1
|
Wu JH, Liu YX, Zong JB, Qiu M, Zhou YF, Li YN, Aili T, Zhao XR, Hu B. TTK Inhibition Alleviates Postinjury Neointimal Formation and Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409250. [PMID: 39716891 DOI: 10.1002/advs.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Indexed: 12/25/2024]
Abstract
Atherosclerosis and its associated cardio-cerebrovascular complications remain the leading causes of mortality worldwide. Current lipid-lowering therapies reduce only approximately one-third of the cardiovascular risk. Furthermore, vascular restenosis and thrombotic events following surgical interventions for severe vascular stenosis significantly contribute to treatment failure. This highlights the urgent need for novel therapeutic targets to manage atherosclerosis and prevent restenosis and thrombosis after vascular injury. This study identifies TTK protein kinase (TTK) as a key regulator of vascular smooth muscle cell (VSMC) phenotypic switching in the context of postinjury neointimal formation and atherosclerosis. Mechanistically, TTK upregulation in VSMCs phosphorylates p120-catenin, leading to β-catenin nuclear accumulation and dissociation of the myocardin (MYOCD)/serum response factor (SRF) complex. Deletion of TTK specifically in VSMCs reduces postinjury neointimal formation in vascular injury models and attenuates atherosclerotic lesions in ApoE-/- mice. Notably, oral administration of the TTK inhibitor CFI-402257 mitigated neointimal formation without impairing reendothelialization and reduced atherosclerotic lesions in ApoE-/- mice without altering lipid levels. These findings suggest that targeting TTK, through inhibitors or alternative strategies, represents a promising approach to simultaneously prevent postinjury restenosis and treat atherosclerosis.
Collapse
Affiliation(s)
- Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Xiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Bin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tuersun Aili
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Ran Zhao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Ren K, Luan Y, Yang Y, Xia C, Zhao X, Yan D, He H, Jue B, Yin F, Wu K, Zhang X, Qin B. METTL3-mediated CEP170 m6A modifications in spindle orientation and esophageal cancer cell proliferation. Int Immunopharmacol 2024; 146:113780. [PMID: 39708485 DOI: 10.1016/j.intimp.2024.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024]
Abstract
Esophageal cancer is a major malignancy with a high incidence and poor prognosis. To elucidate the mechanisms underlying its progression, particularly with respect to cell division and spindle orientation, we investigated the role of m6A modifications and the centrosomal protein CEP170. Using m6A-seq and RNA-seq of esophageal cancer tissues and adjacent normal tissues, we identified significant alterations in m6A modifications and gene expression, highlighting the upregulation and m6A enrichment of CEP170 in tumor tissues. Functional assays, including cell cycle synchronization, qPCR, immunoblotting, immunofluorescence, coimmunoprecipitation, methylated RNA immunoprecipitation, and cell proliferation assays, demonstrated that CEP170 plays a critical role in mitotic progression and spindle orientation. m6A-seq and RNA-seq revealed significant alterations in m6A modifications and gene expression in esophageal cancer. CEP170 was upregulated and highly enriched in m6A modifications in tumor tissues. Functional assays revealed that CEP170 plays a critical role in proper mitotic progression and spindle orientation. Knockdown of CEP170 led to spindle misorientation and impaired the stability of astral microtubules. Additionally, CEP170 affected the localization of the dynein/dynactin motor complex in the cell cortex. METTL3 was upregulated in tumor tissues and regulated CEP170 expression. RNA-seq upon CEP170 depletion revealed that ASPM was significantly downregulated, indicating its involvement as a downstream target of CEP170 in regulating cell proliferation and mitosis. Our findings provide novel insights into the molecular mechanisms by which CEP170 and m6A modifications regulate esophageal cancer progression, revealing that CEP170 is a potential therapeutic target.
Collapse
Affiliation(s)
- Kaidi Ren
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yi Luan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yang Yang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Chaoyuan Xia
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xian Zhao
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Dan Yan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Hongbo He
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Bolin Jue
- College of Basic Medical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Fanxiang Yin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xiang Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
3
|
Sawada JI, Matsuno K, Ogo N, Asai A. Identification of antimitotic sulfonamides inhibiting chromosome congression. Biochem Pharmacol 2024; 232:116718. [PMID: 39701545 DOI: 10.1016/j.bcp.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
The discovery of new small-molecule inhibitors is essential to enhancing our understanding of biological events at the molecular level and driving advancements in drug discovery. Mitotic inhibitors have played a crucial role in development of anticancer drugs. Beyond traditional microtubule inhibitors, various inhibitors targeting specific mitotic factors have been developed. This study aimed to develop novel mitotic inhibitors targeting chromosome alignment. We established a cell-based screening method using Cell Division Cycle Associated 5 (CDCA5) and kinesin-5 as markers, designed to efficiently detect mitotic phenotypes characterized by aberrant bipolar spindles with some misaligned chromosomes. Through this screening, we identified CAIS-1, an aryl sulfonamide with unique antimitotic properties. CAIS-1 exhibits dual functionality by inhibiting chromosome congression at low concentrations and spindle microtubule formation at high concentrations, causing a concentration-dependent mitotic arrest, followed by apoptotic cell death. Mechanistic studies revealed that CAIS-1 directly acts on tubulin at high concentrations, thereby inhibiting tubulin polymerization in vitro. In contrast, at low concentrations, CAIS-1 functions through a mechanism distinct from GSK923295, a conventional chromosome congression inhibitor targeting Centromere-associated protein-E (CENP-E), highlighting its unique mode of action. Moreover, CAIS-2, a structural analog of CAIS-1, selectively inhibits chromosome congression without significantly affecting spindle microtubules. This observation suggests that CAIS-1 and CAIS-2 function as antimitotic sulfonamides with distinct targets beyond tubulin, thus offering additional biological potential of sulfonamide compounds. Together, CAIS-1 and CAIS-2 represent promising tools for providing new molecular insights into kinetochore function during mitosis and for exploring new approaches in anticancer drug development.
Collapse
Affiliation(s)
- Jun-Ichi Sawada
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Kenji Matsuno
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
4
|
Ahmed NM, Mohamed MS, Awad SM, Abd El-Hameed RH, El-tawab NAA, Gaballah MS, Said AM. Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers. J Enzyme Inhib Med Chem 2024; 39:2304625. [PMID: 38348824 PMCID: PMC10866072 DOI: 10.1080/14756366.2024.2304625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | | | | | - Mohamed S. Gaballah
- Biochemistry and Molecular Biology Department, Helwan University, Ein-Helwan, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, USA
- Athenex Inc, Buffalo, NY, USA
| |
Collapse
|
5
|
Zhu Q, Du L, Wu J, Li J, Lin Z. Walrycin B, as a novel separase inhibitor, exerts potent anticancer efficacy in a mouse xenograft model. Biochem Pharmacol 2024; 229:116502. [PMID: 39173842 DOI: 10.1016/j.bcp.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Proper chromosome segregation during cell division relies on the timely dissolution of chromosome cohesion. Separase (EC3.4.22.49), a cysteine protease, plays a critical role in mitosis by cleaving the kleisin subunit of cohesin, thereby presenting a promising target for cancer therapy. However, challenges in isolating active human separase suitable for high-throughput screening have limited the identification of effective inhibitors. Here, we conducted a high-throughput screening of small-molecule inhibitors using the protease domain of Chaetomium thermophilum separase (ctSPD), which not only shares significant sequence similarity with human separase but is also readily available. After conducting a primary screening of a library containing 9,172 compounds and subsequent validation using human separase, we identified walrycin B and its analogs, toxoflavin, 3-methyltoxoflavin, and 3-phenyltoxoflavin, as potent inhibitors of human separase. Subsequent microscale thermophoresis assays and molecular dynamics simulations revealed that walrycin B binds to the active site of separase and competes with substrates for binding. Additionally, cell-based studies showed that walrycin B and its analogs effectively induce cell cycle arrest at the M phase, activate apoptosis, and ultimately lead to cell death in mitosis. Finally, in a mouse xenograft model, walrycin B exhibited significant antitumor efficacy with minimal side effects. Together, these findings highlight the therapeutic potential of walrycin B for cancer treatment and its utility as a chemical tool in future studies involving separase.
Collapse
Affiliation(s)
- Qinwei Zhu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- College of Pharmacy and Medical Technology, Putian University, Putian 351100, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
6
|
Verhoog NJD, Spies LML. The anti-aromatase and anti-estrogenic activity of plant products in the treatment of estrogen receptor-positive breast cancer. J Steroid Biochem Mol Biol 2024; 243:106581. [PMID: 38997071 DOI: 10.1016/j.jsbmb.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERβ. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively. The use of SOC hormone therapies is, however, significantly hampered by the onset of severe side-effects and the development of resistance. Given that numerous studies have reported on the beneficial effects of plant compounds and/or extracts and the multiple pathways through which they target ER+ breast carcinogenesis, recent research has focused on the use of dietary chemopreventive agents for BC management. When combined with SOC treatments, several of these plant components and/or extracts have demonstrated improved efficacy and/or synergistic impact. Moreover, despite a lack of in vivo investigations, plant products are generally reported to have a lower side-effect profile than SOC therapies and are therefore thought to be a safer therapeutic choice. Thus, the current review summarizes the findings from the last five years regarding the anti-aromatase and anti-estrogenic activity of plant products, as well as their synergistic anti-ER+ BC effects in combination with SOC therapies.
Collapse
Affiliation(s)
| | - Lee-Maine Lorin Spies
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch, 7601, South Africa
| |
Collapse
|
7
|
Liu L, Jing F, Li J, Gong P, Shi B, Zhu Y, Yu H. Kinesin Family Member C1: Function in liver hepatocellular carcinoma and potential target for chemotherapeutic. Heliyon 2024; 10:e37832. [PMID: 39315235 PMCID: PMC11417577 DOI: 10.1016/j.heliyon.2024.e37832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
MiR-105 exerts inhibitory effects on the development and progression of various cancers, including breast cancer, lung cancer, and gastric cancer. Through GEO data analysis, we observed decreased expression of miR-105 in liver cancer tissues compared to adjacent tissues. Furthermore, miR-105 downregulates KIFC1 expression levels by targeting its 3' UTR. KIFC1 (Kinesin Family Member C1), a Protein Coding gene, may play a role in mitotic metaphase plate polymerization and mitotic spindle assembly. However, our findings suggest that this gene could serve as a potential chemotherapeutic target for Liver hepatocellular carcinoma (LIHC). We obtained the LIHC dataset from the TCGA database and genotype Tissue Expression Project (GTEx) normal tissue data for differential analysis. Additionally, we utilized the cBioPortal database, tumor immune single-cell center (TISCH) database, gene set enrichment analysis (GSEA), and R software to investigate the possible functions and mechanisms of KIFC1. These findings were further validated through experiments such as immunohistochemistry and wound healing assays. Our results indicate that KIFC1 might be involved in DNA repair and cell cycle regulation in LIHC cells which subsequently impacts tumor cell proliferation; moreover, miR-105 influences hepatoma cell line proliferation via its interaction with KIFC1. Collectively, these results highlight the potential therapeutic significance of targeting KIFC1 for chemotherapy treatment in LIHC patients.
Collapse
Affiliation(s)
- Lei Liu
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jia Li
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Pangjun Gong
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Baoqing Shi
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Youming Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032,China
| | - Hongzhu Yu
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
8
|
Wang S, Zi H, Li M, Kong J, Fan C, Bai Y, Sun J, Wang T. Development and validation of a mitotic catastrophe-related genes prognostic model for breast cancer. PeerJ 2024; 12:e18075. [PMID: 39314848 PMCID: PMC11418815 DOI: 10.7717/peerj.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Breast cancer has become the most common malignant tumor in women worldwide. Mitotic catastrophe (MC) is a way of cell death that plays an important role in the development of tumors. However, the exact relationship between MC-related genes (MCRGs) and the development of breast cancer is still unclear, and further research is needed to elucidate this complexity. Methods Transcriptome data and clinical data of breast cancer were downloaded from the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We identified differential expression of MCRGs by comparing tumor tissue with normal tissue. Subsequently, we used COX regression analysis and LASSO regression analysis to construct the prognosis risk model of MCRGs. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the predictive ability of prognostic model. Moreover, the clinical relevance, gene set enrichment analysis (GSEA), immune landscape, tumor mutation burden (TMB), and immunotherapy and drug sensitivity analysis between high-risk and low-risk groups were systematically investigated. Finally, we validated the expression levels of genes involved in constructing the prognostic model through real-time quantitative polymerase chain reaction (RT-qPCR) at the cellular and tissue levels. Results We identified 12 prognostic associated MCRGs, four of which were selected to construct prognostic model. The Kaplan-Meier analysis suggested that patients in the high-risk group had a shorter overall survival (OS). The Cox regression analysis and ROC analysis indicated that risk model had independent and excellent ability in predicting prognosis of breast cancer patients. Mechanistically, a remarkable difference was observed in clinical relevance, GSEA, immune landscape, TMB, immunotherapy response, and drug sensitivity analysis. RT-qPCR results showed that genes involved in constructing the prognostic model showed significant abnormal expressions and the expression change trends were consistent with the bioinformatics results. Conclusions We established a prognosis risk model based on four MCRGs that had the ability to predict clinical prognosis and immune landscape, proposing potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Shuai Wang
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Haoyi Zi
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Mengxuan Li
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Jing Kong
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Cong Fan
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Yujie Bai
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Jianing Sun
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Ting Wang
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Zanini E, Forster-Gross N, Bachmann F, Brüngger A, McSheehy P, Litherland K, Burger K, Groner AC, Roceri M, Bury L, Stieger M, Willemsen-Seegers N, de Man J, Vu-Pham D, van Riel HWE, Zaman GJR, Buijsman RC, Kellenberger L, Lane HA. Dual TTK/PLK1 inhibition has potent anticancer activity in TNBC as monotherapy and in combination. Front Oncol 2024; 14:1447807. [PMID: 39184047 PMCID: PMC11341980 DOI: 10.3389/fonc.2024.1447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
Collapse
Affiliation(s)
- Elisa Zanini
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Felix Bachmann
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Adrian Brüngger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Paul McSheehy
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Karin Burger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Anna C. Groner
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Mila Roceri
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Luc Bury
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Martin Stieger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Jos de Man
- Crossfire Oncology B.V., Oss, Netherlands
| | | | | | | | | | | | - Heidi A. Lane
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| |
Collapse
|
11
|
Wu E, Wu C, Jia K, Zhou S, Sun L. HSPA8 inhibitors augment cancer chemotherapeutic effectiveness via potentiating necroptosis. Mol Biol Cell 2024; 35:ar108. [PMID: 38959101 PMCID: PMC11321035 DOI: 10.1091/mbc.e24-04-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Our recent work has uncovered a novel function of HSPA8 as an amyloidase, capable of dismantling the RHIM-containing protein fibrils to suppress necroptosis. However, the impact of HSPA8 inhibitors on cancer regression via necroptosis remains unexplored. In this study, we conducted a comprehensive investigation to assess the potential of HSPA8 inhibitors in enhancing necroptosis both in vitro and in vivo. Our findings indicate that pharmacologic inhibition of HSPA8, achieved either through VER (VER-155008) targeting the nucleotide binding domain or pifithrin-μ targeting the substrate binding domain of HSPA8, significantly potentiates necroptosis induced by diverse treatments in cellular assays. These inhibitors effectively disrupt the binding of HSPA8 to the RHIM protein, impeding its regulatory function on RHIM amyloid formation. Importantly, HSPA8 inhibitors significantly enhanced cancer cell sensitivity to microtubule-targeting agents (MTAs) in vitro, while reversing chemoresistance and facilitating tumor regression by augmenting necroptosis in vivo. Our findings suggest a promising therapeutic approach to cancer through necroptosis modulation via HSPA8 targeting, particularly in combination with MTA drugs for enhanced treatment efficacy.
Collapse
Affiliation(s)
- Erpeng Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chenlu Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kelong Jia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shen’ao Zhou
- Celliver Biotechnology Inc., Shanghai 200030, China
| | - Liming Sun
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Ding Y, Gao J, Chen J, Ren J, Jiang J, Zhang Z, Tong X, Zhao J. BUB1b impairs chemotherapy sensitivity via resistance to ferroptosis in lung adenocarcinoma. Cell Death Dis 2024; 15:525. [PMID: 39043653 PMCID: PMC11266579 DOI: 10.1038/s41419-024-06914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
BUB1 mitotic checkpoint serine/threonine kinase B (BUB1b) has been unequivocally identified as an oncogene in various cancers. However, the potential mechanism by which BUB1b orchestrates the progression of lung adenocarcinoma (LUAD) remains unclear. Here we found that both the transcript and protein levels of BUB1b were dramatically upregulated in tumor tissues and contributed to the dismal prognosis of LUAD patients. Moreover, gain- and loss-of-function assays, conducted both in vitro and in vivo, confirmed that BUB1b enhanced the viability of LUAD cells. Mechanistically, BUB1b forms a complex with OTUD3 and NRF2 and stabilizes the downstream NRF2 signaling pathway to facilitate insensitivity to ferroptosis and chemotherapy. In BALB/c nude mice bearing subcutaneous tumors that overexpress BUB1b, a combined strategy of ML385 targeting and chemotherapy achieved synergistic effects, inhibiting tumor growth and obviously improving survival. Taken together our study uncovered the underlying mechanism by which BUB1b promotes the progression of LUAD and proposed a novel strategy to enhance the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Yanguang Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinmei Ren
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Tong
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Zhang Z, Zhang Y, Hu G, Wu Q, Zhou Y, Luo F. Conduction and validation of a novel mitotic spindle assembly related signature in hepatocellular carcinoma: prognostic prediction, tumor immune microenvironment and drug susceptibility. Front Genet 2024; 15:1412303. [PMID: 39100078 PMCID: PMC11294156 DOI: 10.3389/fgene.2024.1412303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: We have developed a risk-scoring model using gene expression levels related to mitotic spindle assembly (MSA) to predict the prognosis of liver cancer. Methods and results: Initially, we identified 470 genes related to MSA from public databases. Subsequently, through analysis of sequencing data from liver cancer patient samples in online databases, we identified 7 genes suitable for constructing the risk-scoring model. We validated the predictive accuracy and clinical utility of the model. Through drug sensitivity analysis, we identified SAC3D1 as a gene sensitive to the most common anti-tumor drugs among these 7 genes. We propose SAC3D1 as a significant target for future clinical treatment. Furthermore, we conducted in vivo and in vitro experiments to validate the relevance of SAC3D1 to MSA and found its significant impact on the PI3K/Akt signaling pathway and spindle function. Conclusion: Our research introduces a novel risk-scoring model that accurately predicts liver cancer prognosis. Additionally, our findings suggest SAC3D1 as a promising therapeutic target for hepatocellular carcinoma, potentially revealing new mechanisms underlying liver cancer development.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuezhou Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gangli Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxue Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen ZL, Xie C, Zeng W, Huang RQ, Yang JE, Liu JY, Chen YJ, Zhuang SM. Synergistic induction of mitotic pyroptosis and tumor remission by inhibiting proteasome and WEE family kinases. Signal Transduct Target Ther 2024; 9:181. [PMID: 38992067 PMCID: PMC11239683 DOI: 10.1038/s41392-024-01896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.
Collapse
Affiliation(s)
- Zhan-Li Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Zeng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Rui-Qi Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Jin-Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Ya-Jing Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China.
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
15
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in a pancreatic cancer cell line. Sci Rep 2024; 14:15912. [PMID: 38987356 PMCID: PMC11236977 DOI: 10.1038/s41598-024-66244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Allison V Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Abdel-Motaal M, Aldakhili DA, Abo Elmaaty A, Sharaky M, Mourad MAE, Alzahrani AYA, Mohamed NA, Al-Karmalawy AA. Design and synthesis of novel tetrabromophthalimide derivatives as potential tubulin inhibitors endowed with apoptotic induction for cancer treatment. Drug Dev Res 2024; 85:e22197. [PMID: 38751223 DOI: 10.1002/ddr.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the β-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Organic Chemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dalal A Aldakhili
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
17
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T, Wei R. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer 2024; 23:90. [PMID: 38711083 PMCID: PMC11071201 DOI: 10.1186/s12943-024-02008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
19
|
Wang M, Yan X, Dong Y, Li X, Gao B. Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment. PLoS Comput Biol 2024; 20:e1012113. [PMID: 38728362 PMCID: PMC11230636 DOI: 10.1371/journal.pcbi.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/08/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| |
Collapse
|
20
|
Wen J, Wang X, Yang G, Zheng J. AURKA promotes renal cell carcinoma progression via regulation of CCNB1 transcription. Heliyon 2024; 10:e27959. [PMID: 38655290 PMCID: PMC11035947 DOI: 10.1016/j.heliyon.2024.e27959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
AURKA is a member of the serine/threonine kinase family and its kinase activity is crucial for the progression of mitosis. Recent studies have highlighted the therapeutic significance of AURKA inhibition in multiple cancer types. However, the specific mechanisms by which AURKA contributes to the progression of renal cell carcinoma (RCC) have not been fully elucidated. In this study, AURKA expression level was identified in human RCC tissues by immunohistochemical (IHC) staining. The function of AURKA on cell malignant phenotypes was evaluated in vitro after AURKA inhibition. The subcutaneous xenograft was conducted to confirm the in vivo effect of AURKA knockdown on growth of RCC cells. Finally, Co-IP, luciferase assay and ChIP experiments were performed to reveal the regulatory mechanism of AURKA on CCNB1. Our results showed a significant upregulation of AURKA in RCC tissues and cell lines, and a high AURKA expression was associated with poor prognosis. AURKA knockdown inhibited RCC cell proliferation and migration, induced cell apoptosis, and led to G1/G2 phase arrest. This effect was further confirmed by the use of an AURKA inhibitor. Mechanistically, AURKA interacted with E2F1, and subsequently recruited it to the promoter region of CCNB1. CCNB1 expression was essential for AURKA-induced RCC progression. Collectively, our results suggested that AURKA plays an important role in development of RCC via regulating CCNB1 transcription.
Collapse
Affiliation(s)
- Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, No.150, Jimo Road, Shanghai, 200120, China
| | - Xuechun Wang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, No.150, Jimo Road, Shanghai, 200120, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| |
Collapse
|
21
|
Berežni S, Mimica-Dukić N, Domina G, Raimondo FM, Orčić D. Anthriscus sylvestris-Noxious Weed or Sustainable Source of Bioactive Lignans? PLANTS (BASEL, SWITZERLAND) 2024; 13:1087. [PMID: 38674496 PMCID: PMC11053937 DOI: 10.3390/plants13081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm. (Apiaceae), commonly known as wild chervil, has gained scientific interest owing to its diverse phytochemical profile and potential therapeutic applications. The plant, despite being categorized as a noxious weed, is traditionally used in treating various conditions like headaches, dressing wounds, and as a tonic, antitussive, antipyretic, analgesic, and diuretic. Its pharmacological importance stems from containing diverse bioactive lignans, especially aryltetralins and dibenzylbutyrolactones. One of the main compounds of A. sylvestris, deoxypodophyllotoxin, among its wide-ranging effects, including antitumor, antiproliferative, antiplatelet aggregation, antiviral, anti-inflammatory, and insecticidal properties, serves as a pivotal precursor to epipodophyllotoxin, crucial in the semisynthesis of cytostatic agents like etoposide and teniposide. The main starting compound for these anticancer medicines was podophyllotoxin, intensively isolated from Sinopodophyllum hexandrum, now listed as an endangered species due to overexploitation. Since new species are being investigated as potential sources, A. sylvestris emerges as a highly promising candidate owing to its abundant lignan content. This review summarizes the current knowledge on A. sylvestris, investigating its biological and morphological characteristics, and pharmacological properties. Emphasizing the biological activities and structure-activity relationship, this review underscores its therapeutic potential, thus encouraging further exploration and utilization of this valuable plant resource.
Collapse
Affiliation(s)
- Sanja Berežni
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.M.-D.); (D.O.)
| | - Neda Mimica-Dukić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.M.-D.); (D.O.)
| | - Gianniantonio Domina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, bldg. 4, 90128 Palermo, Italy;
| | - Francesco Maria Raimondo
- PLANTA/Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy;
| | - Dejan Orčić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.M.-D.); (D.O.)
| |
Collapse
|
22
|
Qi Y, Li L, Wei Y, Ma F. PP2A as a potential therapeutic target for breast cancer: Current insights and future perspectives. Biomed Pharmacother 2024; 173:116398. [PMID: 38458011 DOI: 10.1016/j.biopha.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China.
| |
Collapse
|
23
|
Zhi D, An Z, Li L, Zheng C, Yuan X, Lan Y, Zhang J, Xu Y, Ma H, Li N, Wang J. 3-Amide-β-carbolines block the cell cycle by targeting CDK2 and DNA in tumor cells potentially as anti-mitotic agents. Bioorg Chem 2024; 145:107216. [PMID: 38387396 DOI: 10.1016/j.bioorg.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
β-Carboline alkaloids are natural and synthetic products with outstanding antitumor activity. C3 substituted and dimerized β-carbolines exert excellent antitumor activity. In the present research, 37 β-carboline derivatives were synthesized and characterized. Their cytotoxicity, cell cycle, apoptosis, and CDK2- and DNA-binding affinity were evaluated. β-Carboline monomer M3 and dimer D4 showed selective activity and higher cytotoxicity in tumor cells than in normal cells. Structure-activity relationships (SAR) indicated that the amide group at C3 enhanced the antitumor activity. M3 blocked the A549 (IC50 = 1.44 ± 1.10 μM) cell cycle in the S phase and inhibited A549 cell migration, while D4 blocked the HepG2 (IC50 = 2.84 ± 0.73 μM) cell cycle in the G0/G1 phase, both of which ultimately induced apoptosis. Furthermore, associations of M3 and D4 with CDK2 and DNA were proven by network pharmacology analysis, molecular docking, and western blotting. The expression level of CDK2 was downregulated in M3-treated A549 cells and D4-treated HepG2 cells. Moreover, M3 and D4 interact with DNA and CDK2 at sub-micromolar concentrations in endothermic interactions caused by entropy-driven adsorption processes, which means that the favorable entropy change (ΔS > 0) overcomes the unfavorable enthalpy change (ΔH > 0) and drives the spontaneous reaction (ΔG < 0). Overall, these results clarified the antitumor mechanisms of M3 and D4 through disrupting the cell cycle by binding DNA and CDK2, which demonstrated the potential of M3 and D4 as novel antiproliferative drugs targeting mitosis.
Collapse
Affiliation(s)
- Dongming Zhi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Zhiyuan An
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Lishan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Chaojia Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Xiaorong Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Yu Lan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jinghan Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Yujie Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Huiya Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Na Li
- College of Chemistry and Life Science, Chifeng University, Inner Mongolia Autonomous Region, China.
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| |
Collapse
|
24
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
25
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
26
|
Defois M, Josselin B, Brindeau P, Krämer A, Knapp S, Anizon F, Giraud F, Ruchaud S, Moreau P. Synthesis and biological evaluation of 1H-pyrrolo[3,2-g]isoquinolines. Bioorg Med Chem 2024; 100:117619. [PMID: 38320389 DOI: 10.1016/j.bmc.2024.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
A structure-activity relationship study performed on 1H-pyrrolo[3,2-g]isoquinoline scaffold identified new haspin inhibitors with nanomolar potencies and selectivity indices (SI) over 6 (inhibitory potency evaluated against 8 protein kinases). Compound 22 was the most active of the series (haspin IC50 = 76 nM). Cellular evaluation of 22 confirmed its activity for endogenous haspin in U-2 OS cells and its anti-proliferative activity against various cell lines. In addition, the binding mode of analog 22 in complex with haspin was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Mathilde Defois
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Béatrice Josselin
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Brindeau
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
27
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580539. [PMID: 38410481 PMCID: PMC10896345 DOI: 10.1101/2024.02.15.580539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Allison V. Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
28
|
Priya A, Dashti M, Thanaraj TA, Irshad M, Singh V, Tandon R, Mehrotra R, Singh AK, Mago P, Singh V, Malik MZ, Ray AK. Identification of potential regulatory mechanisms and therapeutic targets for lung cancer. J Biomol Struct Dyn 2024:1-18. [PMID: 38319037 DOI: 10.1080/07391102.2024.2310208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Lung cancer poses a significant health threat globally, especially in regions like India, with 5-year survival rates remain alarmingly low. Our study aimed to uncover key markers for effective treatment and early detection. We identified specific genes related to lung cancer using the BioXpress database and delved into their roles through DAVID enrichment analysis. By employing network theory, we explored the intricate interactions within lung cancer networks, identifying ASPM and MKI67 as crucial regulator genes. Predictions of microRNA and transcription factor interactions provided additional insights. Examining gene expression patterns using GEPIA and KM Plotter revealed the clinical relevance of these key genes. In our pursuit of targeted therapies, Drug Bank pointed to methotrexate as a potential drug for the identified key regulator genes. Confirming this, molecular docking studies through Swiss Dock showed promising binding interactions. To ensure stability, we conducted molecular dynamics simulations using the AMBER 16 suite. In summary, our study pinpoints ASPM and MKI67 as vital regulators in lung cancer networks. The identification of hub genes and functional pathways enhances our understanding of molecular processes, offering potential therapeutic targets. Importantly, methotrexate emerged as a promising drug candidate, supported by robust docking and simulation studies. These findings lay a solid foundation for further experimental validations and hold promise for advancing personalized therapeutic strategies in lung cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | - Virendra Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rekha Mehrotra
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Department of Botany, Shri Aurobindo College, University of Delhi, New Delhi, India to Campus Of Open Learning, University of Delhi, New Delhi, India
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| | - Vishal Singh
- Delhi School of Public Health, Institution of Eminence, University of Delhi, New Delhi, India
| | | | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India
| |
Collapse
|
29
|
Sun Y, Chen Z, Liu G, Chen X, Shi Z, Feng H, Yu L, Li G, Ding K, Huang H, Zhang Z, Xu S. Discovery of a potent and selective covalent threonine tyrosine kinase (TTK) inhibitor. Bioorg Chem 2024; 143:107053. [PMID: 38159497 DOI: 10.1016/j.bioorg.2023.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Threonine tyrosine kinase (TTK) is a critical component of the spindle assembly checkpoint and plays a pivotal role in mitosis. TTK has been identified as a potential therapeutic target for human cancers. Here, we describe our design, synthesis and evaluation of a class of covalent TTK inhibitors, exemplified by 16 (SYL1073). Compound 16 potently inhibits TTK kinase with an IC50 of 0.016 μM and displays improved selectivity in a panel of kinases. Mass spectrometry analysis reveals that 16 covalently binds to the C604 cysteine residue in the hinge region of the TTK kinase domain. Furthermore, 16 achieves strong potency in inhibiting the growth of various human cancer cell lines, outperforming its relative reversible inhibitor, and eliciting robust downstream effects. Taken together, compound 16 provides a valuable lead compound for further optimization toward the development of drug for treatment of human cancers.
Collapse
Affiliation(s)
- Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guobin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoai Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing 100049, China
| | - Huixu Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - He Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
30
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
31
|
Hu X, Li G, Li S, Wang Q, Wang Y, Zhang P, Yang T, Yang B, Yu L, Liu Z. TTK inhibition activates STING signal and promotes anti-PD1 immunotherapy in breast cancer. Biochem Biophys Res Commun 2024; 694:149388. [PMID: 38150917 DOI: 10.1016/j.bbrc.2023.149388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Despite progress in the application of checkpoint immunotherapy against various tumors, attempts to utilize immune checkpoint blockade (ICB) agents in triple negative breast cancer (TNBC) have yielded limited clinical benefits. The low overall response rate of checkpoint immunotherapy in TNBC may be attributed to the immunosuppressive tumor microenvironment (TME). In this study, we investigated the role of mitogen-associated kinase TTK in reprogramming immune microenvironment in TNBC. Notably, TTK inhibition by BAY-1217389 induced DNA damage and the formation of micronuclei containing dsDNA in the cytosol, resulting in elicition of STING signal pathway and promoted antitumor immunity via the infiltration and activation of CD8+ T cells. Moreover, TTK inhibition also upregulated the expression of PD-L1, demonstrating a synergistic effect with anti-PD1 therapy in 4T1 tumor-bearing mice. Taken together, TTK inhibition facilitated anti-tumor immunity mediated by T cells and enhanced sensitivity to PD-1 blockade, providing a rationale for the combining TTK inhibitors with immune checkpoint blockade in clinical trials.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangmei Li
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sisi Li
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qiwei Wang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, 225007, Jiangsu, China
| | - Yuerong Wang
- Department of Oncology and Hematology, Western Theater Command Air Force Hospital of PLA, Chengdu, 610083, Sichuan, China
| | - Peidong Zhang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianqiong Yang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Yang
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 6091248, Sichuan, China
| | - Luoting Yu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
32
|
Afzali M, Sadat Shandiz SA, Keshtmand Z. Preparation of biogenic silver chloride nanoparticles from microalgae Spirulina Platensis extract: anticancer properties in MDA-MB231 breast cancer cells. Mol Biol Rep 2024; 51:62. [PMID: 38170277 DOI: 10.1007/s11033-023-08970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.
Collapse
Affiliation(s)
- Mahsa Afzali
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Jiang K, Bai L, Wang C, Xiao X, Cheng Z, Peng H, Liu S. The Aurora kinase inhibitor AT9283 inhibits Burkitt lymphoma growth by regulating Warburg effect. PeerJ 2023; 11:e16581. [PMID: 38099309 PMCID: PMC10720464 DOI: 10.7717/peerj.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To investigate the effect of the kinase inhibitor AT9283 on Burkitt lymphoma (BL) cells and elucidate the underlying mechanisms. Methods The effect of AT9283 on the proliferation of BL cell lines was tested using the MTT assay. Apoptosis and cell cycle were measured by flow cytometry. The proteins associated with the cell cycle, apoptosis, and the Warburg effect were detected using Western blotting. Alterations in glycolytic metabolism in terms of glucose intake and lactate concentrations were determined by glucose and lactate assays. Results The current study utilized the GEPIA, the Human Protein Atlas (HAP) database and immunohistochemistry to conduct analyses, which revealed a high expression of Aurora kinases and Warburg effect-related proteins in malignant B-cell lymphoma tissues. AT9283 significantly inhibited the cell proliferation of BL cells and induced G2/M arrest. Additionally, AT9283 induced apoptosis in BL cells and reversed the Warburg effect by increasing glucose uptake and reducing lactate production. Moreover, the protein expression of hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase A was significantly suppressed by AT9283, possibly through the inhibition of c-Myc and HIF-1α protein expression. Conclusion The reversal of the Warburg effect in BL cells and the subsequent inhibition of cell proliferation and induction of apoptosis were observed by targeting Aurora A and Aurora B with AT9283. This finding may present new therapeutic options and targets for BL.
Collapse
Affiliation(s)
- Kaiming Jiang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Bai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Meng Y, Hong C, Yang S, Qin Z, Yang L, Huang Y. Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 2023; 26:506. [PMID: 37920433 PMCID: PMC10618932 DOI: 10.3892/ol.2023.14093] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Ubiquitin-specific peptidase 9X (USP9X) is involved in certain human diseases, including malignancies, atherosclerosis and certain diseases of the nervous system. USP9X promotes the deubiquitination and stabilization of diverse substrates, thereby exerting a versatile range of effects on pathological and physiological processes. USP9X serves vital roles in the processes of cell survival, invasion and migration in various types of cancer. The present review aims to highlight the current knowledge of USP9X in terms of its structure and the possible mediatory mechanisms involved in certain types of cancer, providing a thorough introduction to its biological functions in carcinogenesis and further outlining its oncogenic or suppressive properties in a diverse range of cancer types. Finally, several perspectives regarding USP9X-targeted pharmacological therapeutics in cancer development are discussed.
Collapse
Affiliation(s)
- Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Sifu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
36
|
Su Y, Lin H, Yu J, Mao L, Jin W, Liu T, Jiang S, Wu Y, Zhang S, Geng Q, Ge C, Zhao F, Chen T, Cui Y, Li J, Hou H, Zhou X, Li H. RIT1 regulates mitosis and promotes proliferation by interacting with SMC3 and PDS5 in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:326. [PMID: 38017479 PMCID: PMC10685607 DOI: 10.1186/s13046-023-02892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND As a small G protein of Ras family, Ras-like-without-CAAX-1 (RIT1) plays a critical role in various tumors. Our previous study has demonstrated the involvement of RIT1 in promoting malignant progression of hepatocellular carcinoma (HCC). However, its underlying mechanism remains unclear. METHODS Gene set enrichment analysis (GSEA) was conducted in the TCGA LIHC cohort to investigate the underlying biological mechanism of RIT1. Live cell imaging, immunofluorescence (IF) and flow cytometry assays were used to verify biological function of RIT1 in HCC mitosis. Subcutaneous xenografting of human HCC cells in BALB/c nude mice was utilized to assess tumor proliferation in vivo. RNA-seq, co-immunoprecipitation (Co-IP), mass spectrometry analyses, western blot and IF assays were employed to elucidate the mechanisms by which RIT1 regulates mitosis and promotes proliferation in HCC. RESULTS Our findings demonstrate that RIT1 plays a crucial role in regulating mitosis in HCC. Knockdown of RIT1 disrupts cell division, leading to G2/M phase arrest, mitotic catastrophe, and apoptosis in HCC cells. SMC3 is found to interact with RIT1 and knockdown of SMC3 attenuates the proliferative effects mediated by RIT1 both in vitro and in vivo. Mechanistically, RIT1 protects and maintains SMC3 acetylation by binding to SMC3 and PDS5 during mitosis, thereby promoting rapid cell division and proliferation in HCC. Notably, we have observed an upregulation of SMC3 expression in HCC tissues, which is associated with poor patient survival and promotion of HCC cell proliferation. Furthermore, there is a significant positive correlation between the expression levels of RIT1, SMC3, and PDS5. Importantly, HCC patients with high expression of both RIT1 and SMC3 exhibit worse prognosis compared to those with high RIT1 but low SMC3 expression. CONCLUSIONS Our findings underscore the crucial role of RIT1 in regulating mitosis in HCC and further demonstrate its potential as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Yang Su
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Hechun Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Junming Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Lin Mao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Wenjiao Jin
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tengfei Liu
- Department of Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Shuqing Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yunyu Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Saihua Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Qin Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong, 226200, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, 530021, China
| | - Jinjun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Hong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
37
|
D Shankara S, Isloor AM, Jayaswamy PK, Shetty P, Chakraborty D, Venugopal PP. Vetting of New 2,5-Bis (2,2,2-trifluoroethoxy) Phenyl-Linked 1,3-Thiazolidine-4-one Derivatives as AURKA and VEGFR-2 Inhibitor Antiglioma Agents Assisted with In Vitro and In Silico Studies. ACS OMEGA 2023; 8:43596-43609. [PMID: 38027362 PMCID: PMC10666141 DOI: 10.1021/acsomega.3c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
The bioactivity of 1,3-thiazolidin-4-one derivatives with a 2,5-bis (2,2,2-trifluoroethoxy) phenyl moiety was computationally developed and evaluated. All of the synthesized thiazolidin-4-one derivatives have their chemical structures characterized using a variety of methods, including nuclear magnetic resonance (NMR) (1H and 13C), high-resolution mass spectrometry (HRMS), and Fourier transform infrared (FTIR) radiation. A human glioblastoma cancer cell line (LN229) was used to investigate the purified derivatives' antiglioma cancer efficacy. By using the MTT, colony formation, and tunnel tests, respectively, the in vitro cytotoxic and apoptotic effects of these compounds were assessed. Thiazolidin-4-one derivatives 5b, 5c, and 5e were discovered to have the best efficacy against glioblastoma cells out of all of these compounds. The derivatives 5b, 5c, and 5e were determined to have respective IC50 values of 9.48, 12.16, and 6.43 g/mL. Computation results showed that the bioactivity evaluations of the compounds were quite significant. The bridging -NH group forms a hydrogen bond with Glu 260 of synthesized derivatives 5b, 5c, 5d, 5e, and 5h. The vast majority of freshly developed compounds obeyed Lipinski's rule of five, which is in line with the results that the ADMET model predicted. Additionally, molecular docking evaluation and molecular dynamics simulation investigations against the proteins AURKA and VEGFR-2 were conducted for the synthesized compounds to incorporate both in silico and in vitro data. The findings revealed that almost all of the compounds had considerable binding to AURKA and VEGFR-2 residues, with binding affinities ranging from -9.8 to -7.9 kcal/mol. Consequently, the results of the biological investigations and the docking scores demonstrated that thiazolidinone molecule 5e containing 4-chlorophenyl substituent may be considered as a potential moiety for glioblastoma cancer treatments.
Collapse
Affiliation(s)
- Sathyanarayana D Shankara
- Medicinal Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Arun M. Isloor
- Medicinal Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Pavan K. Jayaswamy
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore575018, Karnataka, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Pushyaraga P. Venugopal
- Biophysical and Computational Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
38
|
Omairi HK, Grisdale CJ, Meode M, Bohm AK, Black S, Adam NJ, Chapman CP, Maroilley T, Kelly JJ, Tarailo-Graovac M, Jones SJM, Blough MD, Cairncross JG. Mitogen-induced defective mitosis transforms neural progenitor cells. Neuro Oncol 2023; 25:1763-1774. [PMID: 37186014 PMCID: PMC10547526 DOI: 10.1093/neuonc/noad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs). METHODS Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin. RESULTS NPCs divided abnormally in defined media containing PDGFA with P53-dependent effects. In wild-type cells, defective mitosis was associated with P53 activation and cell death, but in some null cells, defective mitosis was tolerated. Surviving cells had unstable genomes and proliferated in the presence of PDGFA accumulating random and clonal chromosomal rearrangements. The outcome of this process was a population of tumorigenic NPCs with recurrent gains and losses of chromosomal regions that were syntenic to those recurrently gained and lost in human GBM. By stimulating proliferation without setting the stage for successful mitosis, PDGFA-transformed NPCs lacking P53 function. CONCLUSIONS Our work describes a mechanism of transformation of NPCs by a brain-associated mitogen, raising the possibility that the unique genomic architecture of GBM is an adaptation to defective mitosis that ensures the survival of affected cells.
Collapse
Affiliation(s)
- Hiba K Omairi
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cameron J Grisdale
- Canada’s Michael Smith Genome Sciences Centre and BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Meode
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra K Bohm
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sophie Black
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Nancy J Adam
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cassidy P Chapman
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Tatiana Maroilley
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - John J Kelly
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Maja Tarailo-Graovac
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre and BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael D Blough
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - John Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Alimbetov D, Umbayev B, Tsoy A, Begimbetova D, Davis T, Kipling D, Askarova S. Small molecule targeting of the p38/Mk2 stress signaling pathways to improve cancer treatment. BMC Cancer 2023; 23:895. [PMID: 37740222 PMCID: PMC10517462 DOI: 10.1186/s12885-023-11319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Although a long-term goal of cancer therapy always has been the development of agents that selectively destroy cancer cells, more recent trends have been to seek secondary agents that sensitize cancer cells to existing treatment regimens. In this regard, the present study explored the possibility of using small molecule inhibitors of p38MAPK/MK2 stress signaling pathways as potential agents to enhance the sensitivity of cancer cells with abrogated G1 checkpoint to the DNA damaging agent etoposide by specifically targeting the DNA damage-induced G2 cell cycle checkpoint. METHODS We have applied CCK8 and FACS-based viability assays and cell cycle analysis to investigate the effect of small molecules SB203580 and MK2.III on the sensitivity of small cell lung cancer cells (SCLC) that lack the G1 checkpoint to the DNA damaging agent Etoposide when used in combination. We have also assessed the effectiveness of combination chemotherapy on tumor xenograft suppression with etoposide and MK2.III in immunosuppressed mice. In addition, additional CCK8 cell viability analysis of the MDA-MB-231 breast cancer cell line, and SW620, and SW480 colorectal cancer cell lines was performed. RESULTS Results suggest that etoposide produces a profound effect on the cell cycle profile of cells in a manner that is consistent with the degree of cell viability that is seen using the viable cell assay. Results of the co-treatment experiments revealed that the p38/MK2 kinase inhibitors SB203580 and MK2.III both enhanced the DNA-damaging effects of etoposide on NCI-H69 cell viability in vitro. Results revealed that in vivo MK2.III was able to act as a chemosensitizer when used in combination with etoposide making NCI-H69 lung cancer cells sensitive to chemotherapeutic drug by 45% compared to single usage of the drug. We also report that MK2.III sensitizes metastatic cell lines SW-620 and MDA-MB-231 to etoposide but does not increase the sensitivity of non-metastasizing SW-480 colorectal cells to DNA damaging agent in vitro. CONCLUSION Findings reported in this study provide evidence that specific inhibitors of MK2 may indeed improve overall cancer therapy; however, their effectiveness depends on cell types.
Collapse
Affiliation(s)
- D Alimbetov
- Creehey Children's Cancer Research Institute, UT Health at San Antonio, San Antonio, USA.
| | - B Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - A Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - D Begimbetova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - T Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - D Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Sh Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
40
|
Xue Y, Mu S, Sun P, Sun Y, Liu N, Sun Y, Wang L, Zhao D, Cheng M. Design, synthesis, and biological evaluation of novel pyrimidin-2-amine derivatives as potent PLK4 inhibitors. RSC Med Chem 2023; 14:1787-1802. [PMID: 37731702 PMCID: PMC10507801 DOI: 10.1039/d3md00267e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 09/22/2023] Open
Abstract
Serine/threonine protein kinase PLK4 is a master regulator of centriole duplication, which is significant for maintaining genome integrity. Accordingly, due to the detection of PLK4 overexpression in a variety of cancers, PLK4 has been identified as a candidate anticancer target. Thus, it is a very meaningful to find effective and safe PLK4 inhibitors for the treatment of cancer. However, the reported PLK4 inhibitors are scarce and have potential safety issues. In this study, a series of novel and potent PLK4 inhibitors with an aminopyrimidine core was obtained utilizing the scaffold hopping strategy. The in vitro enzyme activity results showed that compound 8h (PLK4 IC50 = 0.0067 μM) displayed high PLK4 inhibitory activity. In addition, compound 8h exhibited a good plasma stability (t1/2 > 289.1 min), liver microsomal stability (t1/2 > 145 min), and low risk of DDIs. At the cellular level, it presented excellent antiproliferative activity against breast cancer cells. Taken together, these results suggest that compound 8h has potential value in the further research of PLK4-targeted anticancer drugs.
Collapse
Affiliation(s)
- Yanli Xue
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Shuyi Mu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Pengkun Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Yu Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Lin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| |
Collapse
|
41
|
Cai L, Shi B, Zhu K, Zhong X, Lai D, Wang J, Tou J. Bioinformatical analysis of the key differentially expressed genes for screening potential biomarkers in Wilms tumor. Sci Rep 2023; 13:15404. [PMID: 37717078 PMCID: PMC10505208 DOI: 10.1038/s41598-023-42730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023] Open
Abstract
Wilms tumor (WT) is the most common pediatric renal malignant tumor in the world. Overall, the prognosis of Wilms tumor is very good. However, the prognosis of patients with anaplastic tumor histology or disease relapse is still poor, and their recurrence rate, metastasis rate and mortality are significantly increased compared with others. Currently, the combination of histopathological examination and molecular biology is essential to predict prognosis and guide the treatment. However, the molecular mechanism has not been well studied. Genetic profiling may be helpful in some way. Hence, we sought to identify novel promising biomarkers of WT by integrating bioinformatics analysis and to identify genes associated with the pathogenesis of WT. In the presented study, the NCBI Gene Expression Omnibus was used to download two datasets of gene expression profiles related to WT patients for the purpose of detecting overlapped differentially expressed genes (DEGs). The DEGs were then uploaded to DAVID database for enrichment analysis. In addition, the functional interactions between proteins were evaluated by simulating the protein-protein interaction (PPI) network of DEGs. The impact of selected hub genes on survival in WT patients was analyzed by using the online tool R2: Genomics Analysis and Visualization Platform. The correlation between gene expression and the degree of immune infiltration was assessed by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression (ESTIMATE) algorithm and the single sample GSEA. Top 12 genes were identified for further study after constructing a PPI network and screening hub gene modules. Kinesin family member 2C (KIF2C) was identified as the most significant gene predicting the overall survival of WT patients. The expression of KIF2C in WT was further verified by quantitative real-time polymerase chain reaction and immunohistochemistry. Furthermore, we found that KIF2C was significantly correlated with immune cell infiltration in WT. Our present study demonstrated that altered expression of KIF2C may be involved in WT and serve as a potential prognostic biomarker for WT patients.
Collapse
Affiliation(s)
- Linghao Cai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohui Zhong
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Jinhu Wang
- Department of Oncology Surgery, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Jinfa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, Nation Clinical Research Center for Child Health, Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
42
|
Huang Y, Lu C, Wang H, Gu L, Fu YX, Li GM. DNAJA2 deficiency activates cGAS-STING pathway via the induction of aberrant mitosis and chromosome instability. Nat Commun 2023; 14:5246. [PMID: 37640708 PMCID: PMC10462666 DOI: 10.1038/s41467-023-40952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Molecular chaperone HSP70s are attractive targets for cancer therapy, but their substrate broadness and functional non-specificity have limited their role in therapeutical success. Functioning as HSP70's cochaperones, HSP40s determine the client specificity of HSP70s, and could be better targets for cancer therapy. Here we show that tumors defective in HSP40 member DNAJA2 are benefitted from immune-checkpoint blockade (ICB) therapy. Mechanistically, DNAJA2 maintains centrosome homeostasis by timely degrading key centriolar satellite proteins PCM1 and CEP290 via HSC70 chaperone-mediated autophagy (CMA). Tumor cells depleted of DNAJA2 or CMA factor LAMP2A exhibit elevated levels of centriolar satellite proteins, which causes aberrant mitosis characterized by abnormal spindles, chromosome missegregation and micronuclei formation. This activates the cGAS-STING pathway to enhance ICB therapy response in tumors derived from DNAJA2-deficient cells. Our study reveals a role for DNAJA2 to regulate mitotic division and chromosome stability and suggests DNAJA2 as a potential target to enhance cancer immunotherapy, thereby providing strategies to advance HSPs-based cancer therapy.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changzheng Lu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hanzhi Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China.
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
43
|
Drosos Y, Konstantakou EG, Bassogianni AS, Nikolakopoulos KS, Koumoundourou DG, Markaki SP, Tsitsilonis OE, Voutsinas GE, Valakos D, Anastasiadou E, Thanos D, Velentzas AD, Stravopodis DJ. Microtubule Dynamics Deregulation Induces Apoptosis in Human Urothelial Bladder Cancer Cells via a p53-Independent Pathway. Cancers (Basel) 2023; 15:3730. [PMID: 37509392 PMCID: PMC10378115 DOI: 10.3390/cancers15143730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bladder cancer (BLCA) is the sixth most common type of cancer and has a dismal prognosis if diagnosed late. To identify treatment options for BLCA, we systematically evaluated data from the Broad Institute DepMap project. We found that urothelial BLCA cell lines are among the most sensitive to microtubule assembly inhibition by paclitaxel treatment. Strikingly, we revealed that the top dependencies in BLCA cell lines include genes encoding proteins involved in microtubule assembly. This highlights the importance of microtubule network dynamics as a major vulnerability in human BLCA. In cancers such as ovarian and breast, where paclitaxel is the gold standard of care, resistance to paclitaxel treatment has been linked to p53-inactivating mutations. To study the response of BLCA to microtubule assembly inhibition and its mechanistic link with the mutational status of the p53 protein, we treated a collection of BLCA cell lines with a dose range of paclitaxel and performed a detailed characterization of the response. We discovered that BLCA cell lines are significantly sensitive to low concentrations of paclitaxel, independently of their p53 status. Paclitaxel induced a G2/M cell cycle arrest and growth inhibition, followed by robust activation of apoptosis. Most importantly, we revealed that paclitaxel triggered a robust DNA-damage response and apoptosis program without activating the p53 pathway. Integration of transcriptomics, epigenetic, and dependency data demonstrated that the response of BLCA to paclitaxel is independent of p53 mutational signatures but strongly depends on the expression of DNA repair genes. Our work highlights urothelial BLCA as an exceptional candidate for paclitaxel treatment. It paves the way for the rational use of a combination of paclitaxel and DNA repair inhibitors as an effective, novel therapeutic strategy.
Collapse
Affiliation(s)
- Yiannis Drosos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Eumorphia G Konstantakou
- Massachusetts General Hospital Cancer Center (MGHCC), Harvard Medical School, Boston, MA 02114, USA
| | - Aggeliki-Stefania Bassogianni
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Dimitra G Koumoundourou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Sophia P Markaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Ourania E Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications (IBA), National Center for Scientific Research (NCSR) "Demokritos", 15310 Athens, Greece
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| |
Collapse
|
44
|
Wang J, Cong P, Jin Z, Liu L, Sun D, Zhu W, Shi G. A novel prognostic signature for hepatocellular carcinoma based on SUMOylation-related genes. Sci Rep 2023; 13:11233. [PMID: 37433803 DOI: 10.1038/s41598-023-38197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
SUMOylation (SUMO modification) has been confirmed to play an essential role in the progression of various malignancies. As the value of SUMOylation-related genes (SRGs) in prognosis prediction of hepatocellular carcinoma (HCC) has not been explored, we aim to construct an HCC SRGs signature. RNA sequencing was utilized to identify differentially expressed SRGs. The 87 identified genes were used in Univariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) analysis to build a signature. The accuracy of the model was validated by the ICGC and GEO datasets. The GSEA revealed that the risk score was associated with common cancer-related pathways. The ssGSEA showed that NK cells in the high-risk group were significantly reduced. The sensitivities of anti-cancer drugs confirmed the sensitivity of the high-risk group to sorafenib was lower. Further, our cohort showed that risk scores were correlated with advanced grade and vascular invasion (VI). Finally, the results of H&E staining and immunohistochemistry of Ki67 showed that higher-risk patients are more malignant.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Peipei Cong
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Zhipeng Jin
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Lingli Liu
- Qingdao Municipal Hospital, Qingdao, China
| | - Dongxu Sun
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China.
| |
Collapse
|
45
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
46
|
Höpfler M, Absmeier E, Peak-Chew SY, Vartholomaiou E, Passmore LA, Gasic I, Hegde RS. Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Mol Cell 2023; 83:2290-2302.e13. [PMID: 37295431 PMCID: PMC10403363 DOI: 10.1016/j.molcel.2023.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Microtubules play crucial roles in cellular architecture, intracellular transport, and mitosis. The availability of free tubulin subunits affects polymerization dynamics and microtubule function. When cells sense excess free tubulin, they trigger degradation of the encoding mRNAs, which requires recognition of the nascent polypeptide by the tubulin-specific ribosome-binding factor TTC5. How TTC5 initiates the decay of tubulin mRNAs is unknown. Here, our biochemical and structural analysis reveals that TTC5 recruits the poorly studied protein SCAPER to the ribosome. SCAPER, in turn, engages the CCR4-NOT deadenylase complex through its CNOT11 subunit to trigger tubulin mRNA decay. SCAPER mutants that cause intellectual disability and retinitis pigmentosa in humans are impaired in CCR4-NOT recruitment, tubulin mRNA degradation, and microtubule-dependent chromosome segregation. Our findings demonstrate how recognition of a nascent polypeptide on the ribosome is physically linked to mRNA decay factors via a relay of protein-protein interactions, providing a paradigm for specificity in cytoplasmic gene regulation.
Collapse
Affiliation(s)
- Markus Höpfler
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Eva Absmeier
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ivana Gasic
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
47
|
Liu X, Jin J, Wu Y, Du B, Zhang L, Lu D, Liu Y, Chen X, Lin J, Chen H, Zhang W, Zhuang C, Luan X. Fluoroindole chalcone analogues targeting the colchicine binding site of tubulin for colorectal oncotherapy. Eur J Med Chem 2023; 257:115540. [PMID: 37301075 DOI: 10.1016/j.ejmech.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract with high morbidity and mortality. Our previous studies have demonstrated that indole-chalcone-based compounds targeting tubulin displayed potential cytotoxicity to CRC cells. Herein, three new series of derivatives were systematically designed and synthesized to explore their structure-activity relationship (SAR) against CRC based on prior research. Among them, a representative fluorine-containing analog (FC116) exerted superior efficacy on HCT116 (IC50 = 4.52 nM) and CT26 (IC50 = 18.69 nM) cell lines, and HCT116-xenograft mice with tumor growth inhibition rate of 65.96% (3 mg/kg). Of note, FC116 could also suppress the growth of organoid models (IC50 = 1.8-2.5 nM) and showed adenoma number inhibition rate of 76.25% at the dose of 3 mg/kg in APCmin/+ mice. In terms of mechanism, FC116 could induce endoplasmic reticulum (ER) stress to produce excess reactive oxygen species (ROS), leading to mitochondrial damage to promote the apoptosis of CRC cells by targeting microtubules. Our results support that indole-chalcone compounds are promising tubulin inhibitors and highlight the potential of FC116 to combat CRC.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bolin Du
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yichen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
48
|
Li Z, Huang L, Li J, Yang W, Li W, Long Q, Dai X, Wang H, Du G. Immunological role and prognostic value of the SKA family in pan-cancer analysis. Front Immunol 2023; 14:1012999. [PMID: 37180139 PMCID: PMC10169755 DOI: 10.3389/fimmu.2023.1012999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Background The spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated. Methods Using data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes. Results Our results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group. Conclusion The SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.
Collapse
Affiliation(s)
- Zhengtian Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanying Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiachen Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenkang Yang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weichao Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuzhong Long
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinyu Dai
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongtao Wang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
49
|
Li N, Guan Q, Hong Y, Zhang B, Li M, Li X, Li B, Wu L, Zhang W. Discovery of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles as potent tubulin polymerization inhibitors. Eur J Med Chem 2023; 256:115402. [PMID: 37182330 DOI: 10.1016/j.ejmech.2023.115402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Tubulin/colchicine-binding site inhibitors (CBSIs) co-crystal structures play an important role in the exploration of novel small molecules for oncotherapy. Based on the analysis of the binding models of tubulin and reported CBSIs, a series of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles were designed as potential tubulin polymerization inhibitors by binding to distinct colchicine domain of tubulin. Among the compounds synthesized, 7w not only shown noteworthy potency against SGC-7901 cancer cell line (IC50 = 0.21 μM) but also exhibited lower cytotoxicity than colchicine in normal cell line (HUVEC). The mechanism studies elucidated that 7w could cause the apoptosis of cancer cells by inhibiting tubulin polymerization to trigger G2/M arrest. In 4T1-xenograft mice model, 7w significantly inhibited tumor growth without losing weight, demonstrating a promising potential for further development with a unique binding mode at the colchicine-binding site.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yilang Hong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bowen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Mi Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xuewen Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Street, Heping District, Shenyang, 110002, China
| | - Bo Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Street, Heping District, Shenyang, 110002, China.
| | - Lan Wu
- Department of Geratology, The First Affiliated Hospital, Chinese Medical University, Shenyang, 110001, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
50
|
TANG QINGLING, ATIQ WARDA, MAHNOOR SHAISTA, ABDEL-MAKSOUD MOSTAFAA, AUFY MOHAMMED, YAZ HAMID, ZHU JIANYU. Comprehensively analyzing the genetic alterations, and identifying key genes in ovarian cancer. Oncol Res 2023; 31:141-156. [PMID: 37304238 PMCID: PMC10207953 DOI: 10.32604/or.2023.028548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/02/2023] [Indexed: 06/13/2023] Open
Abstract
Though significant improvements have been made in the treatment methods for ovarian cancer (OC), the prognosis for OC patients is still poor. Exploring hub genes associated with the development of OC and utilizing them as appropriate potential biomarkers or therapeutic targets is highly valuable. In this study, the differentially expressed genes (DEGs) were identified from an independent GSE69428 Gene Expression Omnibus (GEO) dataset between OC and control samples. The DEGs were processed to construct the protein-protein interaction (PPI) network using STRING. Later, hub genes were identified through Cytohubba analysis of the Cytoscape. Expression and survival profiling of the hub genes were validated using GEPIA, OncoDB, and GENT2. For exploring promoter methylation levels and genetic alterations in hub genes, MEXPRESS and cBioPortal were utilized, respectively. Moreover, DAVID, HPA, TIMER, CancerSEA, ENCORI, DrugBank, and GSCAlite were used for gene enrichment analysis, subcellular localization analysis, immune cell infiltration analysis, exploring correlations between hub genes and different diverse states, lncRNA-miRNA-mRNA co-regulatory network analysis, predicting hub gene-associated drugs, and conducting drug sensitivity analysis, respectively. In total, 8947 DEGs were found between OC and normal samples in GSE69428. After STRING and Cytohubba analysis, 4 hub genes including TTK (TTK Protein Kinase), (BUB1 mitotic checkpoint serine/threonine kinase B) BUB1B, (Nucleolar and spindle-associated protein 1) NUSAP1, and (ZW10 interacting kinetochore protein) ZWINT were selected as the hub genes. Further, it was validated that these 4 hub genes were significantly up-regulated in OC samples compared to normal controls, but overexpression of these genes was not associated with overall survival (OS). However, genetic alterations in those genes were found to be linked with OS and disease-free (DFS) survival. Moreover, this study also revealed some novel links between TTK, BUB1B, NUSAP1, and ZWINT overexpression and promoter methylation status, immune cell infiltration, miRNAs, gene enrichment terms, and various chemotherapeutic drugs. Four hub genes, including TTK, BUB1B, NUSAP1, and ZWINT, were revealed as tumor-promotive factors in OC, having the potential to be utilized as novel biomarkers and therapeutic targets for OC management.
Collapse
Affiliation(s)
- QINGLING TANG
- Department of Gynecology and Obstetrics, Shanghai Songjiang District Jiuting Hospital, Shanghai, 20000, China
| | - WARDA ATIQ
- Department of Medicine, Fatima Jinnah Medical University, Lahore, 42000, Pakistan
| | - SHAISTA MAHNOOR
- Department of Medicine, Fatima Jinnah Medical University, Lahore, 42000, Pakistan
| | - MOSTAFA A. ABDEL-MAKSOUD
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - MOHAMMED AUFY
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, 1010, Austria
| | - HAMID YAZ
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - JIANYU ZHU
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|