1
|
Deng Y, Wen G, Yin Y, Chen D, Li D, Chen R. Pharmacological inhibition of P300 with C646 ameliorates LPS-induced acute lung injury by modulating CXCL1 in M1 alveolar macrophages. Int Immunopharmacol 2025; 144:113674. [PMID: 39591828 DOI: 10.1016/j.intimp.2024.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES Acute lung injury (ALI) is an excessive inflammatory condition with the involvement of M1 alveolar macrophage (AM) polarization. Given the high mortality rate of ALI, elucidating its underlying mechanisms is crucial for identifying therapeutic targets. Inhibition of P300, a lysine acetyltransferase, has illustrated the potential to alleviate inflammatory diseases through the regulation of immune cell activation. However, little is known whether P300 inhibition could ameliorate ALI through regulating the polarization of M1 AMs. METHODS We established an LPS-induced ALI model and evaluated the effects of the P300 inhibitor C646 on pulmonary pathology, inflammation and M1 AM polarization via H&E staining, ELISA and flow cytometry. Additionally, the specific inflammatory mediators regulated by P300 in M1 AMs affecting ALI were analyzed by RNA sequencing and validated by intratracheal instillation experiment. RESULTS Intratracheal instillation of LPS resulted in neutrophil accumulation within the pulmonary alveoli and interstitial areas, along with increased levels of total inflammatory cells and IL-1β in the lung. However, administration of C646 ameliorated these pulmonary pathology and inflammation, accompanied by a diminished proportion and quantity of M1 AMs in BALF. Furthermore, by taking the intersection of P300-targeted genes in macrophages from the Cistrome, genes upregulated after M1 polarization of AMs, and genes downregulated following C646 treatment in M1 AMs, we identified 'Cxcl1' among the intersecting genes. Also, intratracheal instillation of CXCL1 aggravated pulmonary pathology and inflammation in C646 treated-ALI models. CONCLUSION Our study suggested that pharmacological inhibition of P300 with C646 ameliorated LPS-induced ALI by modulating CXCL1 in M1 AMs.
Collapse
Affiliation(s)
- Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanxi Wen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongtao Yin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou 510150, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Yu M, Thorner K, Parameswaran S, Wei W, Yu C, Lin X, Kopan R, Hass MR. The unique functions of Runx1 in skeletal muscle maintenance and regeneration are facilitated by an ETS interaction domain. Development 2024; 151:dev202556. [PMID: 39508441 DOI: 10.1242/dev.202556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The conserved Runt-related (RUNX) transcription factor family are master regulators of developmental and regenerative processes. Runx1 and Runx2 are expressed in satellite cells (SCs) and in skeletal myotubes. Here, we examined the role of Runx1 in mouse satellite cells to determine the role of Runx1 during muscle differentiation. Conditional deletion of Runx1 in adult SCs negatively impacted self-renewal and impaired skeletal muscle maintenance even though Runx2 expression persisted. Runx1 deletion in C2C12 cells (which retain Runx2 expression) identified unique molecular functions of Runx1 that could not be compensated for by Runx2. The reduced myoblast fusion in vitro caused by Runx1 loss was due in part to ectopic expression of Mef2c, a target repressed by Runx1. Structure-function analysis demonstrated that the ETS-interacting MID/EID region of Runx1, absent from Runx2, is essential for Runx1 myoblast function and for Etv4 binding. Analysis of ChIP-seq datasets from Runx1 (T cells, muscle)- versus Runx2 (preosteoblasts)-dependent tissues identified a composite ETS:RUNX motif enriched in Runx1-dependent tissues. The ETS:RUNX composite motif was enriched in peaks open exclusively in ATAC-seq datasets from wild-type cells compared to ATAC peaks unique to Runx1 knockout cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 in mouse muscle precursor cells.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chuyue Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew R Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Dai Q, Preusse K, Yu D, Kovall RA, Thorner K, Lin X, Kopan R. Loss of Notch dimerization perturbs intestinal homeostasis by a mechanism involving HDAC activity. PLoS Genet 2024; 20:e1011486. [PMID: 39666740 DOI: 10.1371/journal.pgen.1011486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/26/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
A tri-protein complex containing NICD, RBPj and MAML1 binds DNA as monomer or as cooperative dimers to regulate transcription. Mice expressing Notch dimerization-deficient alleles (NDD) of Notch1 and Notch2 are sensitized to environmental insults but otherwise develop and age normally. Transcriptomic analysis of colonic spheroids uncovered no evidence of dimer-dependent target gene miss-regulation, confirmed impaired stem cell maintenance in-vitro, and discovered an elevated signature of epithelial innate immune response to symbionts, a likely underlying cause for heightened sensitivity in NDD mice. TurboID followed by quantitative nano-spray MS/MS mass-spectrometry analyses in a human colon carcinoma cell line expressing either NOTCH2DD or NOTCH2 revealed an unbalanced interactome, with reduced interaction of NOTCH2DD with the transcription machinery but relatively preserved interaction with the HDAC2 interactome suggesting modulation via cooperativity. To ask if HDAC2 activity contributes to Notch loss-of-function phenotypes, we used the HDAC2 inhibitor Valproic acid (VPA) and discovered it could prevent the intestinal consequences of NDD and gamma secretase inhibitors (DBZ or DAPT) treatment in mice and spheroids, suggesting synergy between HDAC activity and pro-differentiation program in intestinal stem cells.
Collapse
Affiliation(s)
- Quanhui Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Danni Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
4
|
Pepin AS, Schneider R. Emerging toolkits for decoding the co-occurrence of modified histones and chromatin proteins. EMBO Rep 2024; 25:3202-3220. [PMID: 39095610 PMCID: PMC11316037 DOI: 10.1038/s44319-024-00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
In eukaryotes, DNA is packaged into chromatin with the help of highly conserved histone proteins. Together with DNA-binding proteins, posttranslational modifications (PTMs) on these histones play crucial roles in regulating genome function, cell fate determination, inheritance of acquired traits, cellular states, and diseases. While most studies have focused on individual DNA-binding proteins, chromatin proteins, or histone PTMs in bulk cell populations, such chromatin features co-occur and potentially act cooperatively to accomplish specific functions in a given cell. This review discusses state-of-the-art techniques for the simultaneous profiling of multiple chromatin features in low-input samples and single cells, focusing on histone PTMs, DNA-binding, and chromatin proteins. We cover the origins of the currently available toolkits, compare and contrast their characteristic features, and discuss challenges and perspectives for future applications. Studying the co-occurrence of histone PTMs, DNA-binding proteins, and chromatin proteins in single cells will be central for a better understanding of the biological relevance of combinatorial chromatin features, their impact on genomic output, and cellular heterogeneity.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany.
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
5
|
Giaimo BD, Friedrich T, Ferrante F, Bartkuhn M, Borggrefe T. Comprehensive genomic features indicative for Notch responsiveness. Nucleic Acids Res 2024; 52:5179-5194. [PMID: 38647081 PMCID: PMC11109962 DOI: 10.1093/nar/gkae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factor RBPJ is the central component in Notch signal transduction and directly forms a coactivator complex together with the Notch intracellular domain (NICD). While RBPJ protein levels remain constant in most tissues, dynamic expression of Notch target genes varies depending on the given cell-type and the Notch activity state. To elucidate dynamic RBPJ binding genome-wide, we investigated RBPJ occupancy by ChIP-Seq. Surprisingly, only a small set of the total RBPJ sites show a dynamic binding behavior in response to Notch signaling. Compared to static RBPJ sites, dynamic sites differ in regard to their chromatin state, binding strength and enhancer positioning. Dynamic RBPJ sites are predominantly located distal to transcriptional start sites (TSSs), while most static sites are found in promoter-proximal regions. Importantly, gene responsiveness is preferentially associated with dynamic RBPJ binding sites and this static and dynamic binding behavior is repeatedly observed across different cell types and species. Based on the above findings we used a machine-learning algorithm to predict Notch responsiveness with high confidence in different cellular contexts. Our results strongly support the notion that the combination of binding strength and enhancer positioning are indicative of Notch responsiveness.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
- Institute for Lung Health, Aulweg 132, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
6
|
Yu M, Thorner K, Parameswaran S, Wei W, Yu C, Lin X, Kopan R, Hass MR. The unique function of Runx1 in skeletal muscle differentiation and regeneration is mediated by an ETS interaction domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568117. [PMID: 38045385 PMCID: PMC10690193 DOI: 10.1101/2023.11.21.568117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The conserved Runt-related (RUNX) transcription factor family are well-known master regulators of developmental and regenerative processes. Runx1 and Runx2 are both expressed in satellite cells (SC) and skeletal myotubes. Conditional deletion of Runx1 in adult SC negatively impacted self-renewal and impaired skeletal muscle maintenance. Runx1- deficient SC retain Runx2 expression but cannot support muscle regeneration in response to injury. To determine the unique molecular functions of Runx1 that cannot be compensated by Runx2 we deleted Runx1 in C2C12 that retain Runx2 expression and established that myoblasts differentiation was blocked in vitro due in part to ectopic expression of Mef2c, a target repressed by Runx1 . Structure-function analysis demonstrated that the Ets-interacting MID/EID region of Runx1, absent from Runx2, is critical to regulating myoblasts proliferation, differentiation, and fusion. Analysis of in-house and published ChIP-seq datasets from Runx1 (T-cells, muscle) versus Runx2 (preosteoblasts) dependent tissue identified enrichment for a Ets:Runx composite site in Runx1 -dependent tissues. Comparing ATACseq datasets from WT and Runx1KO C2C12 cells showed that the Ets:Runx composite motif was enriched in peaks open exclusively in WT cells compared to peaks unique to Runx1KO cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 .
Collapse
|
7
|
Moon BS, Huang D, Gao F, Cai M, Lyu G, Zhang L, Chen J, Lu W. Long range inter-chromosomal interaction of Oct4 distal enhancer loci regulates ESCs pluripotency. Cell Death Discov 2023; 9:61. [PMID: 36781845 PMCID: PMC9925822 DOI: 10.1038/s41420-023-01363-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Nuclear architecture underlies the transcriptional programs within the cell to establish cell identity. As previously demonstrated, long-range chromatin interactions of the Oct4 distal enhancer (DE) are correlated with active transcription in naïve state embryonic stem cells. Here, we identify and characterize extreme long-range interactions of the Oct4 DE through a novel CRISPR labeling technique we developed and chromosome conformation capture to identify lethal giant larvae 2 (Llgl2) and growth factor receptor-bound protein 7 (Grb7) as putative functional interacting target genes in different chromosomes. We show that the Oct4 DE directly regulates expression of Llgl2 and Grb7 in addition to Oct4. Expression of Llgl2 and Grb7 closely correlates with the pluripotent state, where knock down of either result in loss of pluripotency, and overexpression enhances somatic cell reprogramming. We demonstrated that biologically important interactions of the Oct4 DE can occur at extreme distances that are necessary for the maintenance of the pluripotent state.
Collapse
Affiliation(s)
- Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Korea.
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - David Huang
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Fan Gao
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingyang Cai
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guochang Lyu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China.
| |
Collapse
|
8
|
Ding T, Zhang H. Novel biological insights revealed from the investigation of multiscale genome architecture. Comput Struct Biotechnol J 2022; 21:312-325. [PMID: 36582436 PMCID: PMC9791078 DOI: 10.1016/j.csbj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression and cell fate determination require precise and coordinated epigenetic regulation. The complex three-dimensional (3D) genome organization plays a critical role in transcription in myriad biological processes. A wide range of architectural features of the 3D genome, including chromatin loops, topologically associated domains (TADs), chromatin compartments, and phase separation, together regulate the chromatin state and transcriptional activity at multiple levels. With the help of 3D genome informatics, recent biochemistry and imaging approaches based on different strategies have revealed functional interactions among biomacromolecules, even at the single-cell level. Here, we review the occurrence, mechanistic basis, and functional implications of dynamic genome organization, and outline recent experimental and computational approaches for profiling multiscale genome architecture to provide robust tools for studying the 3D genome.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - He Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| |
Collapse
|
9
|
Jiang H, Bian W, Sui Y, Li H, Zhao H, Wang W, Li X. FBXO42 facilitates Notch signaling activation and global chromatin relaxation by promoting K63-linked polyubiquitination of RBPJ. SCIENCE ADVANCES 2022; 8:eabq4831. [PMID: 36129980 PMCID: PMC9491713 DOI: 10.1126/sciadv.abq4831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
Dysregulation of the Notch-RBPJ (recombination signal-binding protein of immunoglobulin kappa J region) signaling pathway has been found associated with various human diseases including cancers; however, precisely how this key signaling pathway is fine-tuned via its interactors and modifications is still largely unknown. In this study, using a proteomic approach, we identified F-box only protein 42 (FBXO42) as a previously unidentified RBPJ interactor. FBXO42 promotes RBPJ polyubiquitination on lysine-175 via lysine-63 linkage, which enhances the association of RBPJ with chromatin remodeling complexes and induces a global chromatin relaxation. Genetically depleting FBXO42 or pharmacologically targeting its E3 ligase activity attenuates the Notch signaling-related leukemia development in vivo. Together, our findings not only revealed FBXO42 as a critical regulator of the Notch pathway by modulating RBPJ-dependent global chromatin landscape changes but also provided insights into the therapeutic intervention of the Notch pathway for leukemia treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Weixiang Bian
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Yue Sui
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Huanle Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Han Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xu Li
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
10
|
Gopalan S, Fazzio TG. Multiomic chromatin and transcription profiling with EpiDamID. CELL REPORTS METHODS 2022; 2:100219. [PMID: 35637908 PMCID: PMC9142671 DOI: 10.1016/j.crmeth.2022.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DamID maps protein-genome interactions using DNA adenine methyltransferase tethered to individual chromatin proteins. In a recent issue of Molecluar Cell, Rang et al. introduce EpiDamID, a powerful extension of DamID suitable for mapping histone marks while simultaneously measuring mRNA levels in single cells.
Collapse
Affiliation(s)
- Sneha Gopalan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Thomas G. Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Reduced chromatin accessibility correlates with resistance to Notch activation. Nat Commun 2022; 13:2210. [PMID: 35468895 PMCID: PMC9039071 DOI: 10.1038/s41467-022-29834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
The Notch signalling pathway is a master regulator of cell fate transitions in development and disease. In the brain, Notch promotes neural stem cell (NSC) proliferation, regulates neuronal migration and maturation and can act as an oncogene or tumour suppressor. How NOTCH and its transcription factor RBPJ activate distinct gene regulatory networks in closely related cell types in vivo remains to be determined. Here we use Targeted DamID (TaDa), requiring only thousands of cells, to identify NOTCH and RBPJ binding in NSCs and their progeny in the mouse embryonic cerebral cortex in vivo. We find that NOTCH and RBPJ associate with a broad network of NSC genes. Repression of NSC-specific Notch target genes in intermediate progenitors and neurons correlates with decreased chromatin accessibility, suggesting that chromatin compaction may contribute to restricting NOTCH-mediated transactivation.
Collapse
|
12
|
Swaminathan B, Youn SW, Naiche LA, Du J, Villa SR, Metz JB, Feng H, Zhang C, Kopan R, Sims PA, Kitajewski JK. Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Sci Rep 2022; 12:1655. [PMID: 35102202 PMCID: PMC8804000 DOI: 10.1038/s41598-022-05666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.
Collapse
Affiliation(s)
- Bhairavi Swaminathan
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Stephanie R Villa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jordan B Metz
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Huijuan Feng
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Peter A Sims
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Gopalan S, Wang Y, Harper NW, Garber M, Fazzio TG. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell 2021; 81:4736-4746.e5. [PMID: 34637755 PMCID: PMC8604773 DOI: 10.1016/j.molcel.2021.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here, we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell-type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different chromatin proteins.
Collapse
Affiliation(s)
- Sneha Gopalan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuqing Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas W Harper
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Zentner GE. The more the merrier: Simultaneous mapping of multiple chromatin components in a single sample. Mol Cell 2021; 81:4574-4576. [PMID: 34798043 DOI: 10.1016/j.molcel.2021.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gopalan et al. (2021) present multi-CUT&Tag, a modification of cleavage under targets and tagmentation (CUT&Tag) that enables simultaneous genome-wide mapping of multiple chromatin-associated targets in a single sample.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47401, USA; eGenesis, Inc., Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Kuang Y, Pyo A, Eafergan N, Cain B, Gutzwiller LM, Axelrod O, Gagliani EK, Weirauch MT, Kopan R, Kovall RA, Sprinzak D, Gebelein B. Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genet 2021; 17:e1009039. [PMID: 34559800 PMCID: PMC8494340 DOI: 10.1371/journal.pgen.1009039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation. Cell signaling provides a basic means of communication during development. Many signaling pathways, including the Notch pathway, convert extracellular signals into changes in gene expression via transcription factors that bind specific DNA sequences. Importantly, the Notch pathway transcription factor can either form activating complexes upon Notch activation to stimulate gene expression or repression complexes with co-repressors to inhibit gene expression. Prior studies showed that the Notch activation complex binds DNA as either an independent complex on monomer binding sites or as two cooperative complexes (dimer) on paired binding sites. In this study, we used synthetic biology to examine how these two types of DNA sites impact the binding of Notch activation versus repression complexes and the output of Notch target gene expression. Our studies reveal that unlike the Notch activation complex, the repression complex does not cooperatively bind dimer sites. Moreover, our findings support the model that the enhanced stability of the Notch activation complex on dimer sites makes target genes with dimer sites less sensitive to the repression complex than target genes with only monomer sites. Thus, our studies reveal how target genes with different binding sites differ in sensitivity to the ratio of Notch activation to repression complexes.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Anna Pyo
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Natanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ofri Axelrod
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hass MR, Brissette D, Parameswaran S, Pujato M, Donmez O, Kottyan LC, Weirauch MT, Kopan R. Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genet 2021; 17:e1009574. [PMID: 34111109 PMCID: PMC8219162 DOI: 10.1371/journal.pgen.1009574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/22/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression. Runt-related transcription factor (Runx) 1 & 2 impact development and disease by activating or repressing transcription. In this manuscript we used genome editing tools to remove Runx1, and as expected, observed widespread changes in chromatin accessibility. Newly closed areas contained Runx1 binding sites and were enriched near genes whose expression depended on Runx1. Interestingly, this occurred despite continued binding of Runx2 to the same regions of DNA, which suggests that Runx2 is insufficient to maintain open chromatin and expression of Runx1 target genes in this cellular context. By contrast, newly opened chromatin regions, many near genes that were upregulated in Runx1 knockout cells, did not enrich for Runx1 binding sites. Instead, these regions were enriched for sites for the repressor Zeb proteins. We found that the loss of Zeb 1 & 2 expression, direct transcriptional targets of Runx1, resulted in the opening of chromatin and upregulation of genes residing near the newly open sites in Runx1 knockout cells. The same sites were also open and nearby genes expressed in edited Zeb1 and Zeb2 knockout cells. Among them were transcription factors, such as the Grhl2 gene, which in turn bind to and upregulate their target genes. Thus, the loss of a single transcription factor initiates a cascade of direct and indirect ramifications with likely negative effects on development and health.
Collapse
Affiliation(s)
- Matthew R. Hass
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Daniel Brissette
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sreeja Parameswaran
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mario Pujato
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Omer Donmez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Leah C. Kottyan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (MTW); (RK)
| |
Collapse
|
17
|
Abstract
Notch signaling is a conserved system of communication between adjacent cells, influencing numerous cell fate decisions in the development of multicellular organisms. Aberrant signaling is also implicated in many human pathologies. At its core, Notch has a mechanotransduction module that decodes receptor-ligand engagement at the cell surface under force to permit proteolytic cleavage of the receptor, leading to the release of the Notch intracellular domain (NICD). NICD enters the nucleus and acts as a transcriptional effector to regulate expression of Notch-responsive genes. In this article, we review and integrate current understanding of the detailed molecular basis for Notch signal transduction, highlighting quantitative, structural, and dynamic features of this developmentally central signaling mechanism. We discuss the implications of this mechanistic understanding for the functionality of the signaling pathway in different molecular and cellular contexts.
Collapse
Affiliation(s)
- David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
18
|
Makhija S, Brown D, Rudlaff RM, Doh JK, Bourke S, Wang Y, Zhou S, Cheloor-Kovilakam R, Huang B. Versatile Labeling and Detection of Endogenous Proteins Using Tag-Assisted Split Enzyme Complementation. ACS Chem Biol 2021; 16:671-681. [PMID: 33734687 DOI: 10.1021/acschembio.0c00925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in genome engineering have expanded our capabilities to study proteins in their natural states. In particular, the ease and scalability of knocking-in small peptide tags has enabled high throughput tagging and analysis of endogenous proteins. To improve enrichment capacities and expand the functionality of knock-ins using short tags, we developed the tag-assisted split enzyme complementation (TASEC) approach, which uses two orthogonal small peptide tags and their cognate binders to conditionally drive complementation of a split enzyme upon labeled protein expression. Using this approach, we have engineered and optimized the tag-assisted split HaloTag complementation system (TA-splitHalo) and demonstrated its versatile applications in improving the efficiency of knock-in cell enrichment, detection of protein-protein interaction, and isolation of biallelic gene edited cells through multiplexing.
Collapse
Affiliation(s)
- Suraj Makhija
- UC Berkeley - UCSF Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94143, United States
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Rachel M. Rudlaff
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Julia K. Doh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Struan Bourke
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Yina Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Shuqin Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- School of Pharmacy, Tsinghua University, Beijing 100872, China
| | - Rasmi Cheloor-Kovilakam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
19
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
20
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Pease NA, Nguyen PHB, Woodworth MA, Ng KKH, Irwin B, Vaughan JC, Kueh HY. Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Rep 2021; 34:108888. [PMID: 33761349 PMCID: PMC8024876 DOI: 10.1016/j.celrep.2021.108888] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
During development, progenitors often differentiate many cell generations after receiving signals. These delays must be robust yet tunable for precise population size control. Polycomb repressive mechanisms, involving histone H3 lysine-27 trimethylation (H3K27me3), restrain the expression of lineage-specifying genes in progenitors and may delay their activation and ensuing differentiation. Here, we elucidate an epigenetic switch controlling the T cell commitment gene Bcl11b that holds its locus in a heritable inactive state for multiple cell generations before activation. Integrating experiments and modeling, we identify a mechanism where H3K27me3 levels at Bcl11b, regulated by methyltransferase and demethylase activities, set the time delay at which the locus switches from a compacted, silent state to an extended, active state. This activation delay robustly spans many cell generations, is tunable by chromatin modifiers and transcription factors, and is independent of cell division. With their regulatory flexibility, such timed epigenetic switches may broadly control timing in development.
Collapse
Affiliation(s)
- Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Phuc H B Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Marcus A Woodworth
- Biological Physics, Structure and Design Program, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Blythe Irwin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
23
|
Kobia FM, Preusse K, Dai Q, Weaver N, Hass MR, Chaturvedi P, Stein SJ, Pear WS, Yuan Z, Kovall RA, Kuang Y, Eafergen N, Sprinzak D, Gebelein B, Brunskill EW, Kopan R. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol 2020; 18:e3000850. [PMID: 33017398 PMCID: PMC7561103 DOI: 10.1371/journal.pbio.3000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.
Collapse
Affiliation(s)
- Francis M. Kobia
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nicholas Weaver
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew R. Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sarah J. Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Natanel Eafergen
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric W. Brunskill
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
24
|
Notch3 signaling promotes tumor cell adhesion and progression in a murine epithelial ovarian cancer model. PLoS One 2020; 15:e0233962. [PMID: 32525899 PMCID: PMC7289394 DOI: 10.1371/journal.pone.0233962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/15/2020] [Indexed: 11/26/2022] Open
Abstract
High grade serous ovarian cancer (HGSC) is the most common and deadly type of ovarian cancer, largely due to difficulties in early diagnosis and rapid metastasis throughout the peritoneal cavity. Previous studies have shown that expression of Notch3 correlates with worse prognosis and increased tumorigenic cell behaviors in HGSC. We investigated the mechanistic role of Notch3 in a model of metastatic ovarian cancer using the murine ovarian surface epithelial cell line, ID8 IP2. Notch3 was activated in ID8 IP2 cells via expression of the Notch3 intracellular domain (Notch3IC). Notch3IC ID8 IP2 cells injected intraperitoneally caused accelerated ascites and reduced survival compared to control ID8 IP2, particularly in early stages of disease. We interrogated downstream targets of Notch3IC in ID8 IP2 cells by RNA sequencing and found significant induction of genes that encode adhesion and extracellular matrix proteins. Notch3IC ID8 IP2 showed increased expression of ITGA1 mRNA and cell-surface protein. Notch3IC-mediated increase of ITGA1 was also seen in two human ovarian cancer cells. Notch3IC ID8 IP2 cells showed increased adhesion to collagens I and IV in vitro. We propose that Notch3 activation in ovarian cancer cells causes increased adherence to collagen-rich peritoneal surfaces. Thus, the correlation between increased Notch3 signaling and poor prognosis may be influenced by increased metastasis of HGSC via increased adherence of disseminating cells to new metastatic sites in the peritoneum.
Collapse
|
25
|
Kuang Y, Golan O, Preusse K, Cain B, Christensen CJ, Salomone J, Campbell I, Okwubido-Williams FV, Hass MR, Yuan Z, Eafergan N, Moberg KH, Kovall RA, Kopan R, Sprinzak D, Gebelein B. Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. eLife 2020; 9:53659. [PMID: 32297857 PMCID: PMC7213981 DOI: 10.7554/elife.53659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
| | - Ohad Golan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kristina Preusse
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | - Collin J Christensen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Ian Campbell
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | | | - Matthew R Hass
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nathanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
26
|
Kang Y, Patel NR, Shively C, Recio PS, Chen X, Wranik BJ, Kim G, McIsaac RS, Mitra R, Brent MR. Dual threshold optimization and network inference reveal convergent evidence from TF binding locations and TF perturbation responses. Genome Res 2020; 30:459-471. [PMID: 32060051 PMCID: PMC7111528 DOI: 10.1101/gr.259655.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
A high-confidence map of the direct, functional targets of each transcription factor (TF) requires convergent evidence from independent sources. Two significant sources of evidence are TF binding locations and the transcriptional responses to direct TF perturbations. Systematic data sets of both types exist for yeast and human, but they rarely converge on a common set of direct, functional targets for a TF. Even the few genes that are both bound and responsive may not be direct functional targets. Our analysis shows that when there are many nonfunctional binding sites and many indirect targets, nonfunctional sites are expected to occur in the cis-regulatory DNA of indirect targets by chance. To address this problem, we introduce dual threshold optimization (DTO), a new method for setting significance thresholds on binding and perturbation-response data, and show that it improves convergence. It also enables comparison of binding data to perturbation-response data that have been processed by network inference algorithms, which further improves convergence. The combination of dual threshold optimization and network inference greatly expands the high-confidence TF network map in both yeast and human. Next, we analyze a comprehensive new data set measuring the transcriptional response shortly after inducing overexpression of a yeast TF. We also present a new yeast binding location data set obtained by transposon calling cards and compare it to recent ChIP-exo data. These new data sets improve convergence and expand the high-confidence network synergistically.
Collapse
Affiliation(s)
- Yiming Kang
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Nikhil R Patel
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Christian Shively
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pamela Samantha Recio
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xuhua Chen
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bernd J Wranik
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | - R Scott McIsaac
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | - Robi Mitra
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
27
|
Klein DC, Hainer SJ. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Res 2019; 28:69-85. [PMID: 31776829 PMCID: PMC7125251 DOI: 10.1007/s10577-019-09619-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022]
Abstract
Recent advancements in next-generation sequencing technologies and accompanying reductions in cost have led to an explosion of techniques to examine DNA accessibility and protein localization on chromatin genome-wide. Generally, accessible regions of chromatin are permissive for factor binding and are therefore hotspots for regulation of gene expression; conversely, genomic regions that are highly occupied by histone proteins are not permissive for factor binding and are less likely to be active regulatory regions. Identifying regions of differential accessibility can be useful to uncover putative gene regulatory regions, such as enhancers, promoters, and insulators. In addition, DNA-binding proteins, such as transcription factors that preferentially bind certain DNA sequences and histone proteins that form the core of the nucleosome, play essential roles in all DNA-templated processes. Determining the genomic localization of chromatin-bound proteins is therefore essential in determining functional roles, sequence motifs important for factor binding, and regulatory networks controlling gene expression. In this review, we discuss techniques for determining DNA accessibility and nucleosome positioning (DNase-seq, FAIRE-seq, MNase-seq, and ATAC-seq) and techniques for detecting and functionally characterizing chromatin-bound proteins (ChIP-seq, DamID, and CUT&RUN). These methods have been optimized to varying degrees of resolution, specificity, and ease of use. Here, we outline some advantages and disadvantages of these techniques, their general protocols, and a brief discussion of their development. Together, these complimentary approaches have provided an unparalleled view of chromatin architecture and functional gene regulation.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
28
|
Aughey GN, Cheetham SW, Southall TD. DamID as a versatile tool for understanding gene regulation. Development 2019; 146:146/6/dev173666. [PMID: 30877125 PMCID: PMC6451315 DOI: 10.1242/dev.173666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
The interaction of proteins and RNA with chromatin underlies the regulation of gene expression. The ability to profile easily these interactions is fundamental for understanding chromatin biology in vivo. DNA adenine methyltransferase identification (DamID) profiles genome-wide protein-DNA interactions without antibodies, fixation or protein pull-downs. Recently, DamID has been adapted for applications beyond simple assaying of protein-DNA interactions, such as for studying RNA-chromatin interactions, chromatin accessibility and long-range chromosome interactions. Here, we provide an overview of DamID and introduce improvements to the technology, discuss their applications and compare alternative methodologies. Summary: This Primer provides an overview of DNA adenine methyltransferase identification (DamID), which is used to profile genome-wide chromatin interactions, and introduces recent improvements to the technology.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, UK
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, UK
| |
Collapse
|
29
|
Policastro RA, Zentner GE. Enzymatic methods for genome-wide profiling of protein binding sites. Brief Funct Genomics 2019; 17:138-145. [PMID: 29028882 DOI: 10.1093/bfgp/elx030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome-wide mapping of protein-DNA interactions is a staple approach in many areas of modern molecular biology. Genome-wide profiles of protein-binding sites are most commonly generated by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). Although ChIP-seq has played a central role in studying genome-wide protein binding, recent work has highlighted systematic biases in the technique that warrant technical and interpretive caution and underscore the need for orthogonal techniques to both confirm the results of ChIP-seq studies and uncover new insights not accessible to ChIP. Several such techniques, based on genetic or immunological targeting of enzymatic activity to specific genomic loci, have been developed. Here, we review the development, applications and future prospects of these methods as complements to ChIP-based approaches and as powerful techniques in their own right.
Collapse
|
30
|
TaDa! Analysing cell type-specific chromatin in vivo with Targeted DamID. Curr Opin Neurobiol 2019; 56:160-166. [PMID: 30844670 DOI: 10.1016/j.conb.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
The emergence of neuronal diversity during development of the nervous system relies on dynamic changes in the epigenetic landscape of neural stem cells and their progeny. Targeted DamID (TaDa) is proving invaluable in identifying the genome-wide binding sites of chromatin-associated proteins in vivo, without fixation, cell isolation, or immunoprecipitation. The simplicity and efficiency of the technique have led to an ever-expanding TaDa toolbox. These tools enable profiling of gene expression and chromatin accessibility, as well as the identification of the genome-wide binding sites of chromatin complexes, transcription factors and RNAs. Here, we review these new developments, with particular emphasis on the use of TaDa in studying neuronal specification.
Collapse
|
31
|
Henrique D, Schweisguth F. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development 2019; 146:146/3/dev172148. [PMID: 30709911 DOI: 10.1242/dev.172148] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most cells in our body communicate during development and throughout life via Notch receptors and their ligands. Notch receptors relay information from the cell surface to the genome via a very simple mechanism, yet Notch plays multiple roles in development and disease. Recent studies suggest that this versatility in Notch function may not necessarily arise from complex and context-dependent integration of Notch signaling with other developmental signals, but instead arises, in part, from signaling dynamics. Here, we review recent findings on the core Notch signaling mechanism and discuss how spatial-temporal dynamics contribute to Notch signaling output.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Histologia e Biologia do Desenvolvimento and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egaz Moniz, 1649-028 Lisboa, Portugal
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France .,CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
32
|
Giaimo BD, Borggrefe T. Introduction to Molecular Mechanisms in Notch Signal Transduction and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:3-30. [DOI: 10.1007/978-3-319-89512-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
34
|
Gomez-Lamarca MJ, Falo-Sanjuan J, Stojnic R, Abdul Rehman S, Muresan L, Jones ML, Pillidge Z, Cerda-Moya G, Yuan Z, Baloul S, Valenti P, Bystricky K, Payre F, O'Holleran K, Kovall R, Bray SJ. Activation of the Notch Signaling Pathway In Vivo Elicits Changes in CSL Nuclear Dynamics. Dev Cell 2018; 44:611-623.e7. [PMID: 29478922 PMCID: PMC5855320 DOI: 10.1016/j.devcel.2018.01.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/27/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Abstract
A key feature of Notch signaling is that it directs immediate changes in transcription via the DNA-binding factor CSL, switching it from repression to activation. How Notch generates both a sensitive and accurate response-in the absence of any amplification step-remains to be elucidated. To address this question, we developed real-time analysis of CSL dynamics including single-molecule tracking in vivo. In Notch-OFF nuclei, a small proportion of CSL molecules transiently binds DNA, while in Notch-ON conditions CSL recruitment increases dramatically at target loci, where complexes have longer dwell times conferred by the Notch co-activator Mastermind. Surprisingly, recruitment of CSL-related corepressors also increases in Notch-ON conditions, revealing that Notch induces cooperative or "assisted" loading by promoting local increase in chromatin accessibility. Thus, in vivo Notch activity triggers changes in CSL dwell times and chromatin accessibility, which we propose confer sensitivity to small input changes and facilitate timely shut-down.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Matthew L Jones
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zhenyu Yuan
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Phillippe Valenti
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kerstin Bystricky
- LBME/UMR5099, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Francois Payre
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Rhett Kovall
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
35
|
The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Dev Cell 2017; 41:228-241. [PMID: 28486129 DOI: 10.1016/j.devcel.2017.04.001] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway relies on a proteolytic cascade to release its transcriptionally active intracellular domain, on force to unfold a protective domain and permit proteolysis, on extracellular domain glycosylation to tune the forces exerted by endocytosed ligands, and on a motley crew of nuclear proteins, chromatin modifiers, ubiquitin ligases, and a few kinases to regulate activity and half-life. Herein we provide a review of recent molecular insights into how Notch signals are triggered and how cell shape affects these events, and we use the new insights to illuminate a few perplexing observations.
Collapse
|
36
|
Chia S, Low JL, Zhang X, Kwang XL, Chong FT, Sharma A, Bertrand D, Toh SY, Leong HS, Thangavelu MT, Hwang JSG, Lim KH, Skanthakumar T, Tan HK, Su Y, Hui Choo S, Hentze H, Tan IBH, Lezhava A, Tan P, Tan DSW, Periyasamy G, Koh JLY, Gopalakrishna Iyer N, DasGupta R. Phenotype-driven precision oncology as a guide for clinical decisions one patient at a time. Nat Commun 2017; 8:435. [PMID: 28874669 PMCID: PMC5585361 DOI: 10.1038/s41467-017-00451-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Genomics-driven cancer therapeutics has gained prominence in personalized cancer treatment. However, its utility in indications lacking biomarker-driven treatment strategies remains limited. Here we present a "phenotype-driven precision-oncology" approach, based on the notion that biological response to perturbations, chemical or genetic, in ex vivo patient-individualized models can serve as predictive biomarkers for therapeutic response in the clinic. We generated a library of "screenable" patient-derived primary cultures (PDCs) for head and neck squamous cell carcinomas that reproducibly predicted treatment response in matched patient-derived-xenograft models. Importantly, PDCs could guide clinical practice and predict tumour progression in two n = 1 co-clinical trials. Comprehensive "-omics" interrogation of PDCs derived from one of these models revealed YAP1 as a putative biomarker for treatment response and survival in ~24% of oral squamous cell carcinoma. We envision that scaling of the proposed PDC approach could uncover biomarkers for therapeutic stratification and guide real-time therapeutic decisions in the future.Treatment response in patient-derived models may serve as a biomarker for response in the clinic. Here, the authors use paired patient-derived mouse xenografts and patient-derived primary culture models from head and neck squamous cell carcinomas, including metastasis, as models for high-throughput screening of anti-cancer drugs.
Collapse
Affiliation(s)
- Shumei Chia
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Joo-Leng Low
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Xiaoqian Zhang
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Xue-Lin Kwang
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Fui-Teen Chong
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Ankur Sharma
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Denis Bertrand
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Shen Yon Toh
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Hui-Sun Leong
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Matan T Thangavelu
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Jacqueline S G Hwang
- Department of Anatomical Pathology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Kok-Hing Lim
- Department of Anatomical Pathology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Thakshayeni Skanthakumar
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Hiang-Khoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Yan Su
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Siang Hui Choo
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Hannes Hentze
- Biological Resource Centre (BRC), A*STAR, 20 Biopolis Way, #07-01 Centros, Singapore, 138668, Singapore
| | - Iain B H Tan
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Daniel S W Tan
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Giridharan Periyasamy
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Judice L Y Koh
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Ramanuj DasGupta
- Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.
| |
Collapse
|
37
|
Severson E, Arnett KL, Wang H, Zang C, Taing L, Liu H, Pear WS, Shirley Liu X, Blacklow SC, Aster JC. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells. Sci Signal 2017; 10:10/477/eaag1598. [PMID: 28465412 DOI: 10.1126/scisignal.aag1598] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells.
Collapse
Affiliation(s)
- Eric Severson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelly L Arnett
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02114, USA
| | - Len Taing
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02114, USA
| | - Hudan Liu
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute of Medicine and Engineering, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute of Medicine and Engineering, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02114, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 2017; 6. [PMID: 28079019 PMCID: PMC5310842 DOI: 10.7554/elife.21856] [Citation(s) in RCA: 1029] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
We describe Cleavage Under Targets and Release Using Nuclease (CUT&RUN), a chromatin profiling strategy in which antibody-targeted controlled cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant for paired-end DNA sequencing. Unlike Chromatin Immunoprecipitation (ChIP), which fragments and solubilizes total chromatin, CUT&RUN is performed in situ, allowing for both quantitative high-resolution chromatin mapping and probing of the local chromatin environment. When applied to yeast and human nuclei, CUT&RUN yielded precise transcription factor profiles while avoiding crosslinking and solubilization issues. CUT&RUN is simple to perform and is inherently robust, with extremely low backgrounds requiring only ~1/10th the sequencing depth as ChIP, making CUT&RUN especially cost-effective for transcription factor and chromatin profiling. When used in conjunction with native ChIP-seq and applied to human CTCF, CUT&RUN mapped directional long range contact sites at high resolution. We conclude that in situ mapping of protein-DNA interactions by CUT&RUN is an attractive alternative to ChIP-seq. DOI:http://dx.doi.org/10.7554/eLife.21856.001 The DNA in a person’s skin cell will contain the same genes as the DNA in their muscle or brain cells. However, these cells have different identities because different genes are active in skin, muscle and brain cells. Proteins called transcription factors dictate the patterns of gene activation in the different kinds of cells by binding to DNA and switching nearby genes on or off. Transcription factors interact with other proteins such as histones that help to package DNA into a structure known as chromatin. Together, transcription factors, histones and other chromatin-associated proteins determine whether or not nearby genes are active. Sometimes transcription factors and other chromatin-associated proteins bind to the wrong sites on DNA; this situation can lead to diseases in humans, such as cancer. This is one of the many reasons why researchers are interested in working out where specific DNA-binding proteins are located in different situations. A technique called chromatin immunoprecipitation (or ChIP for short) can be used to achieve this goal, yet despite being one of the most widely used techniques in molecular biology, ChIP is hampered by numerous problems. As such, many researchers are keen to find alternative approaches. Skene and Henikoff have now developed a new method, called CUT&RUN (which is short for “Cleavage Under Targets & Release Using Nuclease”) to map specific interactions between protein and DNA in a way that overcomes some of the problems with ChIP. In CUT&RUN, unlike in ChIP, the DNA in the starting cells does not need to be broken up first; this means that protein-DNA interactions are more likely to be maintained in their natural state. With CUT&RUN, as in ChIP, a specific antibody identifies the protein of interest. But in CUT&RUN, this antibody binds to the target protein in intact cells and cuts out the DNA that the protein is bound to, releasing the DNA fragment from the cell. This new strategy allows the DNA fragments to be sequenced and identified more efficiently than is currently possible with ChIP. Skene and Henikoff showed that their new method could more accurately identify where transcription factors bind to DNA from yeast and human cells. CUT&RUN also identified a specific histone that is rarely found in yeast chromatin and the technique can be used with a small number of starting cells. Given the advantages that CUT&RUN offers over ChIP, Skene and Henikoff anticipate that the method will be viewed as a cost-effective and versatile alternative to ChIP. In future, the method could be automated so that multiple analyses can be performed at once. DOI:http://dx.doi.org/10.7554/eLife.21856.002
Collapse
Affiliation(s)
- Peter J Skene
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Steven Henikoff
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
39
|
Abstract
RBPJ is the central transcription factor that controls the Notch-dependent transcriptional response by coordinating repressing histone H3K27 deacetylation and activating histone H3K4 methylation. Here, we discuss the molecular mechanisms how RBPJ interacts with opposing NCoR/HDAC-corepressing or KMT2D/UTX-coactivating complexes and how this is controlled by phosphorylation of chromatin modifiers.
Collapse
Affiliation(s)
| | - Franz Oswald
- b Department of Internal Medicine I , Center for Internal Medicine, University Medical Center Ulm , Ulm , Germany
| | - Tilman Borggrefe
- a Institute of Biochemistry, Justus Liebig University , Giessen , Germany
| |
Collapse
|
40
|
|
41
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
42
|
Abstract
The Notch signaling pathway plays fundamental roles in diverse developmental processes. Studies of the basic biology of Notch function have provided insights into how its dysfunction contributes to multi-systemic diseases and cancer. In addition, our understanding of Notch signaling in maintaining stem/progenitor cell populations is revealing new avenues for rekindling regeneration. The Notch IX meeting, which was held in Athens, Greece in October 2015, brought together scientists working on different model systems and studying Notch signaling in various contexts. Here, we provide a summary of the key points that were presented at the meeting. Although we focus on the molecular mechanisms that determine Notch signaling and its role in development, we also cover talks describing roles for Notch in adulthood. Together, the talks revealed how interactions between adjacent cells mediated by Notch regulate development and physiology at multiple levels.
Collapse
Affiliation(s)
- Ajay Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room 3B-315, Bethesda, MD 20892, USA
| | - Laure Balle-Cuif
- Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS - Université Paris-Sud, Avenue de la Terrasse, Bldg 5, 91190 Gif-sur-Yvette, France
| |
Collapse
|
43
|
Gambin Y, Polinkovsky M, Francois B, Giles N, Bhumkar A, Sierecki E. Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. Int J Mol Sci 2016; 17:ijms17050655. [PMID: 27144560 PMCID: PMC4881481 DOI: 10.3390/ijms17050655] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
Protein self-association is a key feature that can modulate the physiological role of proteins or lead to deleterious effects when uncontrolled. Protein oligomerization is a simple way to modify the activity of a protein, as the modulation of binding interfaces allows for self-activation or inhibition, or variation in the selectivity of binding partners. As such, dimerization and higher order oligomerization is a common feature in signaling proteins, for example, and more than 70% of enzymes have the potential to self-associate. On the other hand, protein aggregation can overcome the regulatory mechanisms of the cell and can have disastrous physiological effects. This is the case in a number of neurodegenerative diseases, where proteins, due to mutation or dysregulation later in life, start polymerizing and often fibrillate, leading to the creation of protein inclusion bodies in cells. Dimerization, well-defined oligomerization and random aggregation are often difficult to differentiate and characterize experimentally. Single molecule “counting” methods are particularly well suited to the study of self-oligomerization as they allow observation and quantification of behaviors in heterogeneous conditions. However, the extreme dilution of samples often causes weak complexes to dissociate, and rare events can be overlooked. Here, we discuss a straightforward alternative where the principles of single molecule detection are used at higher protein concentrations to quantify oligomers and aggregates in a background of monomers. We propose a practical guide for the use of confocal spectroscopy to quantify protein oligomerization status and also discuss about its use in monitoring changes in protein aggregation in drug screening assays.
Collapse
Affiliation(s)
- Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark Polinkovsky
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Bill Francois
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
44
|
Pindyurin AV, Pagie L, Kozhevnikova EN, van Arensbergen J, van Steensel B. Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila. Nucleic Acids Res 2016; 44:5646-57. [PMID: 27001518 PMCID: PMC4937306 DOI: 10.1093/nar/gkw176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 01/10/2023] Open
Abstract
Dam identification (DamID) is a powerful technique to generate genome-wide maps of chromatin protein binding. Due to its high sensitivity, it is particularly suited to study the genome interactions of chromatin proteins in small tissue samples in model organisms such as Drosophila. Here, we report an intein-based approach to tune the expression level of Dam and Dam-fusion proteins in Drosophila by addition of a ligand to fly food. This helps to suppress possible toxic effects of Dam. In addition, we describe a strategy for genetically controlled expression of Dam in a specific cell type in complex tissues. We demonstrate the utility of the latter by generating a glia-specific map of Polycomb in small samples of brain tissue. These new DamID tools will be valuable for the mapping of binding patterns of chromatin proteins in Drosophila tissues and especially in cell lineages.
Collapse
Affiliation(s)
- Alexey V Pindyurin
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Ludo Pagie
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | | | - Joris van Arensbergen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
45
|
Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:303-13. [PMID: 26592459 DOI: 10.1016/j.bbamcr.2015.11.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.
Collapse
Affiliation(s)
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Franz Oswald
- University Medical Center Ulm, Department of Internal Medicine I, Ulm, Germany
| | | |
Collapse
|