1
|
Gibb AA, LaPenna K, Gaspar RB, Latchman NR, Tan Y, Choya-Foces C, Doiron JE, Li Z, Xia H, Lazaropoulos MP, Conwell M, Sharp TE, Goodchild TT, Lefer DJ, Elrod JW. Integrated systems biology identifies disruptions in mitochondrial function and metabolism as key contributors to heart failure with preserved ejection fraction (HFpEF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.619450. [PMID: 39484400 PMCID: PMC11527111 DOI: 10.1101/2024.10.25.619450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of HF cases, with no effective treatments. The ZSF1-obese rat model recapitulates numerous clinical features of HFpEF including hypertension, obesity, metabolic syndrome, exercise intolerance, and LV diastolic dysfunction. Here, we utilized a systems-biology approach to define the early metabolic and transcriptional signatures to gain mechanistic insight into the pathways contributing to HFpEF development. Methods Male ZSF1-obese, ZSF1-lean hypertensive controls, and WKY (wild-type) controls were compared at 14w of age for extensive physiological phenotyping and LV tissue harvesting for unbiased metabolomics, RNA-sequencing, and assessment of mitochondrial morphology and function. Utilizing ZSF1-lean and WKY controls enabled a distinction between hypertension-driven molecular changes contributing to HFpEF pathology, versus hypertension + metabolic syndrome. Results ZSF1-obese rats displayed numerous clinical features of HFpEF. Comparison of ZSF1-lean vs WKY (i.e., hypertension-exclusive effects) revealed metabolic remodeling suggestive of increased aerobic glycolysis, decreased β-oxidation, and dysregulated purine and pyrimidine metabolism with few transcriptional changes. ZSF1-obese rats displayed worsened metabolic remodeling and robust transcriptional remodeling highlighted by the upregulation of inflammatory genes and downregulation of the mitochondrial structure/function and cellular metabolic processes. Integrated network analysis of metabolomic and RNAseq datasets revealed downregulation of nearly all catabolic pathways contributing to energy production, manifesting in a marked decrease in the energetic state (i.e., reduced ATP/ADP, PCr/ATP). Cardiomyocyte ultrastructure analysis revealed decreased mitochondrial area, size, and cristae density, as well as increased lipid droplet content in HFpEF hearts. Mitochondrial function was also impaired as demonstrated by decreased substrate-mediated respiration and dysregulated calcium handling. Conclusions Collectively, the integrated omics approach applied here provides a framework to uncover novel genes, metabolites, and pathways underlying HFpEF, with an emphasis on mitochondrial energy metabolism as a potential target for intervention.
Collapse
|
2
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00785-1. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Singh S, Dransfeld UE, Ambaw YA, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. Cell 2024:S0092-8674(24)01094-8. [PMID: 39423811 DOI: 10.1016/j.cell.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer's disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich E Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes A Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA.
| | - Tobias C Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
4
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
5
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024:S0300-9084(24)00217-7. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
6
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JL, Civelek M. Systems genetics analysis of human body fat distribution genes identifies adipocyte processes. Life Sci Alliance 2024; 7:e202402603. [PMID: 38702075 PMCID: PMC11068934 DOI: 10.26508/lsa.202402603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.
Collapse
Affiliation(s)
- Jordan N Reed
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jiansheng Huang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Yong Li
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Lijiang Ma
- https://ror.org/04a9tmd77 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dhanush Banka
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Tianfang Wang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Wen Ding
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Johan Lm Björkegren
- https://ror.org/04a9tmd77 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Mete Civelek
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Liu Q, Zhao JN, Fang ZT, Wang X, Zhang BG, He Y, Liu RJ, Chen J, Liu GP. BGP-15 alleviates LPS-induced depression-like behavior by promoting mitophagy. Brain Behav Immun 2024; 119:648-664. [PMID: 38677623 DOI: 10.1016/j.bbi.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
The high prevalence of major depressive disorder (MDD) frequently imposes severe constraints on psychosocial functioning and detrimentally impacts overall well-being. Despite the growing interest in the hypothesis of mitochondrial dysfunction, the precise mechanistic underpinnings and therapeutic strategies remain unclear and require further investigation. In this study, an MDD model was established in mice using lipopolysaccharide (LPS). Our research findings demonstrated that LPS exposure induced depressive-like behaviors and disrupted mitophagy by diminishing the mitochondrial levels of PINK1/Parkin in the brains of mice. Furthermore, LPS exposure evoked the activation of the NLRP3 inflammasome, accompanied by a notable elevation in the concentrations of pro-inflammatory factors (TNF-α, IL-1β, and IL-6). Additionally, neuronal apoptosis was stimulated through the JNK/p38 pathway. The administration of BGP-15 effectively nullified the impact of LPS, corresponding to the amelioration of depressive-like phenotypes and restoration of mitophagy, prevention of neuronal injury and inflammation, and suppression of reactive oxygen species (ROS)-mediated NLRP3 inflammasome activation. Furthermore, we elucidated the involvement of mitophagy in BGP-15-attenuated depressive-like behaviors using the inhibitors targeting autophagy (3-MA) and mitophagy (Mdivi-1). Notably, these inhibitors notably counteracted the antidepressant and anti-inflammatory effects exerted by BGP-15. Based on the research findings, it can be inferred that the antidepressant properties of BGP-15 in LPS-induced depressive-like behaviors could potentially be attributed to the involvement of the mitophagy pathway. These findings offer a potential novel therapeutic strategy for managing MDD.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Ting Fang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bing-Ge Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Zhou C, Li Z, Li Y, Li Y, Wang W, Shang W, Liu JP, Wang L, Tong C. TRABD modulates mitochondrial homeostasis and tissue integrity. Cell Rep 2024; 43:114304. [PMID: 38843396 DOI: 10.1016/j.celrep.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
High TRABD expression is associated with tau pathology in patients with Alzheimer's disease; however, the function of TRABD is unknown. Human TRABD encodes a mitochondrial outer-membrane protein. The loss of TRABD resulted in mitochondrial fragmentation, and TRABD overexpression led to mitochondrial clustering and fusion. The C-terminal tail of the TRABD anchored to the mitochondrial outer membrane and the TraB domain could form homocomplexes. Additionally, TRABD forms complexes with MFN2, MIGA2, and PLD6 to facilitate mitochondrial fusion. Flies lacking dTRABD are viable and have normal lifespans. However, aging flies exhibit reduced climbing ability and abnormal mitochondrial morphology in their muscles. The expression of dTRABD is increased in aged flies. dTRABD overexpression leads to neurodegeneration and enhances tau toxicity in fly eyes. The overexpression of dTRABD also increased reactive oxygen species (ROS), ATP production, and protein turnover in the mitochondria. This study suggested that TRABD-induced mitochondrial malfunctions contribute to age-related neurodegeneration.
Collapse
Affiliation(s)
- Caixia Zhou
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhirong Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yawen Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yaoyao Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liquan Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
9
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
11
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
12
|
Singh S, Dransfeld U, Ambaw Y, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586175. [PMID: 38562702 PMCID: PMC10983895 DOI: 10.1101/2024.03.21.586175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, in particular gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including Alzheimer's disease risk, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V. Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Tobias C. Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
13
|
Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol 2024; 156:266-275. [PMID: 37919144 DOI: 10.1016/j.semcdb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
Collapse
Affiliation(s)
- Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Hansen FM, Kremer LS, Karayel O, Bludau I, Larsson NG, Kühl I, Mann M. Mitochondrial phosphoproteomes are functionally specialized across tissues. Life Sci Alliance 2024; 7:e202302147. [PMID: 37984987 PMCID: PMC10662294 DOI: 10.26508/lsa.202302147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.
Collapse
Affiliation(s)
- Fynn M Hansen
- https://ror.org/04py35477 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura S Kremer
- https://ror.org/056d84691 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ozge Karayel
- https://ror.org/04py35477 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isabell Bludau
- https://ror.org/04py35477 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nils-Göran Larsson
- https://ror.org/056d84691 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthias Mann
- https://ror.org/04py35477 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
15
|
Wang XX, Myakala K, Libby AE, Krawczyk E, Panov J, Jones BA, Bhasin K, Shults N, Qi Y, Krausz KW, Zerfas PM, Takahashi S, Daneshpajouhnejad P, Titievsky A, Taranenko E, Billon C, Chatterjee A, Elgendy B, Walker JK, Albanese C, Kopp JB, Rosenberg AZ, Gonzalez FJ, Guha U, Brodsky L, Burris TP, Levi M. Estrogen-Related Receptor Agonism Reverses Mitochondrial Dysfunction and Inflammation in the Aging Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1969-1987. [PMID: 37717940 PMCID: PMC10734281 DOI: 10.1016/j.ajpath.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 09/19/2023]
Abstract
A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Andrew E Libby
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, District of Columbia
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel; Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| | - Kanchan Bhasin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Nataliia Shults
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yue Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Parnaz Daneshpajouhnejad
- Renal Pathology Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Titievsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | | | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Arindam Chatterjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Chris Albanese
- Department of Oncology and Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia
| | - Jeffrey B Kopp
- Kidney Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Avi Z Rosenberg
- Renal Pathology Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
16
|
Yan MQ, Zhu BH, Liu XH, Yang YM, Duan XY, Wang Y, Sun H, Feng M, Li T, Liu XM. Mitoguardin 1 and 2 promote granulosa cell proliferation by activating AKT and regulating the Hippo-YAP1 signaling pathway. Cell Death Dis 2023; 14:779. [PMID: 38012141 PMCID: PMC10682431 DOI: 10.1038/s41419-023-06312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria have been identified to be involved in oxidative phosphorylation, lipid metabolism, cell death, and cell proliferation. Previous studies have demonstrated that mitoguardin (Miga), a mitochondrial protein that governs mitochondrial fusion, mitochondria-endoplasmic reticulum (ER) contacts, lipid formation, and autophagy, is crucial for ovarian endocrine and follicular development. Nevertheless, whether mammalian MIGA1 or MIGA2 (MIGA1,-2) regulates ovarian granulosa cell proliferation remains unclear. This study revealed that mammalian MIGA1,-2 promotes cell proliferation and regulates the phosphorylation and localization of Yes-associated protein 1 (YAP1) in ovarian granulosa cells. MIGA2 upregulation resulted in reduced YAP1 activity, while MIGA2 removal led to increased YAP1 activity. Further analysis indicated that MIGA1,-2 regulated YAP1 via the Hippo signaling pathway and regulated protein kinase B (AKT) activity in collaboration with YAP1. In addition, lysophosphatidic acid (LPA) regulated MIGA2 expression and AKT activity by activating YAP1. Briefly, we demonstrated that the mitochondrial MIGA1 and MIGA2, especially MIGA2, promoted cellular proliferation by activating AKT and regulating the Hippo/YAP1 signaling pathway in ovarian granulosa cells, which may contribute to the molecular pathogenesis of reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Ming-Qi Yan
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Bing-Hong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, 215300, Kunshan, China
| | - Yu-Meng Yang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Xiu-Yun Duan
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China
| | - Mei Feng
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xiao-Man Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China.
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
| |
Collapse
|
17
|
Su YA, Chiu HY, Chang YC, Sung CJ, Chen CW, Tei R, Huang XR, Hsu SC, Lin SS, Wang HC, Lin YC, Hsu JC, Bauer H, Feng Y, Baskin JM, Chang ZF, Liu YW. NME3 binds to phosphatidic acid and mediates PLD6-induced mitochondrial tethering. J Cell Biol 2023; 222:e202301091. [PMID: 37584589 PMCID: PMC10432850 DOI: 10.1083/jcb.202301091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles regulated by fission and fusion processes. The fusion of membranes requires elaborative coordination of proteins and lipids and is particularly crucial for the function and quality control of mitochondria. Phosphatidic acid (PA) on the mitochondrial outer membrane generated by PLD6 facilitates the fusion of mitochondria. However, how PA promotes mitochondrial fusion remains unclear. Here, we show that a mitochondrial outer membrane protein, NME3, is required for PLD6-induced mitochondrial tethering or clustering. NME3 is enriched at the contact interface of two closely positioned mitochondria depending on PLD6, and NME3 binds directly to PA-exposed lipid packing defects via its N-terminal amphipathic helix. The PA binding function and hexamerization confer NME3 mitochondrial tethering activity. Importantly, nutrient starvation enhances the enrichment efficiency of NME3 at the mitochondrial contact interface, and the tethering ability of NME3 contributes to fusion efficiency. Together, our findings demonstrate NME3 as a tethering protein promoting selective fusion between PLD6-remodeled mitochondria for quality control.
Collapse
Affiliation(s)
- You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Chiu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Ju Sung
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Reika Tei
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Xuang-Rong Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Hsu
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui-Cheng Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hermann Bauer
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yuxi Feng
- Department of Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Liu H, Shao W, Liu W, Shang W, Liu JP, Wang L, Tong C. PtdIns4P exchange at endoplasmic reticulum-autolysosome contacts is essential for autophagy and neuronal homeostasis. Autophagy 2023; 19:2682-2701. [PMID: 37289040 PMCID: PMC10472871 DOI: 10.1080/15548627.2023.2222556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Inter-organelle contacts enable crosstalk among organelles, facilitating the exchange of materials and coordination of cellular events. In this study, we demonstrated that, upon starvation, autolysosomes recruit Pi4KIIα (Phosphatidylinositol 4-kinase II α) to generate phosphatidylinositol-4-phosphate (PtdIns4P) on their surface and establish endoplasmic reticulum (ER)-autolysosome contacts through PtdIns4P binding proteins Osbp (Oxysterol binding protein) and cert (ceramide transfer protein). We found that the Sac1 (Sac1 phosphatase), Osbp, and cert proteins are required for the reduction of PtdIns4P on autolysosomes. Loss of any of these proteins leads to defective macroautophagy/autophagy and neurodegeneration. Osbp, cert, and Sac1 are required for ER-Golgi contacts in fed cells. Our data establishes a new mode of organelle contact formation - the ER-Golgi contact machinery can be reused by ER-autolysosome contacts by re-locating PtdIns4P from the Golgi apparatus to autolysosomes when faced with starvation.Abbreviations: Atg1: Autophagy-related 1; Atg8: Autophagy-related 8; Atg9: Autophagy-related 9; Atg12: Autophagy-related 12; cert: ceramide transfer protein; Cp1/CathL: cysteine proteinase-1; CTL: control; ER: endoplasmic reticulum; ERMCS: ER-mitochondria contact site; fwd: four wheel drive; GM130: Golgi matrix protein 130 kD; Osbp: Oxysterol binding protein; PG: phagophore; PtdIns4K: phosphatidylinositol 4-kinase; Pi4KIIα: Phosphatidylinositol 4-kinase II α; Pi4KIIIα: Phosphatidylinositol 4-kinase III α; PtdIns4P: phosphatidylinositol-4-phosphate; PR: photoreceptor cell; RT: room temperature; Sac1: Sac1 phosphatase; Stv: starvation; Syx17: Syntaxin 17; TEM: transmission electron microscopy; VAP: VAMP-associated protein.
Collapse
Affiliation(s)
- Hao Liu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenxia Shao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Liu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JLM, Civelek M. Systems genetics analysis of human body fat distribution genes identifies Wnt signaling and mitochondrial activity in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556534. [PMID: 37732278 PMCID: PMC10508754 DOI: 10.1101/2023.09.06.556534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing β-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.
Collapse
|
20
|
Wu Y. Metformin inhibits mitochondrial dysfunction and apoptosis in cardiomyocytes induced by high glucose via upregulating AMPK activity. Exp Biol Med (Maywood) 2023; 248:1556-1565. [PMID: 37750221 PMCID: PMC10676127 DOI: 10.1177/15353702231191178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/05/2023] [Indexed: 09/27/2023] Open
Abstract
Abnormal mitochondrial functions are a major pathophysiological basis of diabetic cardiomyopathy. 5' AMP-activated protein kinase (AMPK) is involved in mitochondrial dynamics. As an activator of AMPK, this study examined the effect of metformin on cardiomyocytes treated with high glucose. Primary cardiomyocytes isolated from neonatal rat ventricles were exposed to a high glucose concentration (33 mM) to establish a model of high-glucose injury with or without metformin (2 mM) treatment. AMPK activity was inhibited or activated by CC (20 µM) or AICAR (50 µM). CCK-8 and TUNEL assays were used to assess cell viability and apoptosis, respectively. A JC-1 assay was used to measure the mitochondrial membrane potential, and MitoSOX™ staining was used to examine mitoROS. Mito-Tracker Green-stained mitochondria were visualized by confocal microscopy to assess mitochondrial fission. Furthermore, we measured the expression levels of AMPK-mediated mitochondrial dynein and apoptotic proteins by western blotting. Our results showed that AMPK activity was significantly decreased in cardiomyocytes under the high-glucose condition, which was accompanied by increased mitochondrial fragmentation and aggravated mitochondrial dysfunction. The mitochondrial membrane potential was decreased and oxidative stress was increased, leading to apoptosis. Activation of AMPK by either metformin or AICAR reversed myocardial mitochondrial dysfunction and inhibited apoptosis under high glucose. Furthermore, inhibition of AMPK activity abrogated the protective effect of metformin against high glucose-induced mitochondrial dysfunction and apoptosis in cardiomyocytes. Our study demonstrates that metformin protects cardiomyocytes from high glucose-induced mitochondrial fragmentation and apoptosis by activating AMPK.
Collapse
Affiliation(s)
- Yuansheng Wu
- Department of Cardiology, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
21
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Liu Q, Wang X, Hu Y, Zhao JN, Huang CH, Li T, Zhang BG, He Y, Wu YQ, Zhang ZJ, Wang GP, Liu GP. Acetylated tau exacerbates learning and memory impairment by disturbing with mitochondrial homeostasis. Redox Biol 2023; 62:102697. [PMID: 37037158 PMCID: PMC10114242 DOI: 10.1016/j.redox.2023.102697] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023] Open
Abstract
Increased tau acetylation at K274 and K281 has been observed in the brains of Alzheimer's disease (AD) patients and animal models, and mitochondrial dysfunction are noticeable and early features of AD. However, the effect of acetylated tau on mitochondria has been unclear until now. Here, we constructed three type of tau forms, acetylated tau mutant by mutating its K274/K281 into Glutamine (TauKQ) to mimic disease-associated lysine acetylation, the non-acetylation tau mutant by mutating its K274/K281 into Arginine (TauKR) and the wild-type human full-length tau (TauWT). By overexpression of these tau forms in vivo and in vitro, we found that, TauKQ induced more severe cognitive deficits with neuronal loss, dendritic plasticity damage and mitochondrial dysfunctions than TauWT. Unlike TauWT induced mitochondria fusion, TauKQ not only induced mitochondria fission by decreasing mitofusion proteins, but also inhibited mitochondrial biogenesis via reduction of PGC-1a/Nrf1/Tfam levels. TauKR had no significant difference in the cognitive and mitochondrial abnormalities compared with TauWT. Treatment with BGP-15 rescued impaired learning and memory by attenuation of mitochondrial dysfunction, neuronal loss and dendritic complexity damage, which caused by TauKQ. Our data suggested that, acetylation at K274/281 was an important post translational modification site for tau neurotoxicity, and BGP-15 is a potential therapeutic drug for AD.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yu Hu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chun-Hui Huang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research, Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ting Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing-Ge Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ye He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Qing Wu
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zai-Jun Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research, Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Guo-Ping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
23
|
Yan MQ, Wang Y, Wang Z, Liu XH, Yang YM, Duan XY, Sun H, Liu XM. Mitoguardin2 Is Associated With Hyperandrogenism and Regulates Steroidogenesis in Human Ovarian Granulosa Cells. J Endocr Soc 2023; 7:bvad034. [PMID: 36936714 PMCID: PMC10016062 DOI: 10.1210/jendso/bvad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 03/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy characterized by hyperandrogenism, anovulation, and polycystic ovaries, in which hyperandrogenism manifests by excess androgen and other steroid hormone abnormalities. Mitochondrial fusion is essential in steroidogenesis, while the role of mitochondrial fusion in granulosa cells of hyperandrogenic PCOS patients remains unclear. In this study, mRNA expression of mitochondrial fusion genes mitoguardin1, -2 (MIGA 1, -2) was significantly increased in granulosa cells of hyperandrogenic PCOS but not PCOS with normal androgen levels, their mRNA expression positively correlated with testosterone levels. Dihydrotestosterone (DHT) treatment in mice led to high expression of MIGA2 in granulosa cells of ovulating follicles. Testosterone or forskolin/ phorbol 12-myristate 13-acetate treatments increased expression of MIGA2 and the steroidogenic acute regulatory protein (StAR) in KGN cells. MIGA2 interacted with StAR and induced StAR localization on mitochondria. Furthermore, MIGA2 overexpression significantly increased cAMP-activated protein kinase A (PKA) and phosphorylation of AMP-activated protein kinase (pAMPK) at T172 but inhibited StAR protein expression. However, MIGA2 overexpression increased CYP11A1, HSD3B2, and CYP19A1 mRNA expression. As a result, MIGA2 overexpression decreased progesterone but increased estradiol synthesis. Besides the androgen receptor, testosterone or DHT might also regulate MIGA2 and pAMPK (T172) through LH/choriogonadotropin receptor-mediated PKA signaling. Taken together, these findings indicate that testosterone regulates MIGA2 via PKA/AMP-activated protein kinase signaling in ovarian granulosa cells. It is suggested mitochondrial fusion in ovarian granulosa cells is associated with hyperandrogenism and potentially leads to abnormal steroidogenesis in PCOS.
Collapse
Affiliation(s)
- Ming-Qi Yan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Zhao Wang
- Center for Reproductive Medicine, Shandong University, Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250012, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, Kunshan 215300, China
| | - Yu-Meng Yang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Xiu-Yun Duan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| |
Collapse
|
24
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
25
|
Nguyen TTM, Munkhzul C, Kim J, Kyoung Y, Vianney M, Shin S, Ju S, Pham-Bui HA, Kim J, Kim JS, Lee M. In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary. Development 2023; 150:286990. [PMID: 36762624 DOI: 10.1242/dev.201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are small RNAs that play a conserved role in genome defense. The piRNA processing pathway is dependent on the sequestration of RNA precursors and protein factors in specific subcellular compartments. Therefore, a highly resolved spatial proteomics approach can help identify the local interactions and elucidate the unknown aspects of piRNA biogenesis. Herein, we performed TurboID proximity labeling to investigate the interactome of Zucchini (Zuc), a key factor of piRNA biogenesis in germline cells and somatic follicle cells of the Drosophila ovary. Quantitative mass spectrometry analysis of biotinylated proteins defined the Zuc-proximal proteome, including the well-known partners of Zuc. Many of these were enriched in the outer mitochondrial membrane (OMM), where Zuc was specifically localized. The proximal proteome of Zuc showed a distinct set of proteins compared with that of Tom20, a representative OMM protein, indicating that chaperone function-related and endomembrane system/vesicle transport proteins are previously unreported interacting partners of Zuc. The functional relevance of several candidates in piRNA biogenesis was validated by derepression of transposable elements after knockdown. Our results present potential Zuc-interacting proteins, suggesting unrecognized biological processes.
Collapse
Affiliation(s)
- Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonju Kyoung
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Michele Vianney
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Seonmin Ju
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
26
|
Role of Mitophagy in Regulating Intestinal Oxidative Damage. Antioxidants (Basel) 2023; 12:antiox12020480. [PMID: 36830038 PMCID: PMC9952109 DOI: 10.3390/antiox12020480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The mitochondrion is also a major site for maintaining redox homeostasis between reactive oxygen species (ROS) generation and scavenging. The quantity, quality, and functional integrity of mitochondria are crucial for regulating intracellular homeostasis and maintaining the normal physiological function of cells. The role of oxidative stress in human disease is well established, particularly in inflammatory bowel disease and gastrointestinal mucosal diseases. Oxidative stress could result from an imbalance between ROS and the antioxidative system. Mitochondria are both the main sites of production and the main target of ROS. It is a vicious cycle in which initial ROS-induced mitochondrial damage enhanced ROS production that, in turn, leads to further mitochondrial damage and eventually massive intestinal cell death. Oxidative damage can be significantly mitigated by mitophagy, which clears damaged mitochondria. In this review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and oxidative stress and their relationship in some intestinal diseases. We believe the reviews can provide new ideas and a scientific basis for researching antioxidants and preventing diseases related to oxidative damage.
Collapse
|
27
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Analysis of Mitochondrial Dynamics in Adult Drosophila Axons. Cold Spring Harb Protoc 2023; 2023:75-83. [PMID: 36180217 DOI: 10.1101/pdb.top107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal survival depends on the generation of ATP from an ever-changing mitochondrial network. This requires a fine balance between the constant degradation of damaged mitochondria, biogenesis of new mitochondria, movement along microtubules, dynamic processes, and adequate functional capacity to meet firing demands. The distribution of mitochondria needs to be tightly controlled throughout the entire neuron, including its projections. Axons in particular can be enormous structures compared to the size of the cell soma, and how mitochondria are maintained in these compartments is poorly defined. Mitochondrial dysfunction in neurons is associated with aging and neurodegenerative diseases, with the axon being preferentially vulnerable to destruction. Drosophila offer a unique way to study these organelles in fully differentiated adult neurons in vivo. Here, we briefly review the regulation of neuronal mitochondria in health, aging, and disease and introduce two methodological approaches to study mitochondrial dynamics and transport in axons using the Drosophila wing system.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
28
|
Subra M, Dezi M, Bigay J, Lacas-Gervais S, Di Cicco A, Araújo ARD, Abélanet S, Fleuriot L, Debayle D, Gautier R, Patel A, Roussi F, Antonny B, Lévy D, Mesmin B. VAP-A intrinsically disordered regions enable versatile tethering at membrane contact sites. Dev Cell 2023; 58:121-138.e9. [PMID: 36693319 DOI: 10.1016/j.devcel.2022.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Joëlle Bigay
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Parc Valrose, 06000 Nice, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Ana Rita Dias Araújo
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Lucile Fleuriot
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Romain Gautier
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Amanda Patel
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
29
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
30
|
A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
|
31
|
Hong Z, Adlakha J, Wan N, Guinn E, Giska F, Gupta K, Melia TJ, Reinisch KM. Mitoguardin-2-mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. J Cell Biol 2022; 221:e202207022. [PMID: 36282247 PMCID: PMC9597353 DOI: 10.1083/jcb.202207022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid transport proteins at membrane contacts, where organelles are closely apposed, are critical in redistributing lipids from the endoplasmic reticulum (ER), where they are made, to other cellular membranes. Such protein-mediated transfer is especially important for maintaining organelles disconnected from secretory pathways, like mitochondria. We identify mitoguardin-2, a mitochondrial protein at contacts with the ER and/or lipid droplets (LDs), as a lipid transporter. An x-ray structure shows that the C-terminal domain of mitoguardin-2 has a hydrophobic cavity that binds lipids. Mass spectrometry analysis reveals that both glycerophospholipids and free-fatty acids co-purify with mitoguardin-2 from cells, and that each mitoguardin-2 can accommodate up to two lipids. Mitoguardin-2 transfers glycerophospholipids between membranes in vitro, and this transport ability is required for roles both in mitochondrial and LD biology. While it is not established that protein-mediated transfer at contacts plays a role in LD metabolism, our findings raise the possibility that mitoguardin-2 functions in transporting fatty acids and glycerophospholipids at mitochondria-LD contacts.
Collapse
Affiliation(s)
- Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jyoti Adlakha
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Emily Guinn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Fabian Giska
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Kallol Gupta
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
32
|
Zhang R, Tu Y, Ye D, Gu Z, Chen Z, Sun Y. A Germline-Specific Regulator of Mitochondrial Fusion is Required for Maintenance and Differentiation of Germline Stem and Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203631. [PMID: 36257818 PMCID: PMC9798980 DOI: 10.1002/advs.202203631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Indexed: 06/01/2023]
Abstract
Maintenance and differentiation of germline stem and progenitor cells (GSPCs) is important for sexual reproduction. Here, the authors identify zebrafish pld6 as a novel germline-specific gene by cross-analyzing different RNA sequencing results, and find that pld6 knockout mutants develop exclusively into infertile males. In pld6 mutants, GSPCs fail to differentiate and undergo apoptosis, leading to masculinization and infertility. Mitochondrial fusion in pld6-depleted GSPCs is severely impaired, and the mutants exhibit defects in piRNA biogenesis and transposon suppression. Overall, this work uncovers zebrafish Pld6 as a novel germline-specific regulator of mitochondrial fusion, and highlights its essential role in the maintenance and differentiation of GSPCs as well as gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yi‐Xuan Tu
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
| | - Zhenglong Gu
- Division of Nutritional SciencesCornell UniversityIthacaNY14853USA
- Center for Mitochondrial Genetics and HealthGreater Bay Area Institute of Precision Medicine (Guangzhou)Fudan UniversityNansha DistrictGuangzhou511400China
| | - Zhen‐Xia Chen
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhen518000China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
33
|
Xu L, Qiu Y, Wang X, Shang W, Bai J, Shi K, Liu H, Liu JP, Wang L, Tong C. ER-mitochondrial contact protein Miga regulates autophagy through Atg14 and Uvrag. Cell Rep 2022; 41:111583. [DOI: 10.1016/j.celrep.2022.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|
34
|
Sloat SR, Hoppins S. A dominant negative mitofusin causes mitochondrial perinuclear clusters because of aberrant tethering. Life Sci Alliance 2022; 6:6/1/e202101305. [PMID: 36229071 PMCID: PMC9568670 DOI: 10.26508/lsa.202101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
In vertebrates, mitochondrial outer membrane fusion is mediated by two mitofusin paralogs, Mfn1 and Mfn2, conserved dynamin superfamily proteins. Here, we characterize a variant of mitofusin reported in patients with CMT2A where a serine is replaced with a proline (Mfn2-S350P and the equivalent in Mfn1, S329P). This serine is in a hinge domain (Hinge 2) that connects the globular GTPase domain to the adjacent extended helical bundle. We find that expression of this variant results in prolific and stable mitochondrial tethering that also blocks mitochondrial fusion by endogenous wild-type mitofusin. The formation of mitochondrial perinuclear clusters by this CMT2A variant requires normal GTPase domain function and formation of a mitofusin complex across two membranes. We propose that conformational dynamics mediated by Hinge 2 and regulated by GTP hydrolysis are disrupted by the substitution of proline at S329/S350 and this prevents progression from tethering to membrane fusion. Thus, our data are consistent with a model for mitofusin-mediated membrane fusion where Hinge 2 supports a power stroke to progress from the tethering complex to membrane fusion.
Collapse
|
35
|
Wen B, Xu K, Huang R, Jiang T, Wang J, Chen J, Chen J, He B. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep 2022; 25:165. [PMID: 35293600 PMCID: PMC8941507 DOI: 10.3892/mmr.2022.12681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is a life-threatening disease, which is closely related to neuron damage during ischemia. Mitochondrial dysfunction is essentially involved in the pathophysiological process of ischemic stroke. Mitochondrial calcium overload contributes to the development of mitochondrial dysfunction. However, the underlying mechanisms of mitochondrial calcium overload are far from being fully revealed. In the present study, middle cerebral artery obstruction (MCAO) was performed in vivo and oxygen and glucose deprivation (OGD) in vitro. The results indicated that both MCAO and OGD induced significant mitochondrial dysfunction in vivo and in vitro. The mitochondria became fragmented under hypoxia conditions, accompanied with upregulation of the heat shock protein 75 kDa glucose-regulated protein (GRP75). Inhibition of GRP75 was able to effectively ameliorate mitochondrial calcium overload and preserve mitochondrial function, which may provide evidence for further translational studies of ischemic diseases.
Collapse
Affiliation(s)
- Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Huang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Teng Jiang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Jian Wang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| |
Collapse
|
36
|
Liao PC, Yang EJ, Borgman T, Boldogh IR, Sing CN, Swayne TC, Pon LA. Touch and Go: Membrane Contact Sites Between Lipid Droplets and Other Organelles. Front Cell Dev Biol 2022; 10:852021. [PMID: 35281095 PMCID: PMC8908909 DOI: 10.3389/fcell.2022.852021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central regulators of metabolism and organelle quality control. These critical functions are achieved, in part, at membrane contact sites (MCS) between LDs and other organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and autophagy. Here, we describe recent findings on the mechanisms underlying the formation and function of MCS between LDs and mitochondria, ER and lysosomes/vacuoles and the role of the cytoskeleton in promoting LD MCS through its function in LD movement and distribution in response to environmental cues.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Emily J. Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taylor Borgman
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Istvan R. Boldogh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Cierra N. Sing
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Theresa C. Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Liza A. Pon,
| |
Collapse
|
37
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
38
|
Kattan RE, Han H, Seo G, Yang B, Lin Y, Dotson M, Pham S, Menely Y, Wang W. Interactome analysis of human phospholipase D and phosphatidic acid-associated protein network. Mol Cell Proteomics 2022; 21:100195. [PMID: 35007762 PMCID: PMC8864472 DOI: 10.1016/j.mcpro.2022.100195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023] Open
Abstract
Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, PLD1/2/6 catalyzes phosphatidic acid (PA) production, while PLD3/4/5 has no catalytic activities. Deregulation of the PLD-PA lipid signaling has been associated with various human diseases including cancer. However, a comprehensive analysis of the regulators and effectors for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, we defined the protein interaction network for the human PLD family of enzymes and PA and revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mammalian target of rapamycin signaling. Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1. Taken together, our study not only generates a rich interactome resource for further characterizing the human PLD-PA lipid signaling but also connects this important metabolic pathway with numerous biological processes. Defining the interactome of human phospholipase D enzymes and phosphatidic acid. PJA2 functions as an E3 ubiquitin ligase of phospholipase D1. Phosphatidic acid interacts with and positively regulates sphingosine kinase 1.
Collapse
Affiliation(s)
- Rebecca Elizabeth Kattan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Yongqi Lin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Max Dotson
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Stephanie Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Yahya Menely
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
39
|
Ito N, Takahashi T, Shiiba I, Nagashima S, Inatome R, Yanagi S. MITOL regulates phosphatidic acid-binding activity of RMDN3/PTPIP51. J Biochem 2021; 171:529-541. [PMID: 34964862 DOI: 10.1093/jb/mvab153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
The transfer of phospholipids from the endoplasmic reticulum to mitochondria via the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighboring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labeling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signaling regulates phospholipid transport at the MERCS.
Collapse
Affiliation(s)
- Naoki Ito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Takara Takahashi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| |
Collapse
|
40
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
41
|
SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9265016. [PMID: 34790288 PMCID: PMC8592716 DOI: 10.1155/2021/9265016] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Background The mitochondrial dynamics and mitochondrial biogenesis are essential for maintaining the bioenergy function of mitochondria in diabetic cardiomyopathy (DCM). Previous studies have revealed that secreted frizzled-related protein 2 (SFRP2) is beneficial against apoptosis and oxidative stress. However, no research has confirmed whether SFRP2 regulates oxidative stress and apoptosis through mitochondrial function in DCM. Methods Exposure of H9C2 cardiomyocytes in high glucose (HG) 25 mM and palmitic acid (PAL) 0.2 mM was used to simulate DCM in vitro. H9C2 cells with SFRP2 overexpression or SFRP2 knockdown were constructed and cultured under glucolipotoxicity or normal glucose conditions. An SD rat model of type 2 diabetes mellitus (T2DM) was generated using a high-fat diet combined with a low-dose STZ injection. Overexpression of SFRP2 in the rat model was generated by using an adeno-associated virus approach. CCK-8, TUNEL assay, and DHE staining were used to detect cell viability, and MitoTracker Red CMXRos was used to detect changes in mitochondrial membrane potential. We used qRT-PCR and western blot to further explore the mechanisms of SFRP2 regulating mitochondrial dynamics through the AMPK/PGC1-α pathway to improve diabetic cardiomyocyte injury. Results Our results indicated that SFRP2 was significantly downregulated in H9C2 cells and cardiac tissues in T2DM conditions, accompanied by decreased expression of mitochondrial dysfunction. The mitochondrial membrane potential was reduced, and the cells were led to oxidative stress injury and apoptosis. Furthermore, the overexpression of SFRP2 could reverse apoptosis and promote mitochondrial function in T2DM conditions in vitro and in vivo. We also found that silencing endogenous SFRP2 could further promote glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in cardiomyocytes, accompanied by downregulation of p-AMPK. Conclusion SFRP2 exerted cardioprotective effects by salvaging mitochondrial function in an AMPK-PGC1-α-dependent manner, which modulates mitochondrial dynamics and mitochondrial biogenesis, reducing oxidative stress and apoptosis. SFRP2 may be a promising therapeutic biomarker in DCM.
Collapse
|
42
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
43
|
The Clp1 R140H mutation alters tRNA metabolism and mRNA 3' processing in mouse models of pontocerebellar hypoplasia. Proc Natl Acad Sci U S A 2021; 118:2110730118. [PMID: 34548404 PMCID: PMC8488643 DOI: 10.1073/pnas.2110730118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Both models exhibit loss of lower motor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1 R140H/- spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1 R140H/- mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3' processing may contribute to pathogenesis in PCH10.
Collapse
|
44
|
Su JF, Concilla A, Zhang DZ, Zhao F, Shen FF, Zhang H, Zhou FY. PIWI-interacting RNAs: Mitochondria-based biogenesis and functions in cancer. Genes Dis 2021; 8:603-622. [PMID: 34291132 PMCID: PMC8278532 DOI: 10.1016/j.gendis.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022] Open
Abstract
PIWI-interacting RNA (piRNAs), once thought to be mainly functioning in germlines, are now known to play an essential role in somatic and cancerous tissues. Ping-pong cycle initiation and mitochondria-based phased production constitute the core of the piRNA biogenesis and these two processes are well conserved in mammals, including humans. By being involved in DNA methylation, histone marker deposition, mRNA degradation, and protein modification, piRNAs also contribute to carcinogenesis partly due to oncogenic stress-induced piRNA dysregulation. Also, piRNAs play important roles in cancer stemness, drug resistance, and tumor immunology. Results from liquid biopsy analysis of piRNA can be used in both cancer diagnoses and cancer prognoses. A combination of targeting piRNA with other therapeutic strategies could be groundbreaking cancer treatment.
Collapse
Affiliation(s)
- Jing-Fen Su
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| | - Anthony Concilla
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dian-zheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Fang Zhao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| | - Fang-Fang Shen
- Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan Province, 453000, PR China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong Province, 510630, PR China
| | - Fu-You Zhou
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| |
Collapse
|
45
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
46
|
Cellular and subcellular localization of endogenous phospholipase D6 in seminiferous tubules of mouse testes. Cell Tissue Res 2021; 385:191-205. [PMID: 33783608 DOI: 10.1007/s00441-021-03442-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Phospholipase D6 (PLD6) plays pivotal roles in mitochondrial dynamics and spermatogenesis, but the cellular and subcellular localization of endogenous PLD6 in testis germ cells is poorly defined. We examined the distribution and subcellular localization of PLD6 in mouse testes using validated specific anti-PLD6 antibodies. Ectopically expressed PLD6 protein was detected in the mitochondria of PLD6-transfected cells, but endogenous PLD6 expression in mouse testes was localized to the perinuclear region of pachytene spermatocytes, and more prominently, to the round (Golgi and cap phases) and elongating spermatids (acrosomal phase); these results suggest that PLD6 is localized to the Golgi apparatus. The distribution of PLD6 in the round spermatids partially overlapped with that of the cis-Golgi marker GM130, indicating that the PLD6 expression corresponded to the GM130-positive subdomains of the Golgi apparatus. Correlative light and electron microscopy revealed that PLD6 expression in developing spermatids was localized almost exclusively to several flattened cisternae, and these structures might correspond to the medial Golgi subcompartment; neither the trans-Golgi networks nor the developing acrosomal system expressed PLD6. Further, we observed that PLD6 interacted with tesmin, a testis-specific transcript necessary for successful spermatogenesis in mouse testes. To our knowledge, these results provide the first evidence of PLD6 as a Golgi-localized protein of pachytene spermatocytes and developing spermatids and suggest that its subcompartment-specific distribution within the Golgi apparatus may be related to the specific functions of this organelle during spermatogenesis.
Collapse
|
47
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
48
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
49
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
50
|
Zhang X, Su Q, Zhou J, Yang Z, Liu Z, Ji L, Gao H, Jiang G. To betray or to fight? The dual identity of the mitochondria in cancer. Future Oncol 2021; 17:723-743. [DOI: 10.2217/fon-2020-0362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are highly dynamic organelles that provide energy for oxidative phosphorylation in cells. Equally, they are the major sites for the metabolism of amino acids, lipids and iron. When cells become cancerous, the morphology, cellular location and metabolic mode of the mitochondria change accordingly. These mitochondrial changes can have two opposing effects on cancer: procancer and anticancer effects. Specifically, mitochondria play roles in the fight against cancer by participating in processes such as ferroptosis, mitophagy and antitumor immunity. Contrastingly, cancer cells can also enslave mitochondria to give them the conditions necessary for growth and metastasis. Moreover, through mitochondria, cancer cells can escape from immune surveillance, resulting in their immune escape and enhanced malignant transformation ability. At present, cancer-related studies of mitochondria are one-sided; therefore, we aim to provide a comprehensive understanding by systematically reviewing the two-sided cancer-related properties of mitochondria. Mitochondrial-targeted drugs are gradually emerging and showing significant advantages in cancer treatment; thus, our in-depth exploration of mitochondria in cancer will help to provide theoretical support for the future provision of efficient and low-toxicity cancer treatments.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Quanzhong Su
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Ji Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Zhantao Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Guohui Jiang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| |
Collapse
|