Collapse
|
45
|
Xia X, Hao H, Zhang X, Wong IN, Chung SK, Chen Z, Xu B, Huang R. Immunomodulatory sulfated polysaccharides from Caulerpa racemosa var. peltata induces metabolic shifts in NF-κB signaling pathway in RAW 264.7 macrophages. Int J Biol Macromol 2021; 182:321-332. [PMID: 33838195 DOI: 10.1016/j.ijbiomac.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Algal polysaccharide activates macrophages to alter physiologic biomarkers to drive the immunomodulatory phenotype, but it lacks specific biomarkers involved in the biochemical underpinning process. Here, we undertook an extensive analysis of the RAW 264.7 macrophages induced by an immunostimulating sulfated polysaccharide from Caulerpa racemosa var. peltata (CRVP-1) employing combined transcriptomic, proteomic, and metabolomic analyses to reveal the molecular details occurring in the CRVP-1-induced immunomodulatory process. The omics profiling of CRVP-1-activated macrophage demonstrated a total of 8844 genes (4354 downregulated and 4490 upregulated), 1243 proteins (620 downregulated and 623 upregulated), and 68 metabolites (52 downregulated and16 upregulated). Further, the co-mapped correlation network of omics combined with Western blot and immunofluorescence staining indicated that the cluster of differentiation 14 (CD14) might assist Toll-like receptor 4 (TLR4) involved in nuclear factor kappa-B (NF-κB) signaling pathway to drive the immunomodulatory phenotype. Together, our results discover novel physiologic biomarkers in the immunomodulatory activities of algal polysaccharides.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Zexin Chen
- Accurate International Biotechnology Co. Ltd., Guangzhou 510650, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
46
|
Wang R, Wang Y, Hu L, Lu Z, Wang X. Inhibition of complement C5a receptor protects lung cells and tissues against lipopolysaccharide-induced injury via blocking pyroptosis. Aging (Albany NY) 2021; 13:8588-8598. [PMID: 33714207 PMCID: PMC8034960 DOI: 10.18632/aging.202671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is the injury of alveolar epithelial cells and capillary endothelial cells caused by various factors. Complement system and pyroptosis have been proved to be involved in ALI, and inhibition of C5a/C5a receptor (C5aR) could alleviate ALI. This study aimed to investigate whether C5a/C5aR inhibition could protect against LPS-induced ALI via mediating pyroptosis. Rats were assigned into four groups: Control, LPS, LPS+W-54011 1mg/kg, and LPS+W-54011 5mg/kg. Beas-2B cells pretreated with or without C5a and W-54011, alone and in combination, were challenged with LPS+ATP. Results unveiled that LPS caused lung tissue injury and inflammatory response, increased pyroptotic and apoptotic factors, along with elevated C5a concentration and C5aR expressions. However, W-54011 pretreatment alleviated lung damage and pulmonary edema, reduced inflammation and prevented cell pyroptosis. In vitro studies confirmed that LPS+ATP reduced cell viability, promoted cell death, generated inflammatory factors and promoted expressions of pyroptosis-related proteins, which could be prevented by W-54011 pretreatment while intensified by C5a pretreatment. The co-treatment of C5a and W-54011 could blunt the effects of C5a on LPS+ATP-induced cytotoxicity. In conclusion, inhibition of C5a/C5aR developed protective effects against LPS-induced ALI and the cytotoxicity of Beas-2B cells, and these effects may depend on blocking pyroptosis.
Collapse
Affiliation(s)
- Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Yunxing Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Lan Hu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| | - Xiaoshan Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201801, China
| |
Collapse
|
47
|
Zhao X, Shen H, Liang S, Zhu D, Wang M, Jia R, Chen S, Liu M, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Zhang L, Liu Y, Yu Y, Pan L, Cheng A. The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Vet Res 2021; 52:37. [PMID: 33663572 PMCID: PMC7931556 DOI: 10.1186/s13567-021-00910-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Fowl cholera caused by Pasteurella multocida exerts a massive economic burden on the poultry industry. Lipopolysaccharide (LPS) is essential for the growth of P. multocida genotype L1 strains in chickens and specific truncations to the full length LPS structure can attenuate bacterial virulence. Here we further dissected the roles of the outer core transferase genes pcgD and hptE in bacterial resistance to duck serum, outer membrane permeability and virulence in ducks. Two P. multocida mutants, ΔpcgD and ΔhptE, were constructed, and silver staining confirmed that they all produced truncated LPS profiles. Inactivation of pcgD or hptE did not affect bacterial susceptibility to duck serum and outer membrane permeability but resulted in attenuated virulence in ducks to some extent. After high-dose inoculation, ΔpcgD showed remarkably reduced colonization levels in the blood and spleen but not in the lung and liver and caused decreased injuries in the spleen and liver compared with the wild-type strain. In contrast, the ΔhptE loads declined only in the blood, and ΔhptE infection caused decreased splenic lesions but also induced severe hepatic lesions. Furthermore, compared with the wild-type strain, ΔpcgD was significantly attenuated upon oral or intramuscular challenge, whereas ΔhptE exhibited reduced virulence only upon oral infection. Therefore, the pcgD deletion caused greater virulence attenuation in ducks, indicating the critical role of pcgD in P. multocida infection establishment and survival.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hui Shen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Leichang Pan
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
48
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Murty US, Naidu VGM, Sahu BD. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci 2021; 271:119155. [PMID: 33548286 DOI: 10.1016/j.lfs.2021.119155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a progressive renal complication which significantly affects the patient's life with huge economic burden. Untreated acute kidney injury eventually progresses to a chronic form and end-stage renal disease. Although significant breakthroughs have been made in recent years, there are still no effective pharmacological therapies for the treatment of acute kidney injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response plays a pivotal role in the pathogenesis of acute kidney injury. The expression of TLR4 has been seen in resident renal cells, including podocytes, mesangial cells, tubular epithelial cells and endothelial cells. Activation of TLR4 signaling regulates the transcription of numerous pro-inflammatory cytokines and chemokines, resulting in renal inflammation. Therefore, targeting TLR4 and its downstream effectors could serve as an effective therapeutic intervention to prevent renal inflammation and subsequent kidney damage. For the first time, this review summarizes the literature on acute kidney injury from the perspective of TLR4 from year 2010 to 2020. In the current review, the role of TLR4 signaling pathway in AKI with preclinical evidence is discussed. Furthermore, we have highlighted several compounds of natural and synthetic origin, which have the potential to avert the renal TLR4 signaling in preclinical AKI models and have shown protection against AKI. This scientific review provides new ideas for targeting TLR4 in the treatment of AKI and provides strategies for the drug development against AKI.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India.
| |
Collapse
|
49
|
Antimicrobial peptide temporin-1CEa isolated from frog skin secretions inhibits the proinflammatory response in lipopolysaccharide-stimulated RAW264.7 murine macrophages through the MyD88-dependent signaling pathway. Mol Immunol 2021; 132:227-235. [PMID: 33494936 DOI: 10.1016/j.molimm.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Temporin-1CEa, which is isolated from the skin secretions of the Chinese brown frog Rana chensinensis, exhibits broad-spectrum antimicrobial activity against gram-positive and gram-negative bacteria and antitumor activity. LK2(6) and LK2(6)A(L) are the analogs of temporin-1CEa obtained by replacing amino acids and displayed an improved anticancer activity. In the present study, the anti-inflammatory activity and mechanism of action of temporin-1CEa and its analogs LK2(6) and LK2(6)A(L) in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages were investigated. The results showed that temporin-1CEa and its analogs decreased the production of the cytokines tumor necrosis factor-α and interleukin-6 by inhibiting the protein expression of nuclear factor-κB and mitogen-activated protein kinase and the MyD88-dependent signaling pathway. Isothermal titration calorimetry studies revealed that temporin-1CEa, LK2(6) and LK2(6)A(L) exhibited binding affinities to LPS, an important inflammatory inducer, with Kd values of 0.1, 0.03 and 0.06 μM, respectively. Circular dichroism and zeta potential experiments showed that temporin-1CEa and its analogs interacted with LPS by electrostatic binding between the positively charged peptides and negatively charged LPS, resulting in the neutralization of LPS toxicity.
Collapse
|
50
|
XU Z, YIN N, REN R, RUAN Z. In silico analysis based on constituents of the medicinal plant Xuebijing (XBJ) to identify candidate treatment agents for sepsis in the omics-driven research era. MINERVA BIOTECNOL 2021. [DOI: 10.23736/s1120-4826.20.02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|