1
|
Yeewa R, Pohsa S, Yamsri T, Wongkummool W, Jantaree P, Potikanond S, Nimlamool W, Shotelersuk V, Lo Piccolo L, Jantrapirom S. The histone acylation reader ENL/AF9 regulates aging in Drosophila melanogaster. Neurobiol Aging 2024; 144:153-162. [PMID: 39405796 DOI: 10.1016/j.neurobiolaging.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Li Y, Jiang Y, Yan H, Qin Z, Peng Y, Lv D, Zhang H. Global isonicotinylome analysis identified SMAD3 isonicotinylation promotes liver cancer cell epithelial-mesenchymal transition and invasion. iScience 2024; 27:110775. [PMID: 39286495 PMCID: PMC11403401 DOI: 10.1016/j.isci.2024.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Histone lysine isonicotinylation (Kinic) induced by isoniazid (INH) was recently identified as a post-translational modification in cells. However, global cellular non-histone proteins Kinic remains unclear. Using proteomic technology, we identified 11,442 Kinic sites across 2,792 proteins and demonstrated that Kinic of non-histone proteins is involved in multiple function pathways. Non-histone proteins Kinic can be regulated by isonicotinyl-transferases, including CBP and Tip60, and deisonicotinylases, including HDAC8 and HDAC6. In particular, the Kinic of poly (ADP-ribose) (PAR) polymerase 1 (PARP1) can be catalyzed by CBP and deisonicotinylation can be catalyzed by HDAC8. Tip60 and HDAC6 are isonicotinyl-transferase and the deisonicotinylase of SMAD3, respectively. Importantly, we found the K378inic of SMAD3 increases its phosphorylation, activates TGFβ pathway, and promotes liver cancer cells migration and invasion. In conclusion, our study demonstrated non-histone proteins Kinic occur extensively in cells and plays an important role in regulation of various cellular functions, including cancer progression.
Collapse
Affiliation(s)
- Yixiao Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuhan Jiang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Yan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Ziheng Qin
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yidi Peng
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Danyu Lv
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
3
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
4
|
Wang Z, Yang X, Chen D, Liu Y, Li Z, Duan S, Zhang Z, Jiang X, Stockwell BR, Gu W. GAS41 modulates ferroptosis by anchoring NRF2 on chromatin. Nat Commun 2024; 15:2531. [PMID: 38514704 PMCID: PMC10957913 DOI: 10.1038/s41467-024-46857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).
Collapse
Affiliation(s)
- Zhe Wang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Delin Chen
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Zhang QW, Lin XL, Dai ZH, Zhao R, Hou YC, Liang Q, Zhang Y, Ge ZZ. Hypoxia and low-glucose environments co-induced HGDILnc1 promote glycolysis and angiogenesis. Cell Death Discov 2024; 10:132. [PMID: 38472215 DOI: 10.1038/s41420-024-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Small bowel vascular malformation disease (SBVM) commonly causes obscure gastrointestinal bleeding (OGIB). However, the pathogenetic mechanism and the role of lncRNAs in SBVM remain largely unknown. Here, we found that hypoxia and low-glucose environments co-augment angiogenesis and existed in SBVM. Mechanistically, hypoxia and low-glucose environments supported angiogenesis via activation of hypoxia and glucose deprivation-induced lncRNA (HGDILnc1) transcription by increasing binding of the NeuroD1 transcription factor to the HGDILnc1 promoter. Raised HGDILnc1 acted as a suppressor of α-Enolase 1 (ENO1) small ubiquitin-like modifier modification (SUMOylation)-triggered ubiquitination, and an activator of transcription of Aldolase C (ALDOC) via upregulation of Histone H2B lysine 16 acetylation (H2BK16ac) level in the promoter of ALDOC, and consequently promoting glycolysis and angiogenesis. Moreover, HGDILnc1 was clinically positively correlated with Neurogenic differentiation 1 (NeuroD1), ENO1, and ALDOC in SBVM tissues, and could function as a biomarker for SBVM diagnosis and therapy. These findings suggest that hypoxia and low-glucose environments were present in SBVM tissues, and co-augmented angiogenesis. Hypoxia and low-glucose environments co-induced HGDILnc1, which is higher expressed in SBVM tissue compared with normal tissue, could promoted glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Zi-Hao Dai
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ran Zhao
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Chao Hou
- Department of Gastroenterology, Shanghai Nineth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
6
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
7
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
8
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
9
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Li J, Lu L, Liu L, Ren X, Chen J, Yin X, Xiao Y, Li J, Wei G, Huang H, Wei W, Wong J. HDAC1/2/3 are major histone desuccinylases critical for promoter desuccinylation. Cell Discov 2023; 9:85. [PMID: 37580347 PMCID: PMC10425439 DOI: 10.1038/s41421-023-00573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/02/2023] [Indexed: 08/16/2023] Open
Abstract
Lysine succinylation is one of the major post-translational modifications occurring on histones and is believed to have significant roles in regulating chromatin structure and function. Currently, histone desuccinylation is widely believed to be catalyzed by members of the SIRT family deacetylases. Here, we report that histone desuccinylation is in fact primarily catalyzed by the class I HDAC1/2/3. Inhibition or depletion of HDAC1/2/3 resulted in a marked increase of global histone succinylation, whereas ectopic expression of HDAC1/2/3 but not their deacetylase inactive mutants downregulated global histone succinylation. We demonstrated that the class I HDAC1/2/3 complexes have robust histone desuccinylase activity in vitro. Genomic landscape analysis revealed that histone succinylation is highly enriched at gene promoters and inhibition of HDAC activity results in marked elevation of promoter histone succinylation. Furthermore, our integrated analysis revealed that promoter histone succinylation positively correlates with gene transcriptional activity. Collectively, we demonstrate that the class I HDAC1/2/3 but not the SIRT family proteins are the major histone desuccinylases particularly important for promoter histone desuccinylation. Our study thus sheds new light on the role of histone succinylation in transcriptional regulation.
Collapse
Affiliation(s)
- Jialun Li
- Wuhu Hospital, East China Normal University, Wuhu, Anhui, China
| | - Lu Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lingling Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiwei Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xingzhi Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanhui Xiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jiemin Wong
- Wuhu Hospital, East China Normal University, Wuhu, Anhui, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
11
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
12
|
Temman H, Sakamoto T, Ueda M, Sugimoto K, Migihashi M, Yamamoto K, Tsujimoto-Inui Y, Sato H, Shibuta MK, Nishino N, Nakamura T, Shimada H, Taniguchi YY, Takeda S, Aida M, Suzuki T, Seki M, Matsunaga S. Histone deacetylation regulates de novo shoot regeneration. PNAS NEXUS 2023; 2:pgad002. [PMID: 36845349 PMCID: PMC9944245 DOI: 10.1093/pnasnexus/pgad002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of HDA19, a histone deacetylase (HDAC) family gene, suppresses shoot regeneration. Treatment with an HDAC inhibitor revealed that the activity of this gene is essential for shoot regeneration. Further, we identified target genes whose expression was regulated through HDA19-mediated histone deacetylation during shoot induction and found that ENHANCER OF SHOOT REGENERATION 1 and CUP-SHAPED COTYLEDON 2 play important roles in shoot apical meristem formation. Histones at the loci of these genes were hyperacetylated and markedly upregulated in hda19. Transient ESR1 or CUC2 overexpression impaired shoot regeneration, as observed in hda19. Therefore, HDA19 mediates direct histone deacetylation of CUC2 and ESR1 loci to prevent their overexpression at the early stages of shoot regeneration.
Collapse
Affiliation(s)
| | | | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaoru Sugimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masako Migihashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kazunari Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yayoi Tsujimoto-Inui
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Mio K Shibuta
- Academic Assembly (Faculty of Science), Yamagata University, Kojirakawa, Yamagata 990-8560, Japan
| | - Norikazu Nishino
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan
| | - Tomoe Nakamura
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan,Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669–1337, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 60-8522, Japan,Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Centre, 74 Kitaina Yazuma Oji, Seika, Kyoto 619-0244, Japan
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan,International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
13
|
Dang L, Cao X, Zhang T, Sun Y, Tian S, Gong T, Xiong H, Cao P, Li Y, Yu S, Yang L, Zhang L, Liu T, Zhang K, Liang J, Chen Y. Nuclear Condensation of CDYL Links Histone Crotonylation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1708-1725. [PMID: 35918147 PMCID: PMC9529191 DOI: 10.1681/asn.2021111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emerging evidence indicates that epigenetic modulation of gene expression plays a key role in the progression of autosomal dominant polycystic kidney disease (ADPKD). However, the molecular basis for how the altered epigenome modulates transcriptional responses, and thereby disease progression in ADPKD, remains largely unknown. METHODS Kidneys from control and ADPKD mice were examined for the expression of CDYL and histone acylations. CDYL expression and its correlation with disease severity were analyzed in a cohort of patients with ADPKD. Cdyl transgenic mice were crossed with Pkd1 knockout mice to explore CDYL's role in ADPKD progression. Integrated cistromic and transcriptomic analyses were performed to identify direct CDYL target genes. High-sensitivity mass spectrometry analyses were undertaken to characterize CDYL-regulated histone lysine crotonylations (Kcr). Biochemical analysis and zebrafish models were used for investigating CDYL phase separation. RESULTS CDYL was downregulated in ADPKD kidneys, accompanied by an increase of histone Kcr. Genetic overexpression of Cdyl reduced histone Kcr and slowed cyst growth. We identified CDYL-regulated cyst-associated genes, whose downregulation depended on CDYL-mediated suppression of histone Kcr. CDYL assembled nuclear condensates through liquid-liquid phase separation in cultured kidney epithelial cells and in normal kidney tissues. The phase-separating capacity of CDYL was required for efficient suppression of locus-specific histone Kcr, of expression of its target genes, and of cyst growth. CONCLUSIONS These results elucidate a mechanism by which CDYL nuclear condensation links histone Kcr to transcriptional responses and cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xinyi Cao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tianye Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yongzhan Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianyu Gong
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Hui Xiong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peipei Cao
- Department of Pathology, Nankai University School of Medicine, Tianjin, China
| | - Yuhao Li
- Department of Pathology, Nankai University School of Medicine, Tianjin, China
| | - Shengqiang Yu
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li Yang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Liang
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Sehrawat P, Shobhawat R, Kumar A. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Front Genet 2022; 13:903923. [PMID: 35910215 PMCID: PMC9329655 DOI: 10.3389/fgene.2022.903923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The fundamental packaging unit of chromatin, i.e., nucleosome, consists of ∼147 bp of DNA wrapped around a histone octamer composed of the core histones, H2A, H2B, H3, and H4, in two copies each. DNA packaged in nucleosomes must be accessible to various machineries, including replication, transcription, and DNA damage repair, implicating the dynamic nature of chromatin even in its compact state. As the tails protrude out of the nucleosome, they are easily accessible to various chromatin-modifying machineries and undergo post-translational modifications (PTMs), thus playing a critical role in epigenetic regulation. PTMs can regulate chromatin states via charge modulation on histones, affecting interaction with various chromatin-associated proteins (CAPs) and DNA. With technological advancement, the list of PTMs is ever-growing along with their writers, readers, and erasers, expanding the complexity of an already intricate epigenetic field. In this review, we discuss how some of the specific PTMs on flexible histone tails affect the nucleosomal structure and regulate the accessibility of chromatin from a mechanistic standpoint and provide structural insights into some newly identified PTM–reader interaction.
Collapse
|
15
|
Metabolic Remodeling Impacts the Epigenetic Landscape of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:3490433. [PMID: 35422867 PMCID: PMC9005295 DOI: 10.1155/2022/3490433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation can dynamically adjust the gene expression program of cell fate decision according to the cellular microenvironment. Emerging studies have shown that metabolic activities provide fundamental components for epigenetic modifications and these metabolic-sensitive epigenetic events dramatically impact the cellular function of stem cells. Dental mesenchymal stem cells are promising adult stem cell resource for in situ injury repair and tissue engineering. In this review, we discuss the impact of metabolic fluctuations on epigenetic modifications in the oral and maxillofacial regions. The principles of the metabolic link to epigenetic modifications and the interaction between metabolite substrates and canonical epigenetic events in dental mesenchymal stem cells are summarized. The coordination between metabolic pathways and epigenetic events plays an important role in cellular progresses including differentiation, inflammatory responses, and aging. The metabolic-epigenetic network is critical for expanding our current understanding of tissue homeostasis and cell fate decision and for guiding potential therapeutic approaches in dental regeneration and infectious diseases.
Collapse
|
16
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Li M, Hu J, Mao H, Li D, Jiang Z, Sun Z, Yu T, Hu C, Xu X. Grass Carp ( Ctenopharyngodon idella) KAT8 Inhibits IFN 1 Response Through Acetylating IRF3/IRF7. Front Immunol 2022; 12:808159. [PMID: 35046960 PMCID: PMC8761793 DOI: 10.3389/fimmu.2021.808159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications (PTMs), such as phosphorylation and ubiquitination, etc., have been reported to modulate the activities of IRF3 and IRF7. In this study, we found an acetyltransferase KAT8 in grass carp (CiKAT8, MW286472) that acetylated IRF3/IRF7 and then resulted in inhibition of IFN 1 response. CiKAT8 expression was up-regulated in the cells under poly I:C, B-DNA or Z-DNA stimulation as well as GCRV(strain 873) or SVCV infection. The acetyltransferase domain (MYST domain) of KAT8 promoted the acetylation of IRF3 and IRF7 through the direct interaction with them. So, the domain is essential for KAT8 function. Expectedly, KAT8 without MYST domain (KAT8-△264-487) was granularly aggregated in the nucleus and failed to down-regulate IFN 1 expression. Subcellular localization analysis showed that KAT8 protein was evenly distributed in the nucleus. In addition, we found that KAT8 inhibited the recruitment of IRF3 and IRF7 to ISRE response element. Taken together, our findings revealed that grass carp KAT8 blocked the activities of IRF3 and IRF7 by acetylating them, resulting in a low affinity interaction of ISRE response element with IRF3 and IRF7, and then inhibiting nucleic acids-induced innate immune response.
Collapse
Affiliation(s)
- Meifeng Li
- School of Life Science, Nanchang University, Nanchang, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Zeyin Jiang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhichao Sun
- School of Life Science, Nanchang University, Nanchang, China
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Tng SS, Le NQK, Yeh HY, Chua MCH. Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks. J Proteome Res 2021; 21:265-273. [PMID: 34812044 DOI: 10.1021/acs.jproteome.1c00848] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histone lysine crotonylation (Kcr) is a post-translational modification of histone proteins that is involved in the regulation of gene transcription, acute and chronic kidney injury, spermatogenesis, depression, cancer, and so forth. The identification of Kcr sites in proteins is important for characterizing and regulating primary biological mechanisms. The use of computational approaches such as machine learning and deep learning algorithms have emerged in recent years as the traditional wet-lab experiments are time-consuming and costly. We propose as part of this study a deep learning model based on a recurrent neural network (RNN) termed as Sohoko-Kcr for the prediction of Kcr sites. Through the embedded encoding of the peptide sequences, we investigate the efficiency of RNN-based models such as long short-term memory (LSTM), bidirectional LSTM (BiLSTM), and bidirectional gated recurrent unit (BiGRU) networks using cross-validation and independent tests. We also established the comparison between Sohoko-Kcr and other published tools to verify the efficiency of our model based on 3-fold, 5-fold, and 10-fold cross-validations using independent set tests. The results then show that the BiGRU model has consistently displayed outstanding performance and computational efficiency. Based on the proposed model, a webserver called Sohoko-Kcr was deployed for free use and is accessible at https://sohoko-research-9uu23.ondigitalocean.app.
Collapse
Affiliation(s)
- Sian Soo Tng
- Institute of Systems Science, National University of Singapore, 29 Heng Mui Keng Terrace, Singapore 119620, Singapore
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan.,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan.,Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hui-Yuan Yeh
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Avenue, Singapore 639818, Singapore
| | - Matthew Chin Heng Chua
- Institute of Systems Science, National University of Singapore, 29 Heng Mui Keng Terrace, Singapore 119620, Singapore
| |
Collapse
|
19
|
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Int J Mol Sci 2021; 22:12234. [PMID: 34830117 PMCID: PMC8618106 DOI: 10.3390/ijms222212234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Bart Cuypers
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Herald Berghmans
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Jelle Verdonck
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
| | - Kris Laukens
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| |
Collapse
|
20
|
Zhang W, Tan X, Lin S, Gou Y, Han C, Zhang C, Ning W, Wang C, Xue Y. CPLM 4.0: an updated database with rich annotations for protein lysine modifications. Nucleic Acids Res 2021; 50:D451-D459. [PMID: 34581824 PMCID: PMC8728254 DOI: 10.1093/nar/gkab849] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we reported the compendium of protein lysine modifications (CPLM 4.0, http://cplm.biocuckoo.cn/), a data resource for various post-translational modifications (PTMs) specifically occurred at the side-chain amino group of lysine residues in proteins. From the literature and public databases, we collected 450 378 protein lysine modification (PLM) events, and combined them with the existing data of our previously developed protein lysine modification database (PLMD 3.0). In total, CPLM 4.0 contained 592 606 experimentally identified modification events on 463 156 unique lysine residues of 105 673 proteins for up to 29 types of PLMs across 219 species. Furthermore, we carefully annotated the data using the knowledge from 102 additional resources that covered 13 aspects, including variation and mutation, disease-associated information, protein-protein interaction, protein functional annotation, DNA & RNA element, protein structure, chemical-target relation, mRNA expression, protein expression/proteomics, subcellular localization, biological pathway annotation, functional domain annotation, and physicochemical property. Compared to PLMD 3.0 and other existing resources, CPLM 4.0 achieved a >2-fold increase in collection of PLM events, with a data volume of ∼45GB. We anticipate that CPLM 4.0 can serve as a more useful database for further study of PLMs.
Collapse
Affiliation(s)
- Weizhi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Gou
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Han
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chenwei Wang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu 210031, China
| |
Collapse
|
21
|
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159:120-129. [PMID: 34175302 DOI: 10.1016/j.yjmcc.2021.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response of the heart to increased workload induced by various physiological or pathological stimuli. It is a common pathological process in multiple cardiovascular diseases, and it ultimately leads to heart failure. The development of cardiac hypertrophy is accompanied by gene expression reprogramming, a process that is largely dependent on epigenetic regulation. Histone modifications such as methylation and acetylation are dynamically regulated under cardiac stress. These consequently contribute to the pathogenesis of cardiac hypertrophy via compensatory or maladaptive transcriptome reprogramming. Histone methylation and acetylation modifiers play crucial roles in epigenetic remodeling during the pathogenesis of cardiac hypertrophy. Regulation of histone methylation and acetylation modifiers serves as a bridge between signal transduction and downstream gene reprogramming. Exploring the role of histone modifiers in cardiac hypertrophy provides novel therapeutic strategies to treat cardiac hypertrophy and heart failure. In this review, we summarize the recent advancements in functional histone methylation and acetylation modifiers in cardiac hypertrophy, with an emphasis on the underlying mechanisms and the therapeutic potential.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Patrick RM, Huang XQ, Dudareva N, Li Y. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3704-3722. [PMID: 33606881 PMCID: PMC8096599 DOI: 10.1093/jxb/erab072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 05/29/2023]
Abstract
Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.
Collapse
Affiliation(s)
- Ryan M Patrick
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
| | - Xing-Qi Huang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907,USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907,USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
| |
Collapse
|
23
|
Ni X, Londregan AT, Owen DR, Knapp S, Chaikuad A. Structure and Inhibitor Binding Characterization of Oncogenic MLLT1 Mutants. ACS Chem Biol 2021; 16:571-578. [PMID: 33749253 DOI: 10.1021/acschembio.0c00960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysfunction of YEATS-domain-containing MLLT1, an acetyl/acyl-lysine dependent epigenetic reader domain, has been implicated in the development of aggressive cancers. Mutations in the YEATS domain have been recently reported as a cause of MLLT1 aberrant reader function. However, the structural basis for the reported alterations in affinity for acetylated/acylated histone has remained elusive. Here, we report the crystal structures of both insertion and substitution mutants present in cancer, revealing significant conformational changes of the YEATS-domain loop 8. Structural comparison demonstrates that not only did such alteration alter the binding interface for acetylated/acylated histones, but the sequence alterations in the loop in T1 mutant may enable dimeric assembly consistent with inducing self-association behavior. Nevertheless, we show that also the MLLT1 mutants can be targeted by developed acetyllysine mimetic inhibitors with affinities similarly to wild-type. Our report provides a structural basis for the altered behaviors and a potential strategy for targeting oncogenic MLLT1 mutants.
Collapse
Affiliation(s)
- Xiaomin Ni
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Allyn T. Londregan
- Medicine Design, Pfizer Worldwide Research Development and Medicine, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dafydd R. Owen
- Medicine Design, Pfizer Worldwide Research Development and Medicine, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Stefan Knapp
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- German Cancer network DKTK and Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Bhagwat M, Nagar S, Kaur P, Jassar S, Vancurova I, Vancura A. Synthesis of nucleocytosolic acetyl-CoA regulates mitochondrial respiration and ATP synthesis in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119025. [PMID: 33862055 DOI: 10.1016/j.bbamcr.2021.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Madhura Bhagwat
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Salony Jassar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
25
|
Hao L, Yin J, Yang H, Li C, Zhu L, Liu L, Zhong J. ALKBH5-mediated m 6A demethylation of FOXM1 mRNA promotes progression of uveal melanoma. Aging (Albany NY) 2021; 13:4045-4062. [PMID: 33428593 PMCID: PMC7906204 DOI: 10.18632/aging.202371] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 05/02/2023]
Abstract
In this study, we found that ALKBH5, a key component of the N6-methyladenosine (m6A) methyltransferase complex, was significantly elevated in uveal melanoma (UM) cell lines and that ALKBH5 downregulation inhibited tumor growth in vivo. High ALKBH5 expression predicted worse outcome in patients with UM. EP300-induced H3K27 acetylation activation increased ALKBH5 expression. Downregulation of ALKBH5 inhibited UM cell proliferation, migration, and invasion and increased apoptosis in vitro. Besides, ALKBH5 may promote UM metastasis by inducing epithelial-to-mesenchymal transition (EMT) via demethylation of FOXM1 mRNA, which increases its expression and stability. In sum, our study indicates that AKLBH5-induced m6A demethylation of FOXM1 mRNA promotes UM progression. Therefore, AKLBH5 is a potential prognostic biomarker and therapeutic target in UM.
Collapse
Affiliation(s)
- Lili Hao
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jiayang Yin
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Hong Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chaoxuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Linxin Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
26
|
Yao T, Przybyla JJ, Yeh P, Woodard AM, Nilsson HJ, Brandsen BM, Silverman SK. DNAzymes for amine and peptide lysine acylation. Org Biomol Chem 2021; 19:171-181. [PMID: 33150349 PMCID: PMC7790989 DOI: 10.1039/d0ob02015j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNAzymes were previously identified by in vitro selection for a variety of chemical reactions, including several biologically relevant peptide modifications. However, finding DNAzymes for peptide lysine acylation is a substantial challenge. By using suitably reactive aryl ester acyl donors as the electrophiles, here we used in vitro selection to identify DNAzymes that acylate amines, including lysine side chains of DNA-anchored peptides. Some of the DNAzymes can transfer a small glutaryl group to an amino group. These results expand the scope of DNAzyme catalysis and suggest the future broader applicability of DNAzymes for sequence-selective lysine acylation of peptide and protein substrates.
Collapse
Affiliation(s)
- Tianjiong Yao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
28
|
Abstract
The mechanisms of epigenetic gene regulation-histone modifications, chromatin remodeling, DNA methylation, and noncoding RNA-use metabolites as enzymatic cofactors and substrates in reactions that allow chromatin formation, nucleotide biogenesis, transcription, RNA processing, and translation. Gene expression responds to demands from cellular processes that use specific metabolites and alters or maintains cellular metabolic status. However, the roles of metabolites-particularly nucleotides-as regulatory molecules in epigenetic regulation and biological processes remain largely unknown. Here we review the crosstalk between gene expression, nucleotide metabolism, and cellular processes, and explore the role of metabolism in epigenetics as a critical regulator of biological events.
Collapse
|
29
|
Yang T, Wang P, Yin X, Zhang J, Huo M, Gao J, Li G, Teng X, Yu H, Huang W, Wang Y. The histone deacetylase inhibitor PCI-24781 impairs calcium influx and inhibits proliferation and metastasis in breast cancer. Am J Cancer Res 2021; 11:2058-2076. [PMID: 33500709 PMCID: PMC7797697 DOI: 10.7150/thno.48314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) are involved in key cellular processes and have been implicated in cancer. As such, compounds that target HDACs or drugs that target epigenetic markers may be potential candidates for cancer therapy. This study was therefore aimed to identify a potential epidrug with low toxicity and high efficiency as anti-tumor agents. Methods: We first screened an epigenetic small molecule inhibitor library to screen for an epidrug for breast cancer. The candidate was identified as PCI-24781 and was characterized for half maximal inhibitory concentration (IC50), for specificity to breast cancer cells, and for effects on carcinogenesis and metastatic properties of breast cancer cell lines in vitro. A series of in silico and in vitro analyses were further performed of PCI-24781 to identify and understand its target. Results: Screening of an epigenetic inhibitor library in MDA-MB-231 cells, a malignant cancer cell line, showed that PCI-24781 is a potential anti-tumor drug specific to breast cancer. Ca2+ related pathways were identified as a potential target of PCI-24781. Further analyses showed that PCI-24781 inhibited Gαq-PLCβ3-mediated calcium signaling by activating the expression of regulator of G-protein signaling 2 (RGS2) to reduce cell proliferation, metastasis, and differentiation, resulting in cell death in breast cancer. In addition, RGS2 depletion reversed anti-tumor effect and inhibition of calcium influx induced by PCI-24781 treatment in breast cancer cells. Conclusions: We have demonstrated that PCI-24781 is an effective anti-tumor therapeutic agent that targets calcium signaling by activating RGS2. This study also provides a novel perspective into the use of HDAC inhibitors for cancer therapy.
Collapse
|
30
|
Zacarias E, Casas-Mollano JA. Cataloging Posttranslational Modifications in Plant Histones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:131-154. [DOI: 10.1007/978-3-030-80352-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Li L, Ghorbani M, Weisz-Hubshman M, Rousseau J, Thiffault I, Schnur RE, Breen C, Oegema R, Weiss MM, Waisfisz Q, Welner S, Kingston H, Hills JA, Boon EM, Basel-Salmon L, Konen O, Goldberg-Stern H, Bazak L, Tzur S, Jin J, Bi X, Bruccoleri M, McWalter K, Cho MT, Scarano M, Schaefer GB, Brooks SS, Hughes SS, van Gassen KLI, van Hagen JM, Pandita TK, Agrawal PB, Campeau PM, Yang XJ. Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability. J Clin Invest 2020; 130:1431-1445. [PMID: 31794431 DOI: 10.1172/jci131145] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mohammad Ghorbani
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Monika Weisz-Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Justine Rousseau
- Paediatric Department, CHU Sainte-Justine Hospital, University of Montreal, Quebec, Canada
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine & Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA.,Faculty of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Rhonda E Schnur
- Division of Genetics, Cooper University Health Care, Camden, New Jersey, USA.,GeneDx, Gaithersburg, Maryland, USA
| | - Catherine Breen
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, United Kingdom
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marjan Mm Weiss
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Sara Welner
- Division of Pediatric Medical Genetics, The State University of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Helen Kingston
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, United Kingdom
| | - Jordan A Hills
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elles Mj Boon
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Lina Basel-Salmon
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Osnat Konen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Imaging Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hadassa Goldberg-Stern
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Epilepsy Unit and EEG Laboratory, Schneider Medical Center, Petach Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Tzur
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.,Genomic Research Department, Emedgene Technologies, Tel Aviv, Israel
| | - Jianliang Jin
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada.,Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory of Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuli Bi
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michael Bruccoleri
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | - Maria Scarano
- Division of Genetics, Cooper University Health Care, Camden, New Jersey, USA
| | | | - Susan S Brooks
- Division of Pediatric Medical Genetics, The State University of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Susan Starling Hughes
- Center for Pediatric Genomic Medicine & Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA.,Faculty of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - K L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philippe M Campeau
- Paediatric Department, CHU Sainte-Justine Hospital, University of Montreal, Quebec, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada.,Departments of Biochemistry and Medicine, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Crespo M, Luense LJ, Arlotto M, Hu J, Dorsey J, García-Oliver E, Shah PP, Pflieger D, Berger SL, Govin J. Systematic genetic and proteomic screens during gametogenesis identify H2BK34 methylation as an evolutionary conserved meiotic mark. Epigenetics Chromatin 2020; 13:35. [PMID: 32933557 PMCID: PMC7493871 DOI: 10.1186/s13072-020-00349-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gametes are highly differentiated cells specialized to carry and protect the parental genetic information. During male germ cell maturation, histone proteins undergo distinct changes that result in a highly compacted chromatin organization. Technical difficulties exclude comprehensive analysis of precise histone mutations during mammalian spermatogenesis. The model organism Saccharomyces cerevisiae possesses a differentiation pathway termed sporulation which exhibits striking similarities to mammalian spermatogenesis. This study took advantage of this yeast pathway to first perform systematic mutational and proteomics screens on histones, revealing amino acid residues which are essential for the formation of spores. METHODS A systematic mutational screen has been performed on the histones H2A and H2B, generating ~ 250 mutants using two genetic backgrounds and assessing their ability to form spores. In addition, histones were purified at key stages of sporulation and post-translational modifications analyzed by mass spectrometry. RESULTS The mutation of 75 H2A H2B residues affected sporulation, many of which were localized to the nucleosome lateral surface. The use of different genetic backgrounds confirmed the importance of many of the residues, as 48% of yeast histone mutants exhibited impaired formation of spores in both genetic backgrounds. Extensive proteomic analysis identified 67 unique post-translational modifications during sporulation, 27 of which were previously unreported in yeast. Furthermore, 33 modifications are located on residues that were found to be essential for efficient sporulation in our genetic mutation screens. The quantitative analysis of these modifications revealed a massive deacetylation of all core histones during the pre-meiotic phase and a close interplay between H4 acetylation and methylation during yeast sporulation. Methylation of H2BK37 was also identified as a new histone marker of meiosis and the mouse paralog, H2BK34, was also enriched for methylation during meiosis in the testes, establishing conservation during mammalian spermatogenesis. CONCLUSION Our results demonstrate that a combination of genetic and proteomic approaches applied to yeast sporulation can reveal new aspects of chromatin signaling pathways during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
| | - Lacey J Luense
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marie Arlotto
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Jialei Hu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Dorsey
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Encar García-Oliver
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- Institut de Génétique Moléculaire de Montpellier, 3400, Montpellier, France
| | - Parisha P Shah
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France.
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France.
| |
Collapse
|
34
|
The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 2020; 21:737-753. [PMID: 32908249 DOI: 10.1038/s41576-020-0270-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.
Collapse
|
35
|
Campit SE, Meliki A, Youngson NA, Chandrasekaran S. Nutrient Sensing by Histone Marks: Reading the Metabolic Histone Code Using Tracing, Omics, and Modeling. Bioessays 2020; 42:e2000083. [PMID: 32638413 PMCID: PMC11426192 DOI: 10.1002/bies.202000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Several metabolites serve as substrates for histone modifications and communicate changes in the metabolic environment to the epigenome. Technologies such as metabolomics and proteomics have allowed us to reconstruct the interactions between metabolic pathways and histones. These technologies have shed light on how nutrient availability can have a dramatic effect on various histone modifications. This metabolism-epigenome cross talk plays a fundamental role in development, immune function, and diseases like cancer. Yet, major challenges remain in understanding the interactions between cellular metabolism and the epigenome. How the levels and fluxes of various metabolites impact epigenetic marks is still unclear. Discussed herein are recent applications and the potential of systems biology methods such as flux tracing and metabolic modeling to address these challenges and to uncover new metabolic-epigenetic interactions. These systems approaches can ultimately help elucidate how nutrients shape the epigenome of microbes and mammalian cells.
Collapse
Affiliation(s)
- Scott E. Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Alia Meliki
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, USA 48109
| | - Neil A. Youngson
- Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sriram Chandrasekaran
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA 48109
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA 48109
| |
Collapse
|
36
|
Zhang Y, Wang S, Zhang L, Zhou F, Zhu K, Zhu Q, Liu Q, Liu Y, Jiang L, Ning G, Bi Y, Zhou L, Wang X. Protein acetylation derepresses Serotonin Synthesis to potentiate Pancreatic Beta-Cell Function through HDAC1-PKA-Tph1 signaling. Am J Cancer Res 2020; 10:7351-7368. [PMID: 32641996 PMCID: PMC7330849 DOI: 10.7150/thno.44459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: Protein acetylation is tightly linked to transcriptional control and energy metabolism. However, the role of protein acetylation in islet function remains enigmatic. This study aims to determine how protein acetylation controls β-cell function and explore the underlying mechanism. Methods: The gene-expression profiles were analyzed for rat islets in response to two histone deacetylase (HDAC) inhibitors. Insulin secretion, tryptophan hydroxylase 1 (Tph1) expression, and serotonin synthesis of rat islets were detected after HDAC inhibitor treatment both in vivo and ex vivo. β-cell-specific Tph1-overexpressing transgenic rats and β-cell-specific Tph1 knockout mice were constructed to evaluate the role of Tph1 in β-cell function. The deacetylation of PKA in β-cells by HDAC1 was investigated by adenoviral infection, immunoprecipitation, and western blot. Results: Inhibition of HDACs greatly potentiated pancreatic β-cell function and reprogrammed transcriptional landscape of islets. Among the commonly up-regulated genes by two pan-HDAC inhibitors, Tph1 displayed the most prominent change. Specifically, inhibition of HDAC1 and HDAC3 by MS-275 strongly promoted Tph1 expression and endogenous serotonin synthesis in rat islets, concomitantly with enhanced insulin secretory capacity in vivo and ex vivo. β-cell-specific Tph1-overexpressing transgenic rats exhibited improved glucose tolerance and amplified glucose-stimulated insulin secretion. On the contrary, β-cell-specific Tph1 knockout mice displayed glucose intolerance and impaired insulin secretion with aging. Moreover, depletion of Tph1 in β-cells abrogated MS-275-induced insulin hypersecretion. Overexpression of HDAC1, not HDAC3, inhibited Tph1 transcriptional activity and decreased MS-275-stimulated Tph1 expression. Mechanistically, HDAC1 deacetylated PKA catalytic subunit and decreased its activity, resulting in Tph1 transcriptional repression. The acetylation mimetic K62Q mutant of PKA increased its catalytic activity. HDAC1 inhibition exerted a synergistic effect with cAMP/PKA signal on Tph1 expression. Conclusions: The present findings highlight a novel role of HDAC1-PKA-Tph1 signaling in governing β-cell functional compensation by derepressing serotonin synthesis.
Collapse
|
37
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
39
|
Wang Q, Verma J, Vidan N, Wang Y, Tucey TM, Lo TL, Harrison PF, See M, Swaminathan A, Kuchler K, Tscherner M, Song J, Powell DR, Sopta M, Beilharz TH, Traven A. The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Rep 2020; 31:107528. [PMID: 32320659 DOI: 10.1016/j.celrep.2020.107528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress. Crotonate regulates stress-responsive transcription and rescues C. albicans from cell wall stress, indicating broad impact on cell biology. The YEATS domain crotonylation readers Taf14 and Yaf9 are required for C. albicans virulence, and Taf14 controls gene expression, stress resistance, and invasive growth via its chromatin reader function. Blocking the Taf14 C terminus with a tag reduced virulence, suggesting that inhibiting Taf14 interactions with chromatin regulators impairs function. Our findings shed light on the regulation of histone crotonylation and the functions of the YEATS proteins in eukaryotic pathogen biology and fungal infections.
Collapse
Affiliation(s)
- Qi Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Jiyoti Verma
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Nikolina Vidan
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia; Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Yanan Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Paul F Harrison
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Michael See
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Jiangning Song
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Mary Sopta
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia.
| |
Collapse
|
40
|
Zheng W. Review: The plant sirtuins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110434. [PMID: 32081272 DOI: 10.1016/j.plantsci.2020.110434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/05/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The sirtuin family of intracellular enzymes are able to catalyze a unique β-nicotinamide adenine dinucleotide (β-NAD+)-dependent Nε-acyl-lysine deacylation reaction on histone and non-histone protein substrates. Since 2000, the sirtuin family members have been identified in both prokaryotes and eukaryotes; tremendous accomplishments have also been achieved on the mechanistic and functional (pharmacological) understanding of the sirtuin-catalyzed deacylation reaction. Among the eukaryotic organisms, past research has been focused more on the yeast and mammalian sirtuins than on the plant sirtuins, however, the very presence of sirtuins in various plant species and the functional studies on plant sirtuins published thus far attest to the importance of this particular subfamily of eukaryotic sirtuins in regulating the growth and development of plants and their responses to biotic and abiotic stresses. In this review, an integrated and updated account will be presented on the biochemical, cellular, and functional profiles of all the plant sirtuins identified thus far. It is hoped that this article will also set a stage for expanded efforts in the identification, characterization, and functional interrogation of plant sirtuins; and the development and exploration of their chemical modulators (activators and inhibitors) in plant research and agriculture.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
41
|
Cheng YM, Peng Z, Chen HY, Pan TT, Hu XN, Wang F, Luo T. Posttranslational lysine 2-hydroxyisobutyrylation of human sperm tail proteins affects motility. Hum Reprod 2020; 35:494-503. [PMID: 32142584 DOI: 10.1093/humrep/dez296] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Does lysine 2-hydroxyisobutyrylation, a newly identified protein posttranslational modification (PTM), occur in human sperm and affect human sperm function? SUMMARY ANSWER Lysine 2-hydroxyisobutyrylation mainly occurs in human sperm tail proteins, and excessive lysine 2-hydroxyisobutyrylation affects human sperm motility. WHAT IS KNOWN ALREADY PTM is regarded as an important pathway in regulating sperm function since mature sperm are almost transcriptionally silent. However, only phosphorylation was extensively studied in mature sperm to date. Lysine 2-hydroxyisobutyrylation, a newly characterised PTM, is broadly conserved in both eukaryotic and prokaryotic cells. Although histone lysine 2-hydroxyisobutyrylation has been shown to be associated with active gene expression in spermatogenic cells, the presence, regulatory elements and function of lysine 2-hydroxyisobutyrylation have not been characterised in mature sperm. STUDY DESIGN, SIZE, DURATION Sperm samples were obtained from normozoospermic men and asthenozoospermic men who visited the reproductive medical centre at Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China, between May 2017 and November 2018. In total, 58 normozoospermic men and 65 asthenozoospermic men were recruited to participate in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Lysine 2-hydroxyisobutyrylation was examined using immunoblotting and immunofluorescence assays using a previously qualified pan anti-lysine 2-hydroxyisobutyrylation antibody. The immunofluorescence assay was imaged using super-resolution structured illumination microscopy. Sperm viability was examined by using the eosin staining method, and sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm penetration ability was determined by evaluating the ability of the sperm to penetrate a 1% (w/v) methylcellulose solution. The level of intracellular adenosine triphosphate (ATP) was detected using a rapid bioluminescent ATP assay kit. MAIN RESULTS AND THE ROLE OF CHANCE Lysine 2-hydroxyisobutyrylation was present in several proteins (20-100 kDa) mainly located in the tail of human sperm. Sperm lysine 2-hydroxyisobutyrylation was derived from 2-hydroxyisobutyrate (2-Hib) and was regulated by acyltransferase P300 and nicotinamide adenine dinucleotide-dependent lysine deacylase sirtuins. Elevation of sperm lysine 2-hydroxyisobutyrylation by 2-Hib decreased total motility, progressive motility, penetration ability and ATP level of human sperm. Interestingly, the level of sperm lysine 2-hydroxyisobutyrylation was higher in asthenozoospermic men than that in normozoospermic men and was negatively correlated with the progressive motility of human sperm. Furthermore, high levels of lysine 2-hydroxyisobutyrylation in asthenozoospermic men accompanied decreased ATP levels. LIMITATIONS, REASONS FOR CAUTION Although the present study indicated the involvement of sperm lysine 2-hydroxyisobutyrylation in regulating human sperm motility, the underlying mechanism needs to be further illustrated. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study provide insight into the novel role of lysine 2-hydroxyisobutyrylation in human sperm and suggest that abnormality of sperm lysine 2-hydroxyisobutyrylation may be one of the causes for asthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) National Natural Science Foundation of China (81771644 to T.L. and 81871207 to H.C.); Natural Science Foundation of Jiangxi province (20171ACB21006). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.,Department of Pharmacy, the First People's Hospital of Yichun City in Jiangxi Province, Yichun 336000, China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, PR China
| | - Ting-Ting Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xiao-Nian Hu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
42
|
Itoh Y. Drug Discovery Researches on Modulators of Lysine-Modifying Enzymes Based on Strategic Chemistry Approaches. Chem Pharm Bull (Tokyo) 2020; 68:34-45. [DOI: 10.1248/cpb.c19-00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
43
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020; 45:7. [PMID: 31965985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic complexity and thus their ability to respond to diverse cues are largely driven by varying expression of gene products, qualitatively and quantitatively. Protein adducts in the form of post-translational modifications, most of which are derived from metabolic intermediates, allow fine tuning of gene expression at multiple levels. With the advent of high-throughput and high-resolution mapping technologies there has been an explosion in terms of the kind of modifications on chromatin and other factors that govern gene expression. Moreover, even the classical notion of acetylation and methylation dependent regulation of transcription is now known to be intrinsically coupled to biochemical pathways, which were otherwise regarded as 'mundane'. Here we have not only reviewed some of the recent literature but also have highlighted the dependence of gene regulatory mechanisms on metabolic inputs, both direct and indirect. We have also tried to bring forth some of the open questions, and how our understanding of gene expression has changed dramatically over the last few years, which has largely become metabolism centric. Finally, metabolic regulation of epigenome and gene expression has gained much traction due to the increased incidence of lifestyle and age-related diseases.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
44
|
Yan K, Rousseau J, Machol K, Cross LA, Agre KE, Gibson CF, Goverde A, Engleman KL, Verdin H, De Baere E, Potocki L, Zhou D, Cadieux-Dion M, Bellus GA, Wagner MD, Hale RJ, Esber N, Riley AF, Solomon BD, Cho MT, McWalter K, Eyal R, Hainlen MK, Mendelsohn BA, Porter HM, Lanpher BC, Lewis AM, Savatt J, Thiffault I, Callewaert B, Campeau PM, Yang XJ. Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer. SCIENCE ADVANCES 2020; 6:eaax0021. [PMID: 32010779 PMCID: PMC6976298 DOI: 10.1126/sciadv.aax0021] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/20/2019] [Indexed: 05/22/2023]
Abstract
Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin. Brpf1 deletion obliterates the acylation in mouse embryos and fibroblasts. Moreover, we identify BRPF1 variants in 12 previously unidentified cases of syndromic intellectual disability and demonstrate that these cases and known BRPF1 variants impair H3K23 propionylation. Cardiac anomalies are present in a subset of the cases. H3K23 acylation is also impaired by cancer-derived somatic BRPF1 mutations. Valproate, vorinostat, propionate and butyrate promote H3K23 acylation. These results reveal the dual functionality of BRPF1-KAT6 complexes, shed light on mechanisms underlying related developmental disorders and various cancers, and suggest mutation-based therapy for medical conditions with deficient histone acylation.
Collapse
Affiliation(s)
- Kezhi Yan
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Justine Rousseau
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Quebec H3T 1C5, Canada
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Texas Children’s Hospital, 6701 Fannin Street, Houston, TX 77030, USA
| | - Laura A. Cross
- Center for Pediatric Genomic Medicine and Department of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Katherine E. Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Cynthia Forster Gibson
- Trillium Health Partners, Credit Valley Hospital, Genetics Program, 2200 Eglinton Ave. W, Mississauga, Ontario L5M 2N1, Canada
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kendra L. Engleman
- Center for Pediatric Genomic Medicine and Department of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Texas Children’s Hospital, 6701 Fannin Street, Houston, TX 77030, USA
| | - Dihong Zhou
- Center for Pediatric Genomic Medicine and Department of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Maxime Cadieux-Dion
- Center for Pediatric Genomic Medicine and Department of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Gary A. Bellus
- Clinical Genetics and Genomic Medicine, Geisinger, 100 N. Academy Ave., Danville, PA 17822, USA
| | - Monisa D. Wagner
- Autism and Developmental Medicine Institute, Geisinger, 120 Hamm Dr., Lewisburg, PA 17837, USA
| | - Rebecca J. Hale
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Natacha Esber
- KAT6A Foundation, 3 Louise Dr., West Nyack, NY 10994, USA
| | - Alan F. Riley
- Texas Children’s Hospital, 6651 Main Street Legacy Tower, 21st Floor Houston, TX 77030, USA
| | | | - Megan T. Cho
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | | | - Roy Eyal
- Kaiser Oakland Medical Center 3600 Broadway, Oakland, CA 94611, USA
| | - Meagan K. Hainlen
- Center for Pediatric Genomic Medicine and Department of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | | | - Hillary M. Porter
- Department of Genetics and Metabolism, Rare Disease Institute, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | | - Andrea M. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Texas Children’s Hospital, 6701 Fannin Street, Houston, TX 77030, USA
| | - Juliann Savatt
- Autism and Developmental Medicine Institute, Geisinger, 120 Hamm Dr., Lewisburg, PA 17837, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine and Department of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Faculty of Medicine, University of Missouri Kansas City, Kansas City, MO 64110, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University and Ghent University Hospital, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Philippe M. Campeau
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Quebec H3T 1C5, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
- McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
45
|
Ni X, Heidenreich D, Christott T, Bennett J, Moustakim M, Brennan PE, Fedorov O, Knapp S, Chaikuad A. Structural Insights into Interaction Mechanisms of Alternative Piperazine-urea YEATS Domain Binders in MLLT1. ACS Med Chem Lett 2019; 10:1661-1666. [PMID: 31857843 DOI: 10.1021/acsmedchemlett.9b00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
YEATS-domain-containing MLLT1 is an acetyl/acyl-lysine reader domain, which is structurally distinct from well-studied bromodomains and has been strongly associated in development of cancer. Here, we characterized piperazine-urea derivatives as an acetyl/acyl-lysine mimetic moiety for MLLT1. Crystal structures revealed distinct interaction mechanisms of this chemotype compared to the recently described benzimidazole-amide based inhibitors, exploiting different binding pockets within the protein. Thus, the piperazine-urea scaffold offers an alternative strategy for targeting the YEATS domain family.
Collapse
Affiliation(s)
- Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - David Heidenreich
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Thomas Christott
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - James Bennett
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Moses Moustakim
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | | | - Oleg Fedorov
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
46
|
Xu L, Liu Z, Liao T, Tuo X. Probing the interaction between levamlodipine and hemoglobin based on spectroscopic and molecular docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117306. [PMID: 31255862 DOI: 10.1016/j.saa.2019.117306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
In recent years, levamlodipine (LAML) has been widely used as a common drug for the treatment of hypertension. However, no reports exist that focus on the binding process of LAML with the transport proteins present in blood circulation. Here, several spectroscopy techniques, molecular docking and a molecular dynamics simulation were employed to comprehensively analyze the mechanism underlying the interaction between bovine hemoglobin (BHb) and LAML, as well as the effect of other drugs on the BHb-LAML system. The results indicated that a stable BHb-LAML complex was formed and that the binding site for LAML was located at β-37 tryptophan in the central cavity of BHb. Van der Waals force and hydrogen bonds played major roles in this binding process, and the number of binding sites (n) in the binary system was approximately equal to 1. Multiple spectroscopy experiments (FT-IR and three-dimensional fluorescence spectrometry) and a dynamics simulation revealed that LAML could induce a conformational in BHb and that the microenvironment of Trp/Tyr changed. Interestingly, the values of the binding constant between LAML and BHb significantly increased due to the effect of rofecoxib, propranolol and enalapril. Meanwhile, these drugs did not produce synergistic or negative synergistic effects on the LAML binding with BHb. These results provide new insight into the transport mechanisms for LAML in the human body.
Collapse
Affiliation(s)
- Linlin Xu
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zhaoqing Liu
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tancong Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
47
|
Affiliation(s)
- Susan M Abmayr
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jerry L Workman
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA.
| |
Collapse
|
48
|
Wan J, Liu H, Chu J, Zhang H. Functions and mechanisms of lysine crotonylation. J Cell Mol Med 2019; 23:7163-7169. [PMID: 31475443 PMCID: PMC6815811 DOI: 10.1111/jcmm.14650] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Lysine crotonylation is a newly discovered post‐translational modification, which is structurally and functionally different from the widely studied lysine acetylation. Recent advances in the identification and quantification of lysine crotonylation by mass spectrometry have revealed that non‐histone proteins are frequently crotonylated, implicating it in many biological processes through the regulation of chromatin remodelling, metabolism, cell cycle and cellular organization. In this review, we summarize the writers, erasers and readers of lysine crotonylation, and their physiological functions, including gene transcription, acute kidney injury, spermatogenesis, depression, telomere maintenance, HIV latency and cancer process. These findings not only point to the new functions for lysine crotonylation, but also highlight the mechanisms by which crotonylation regulates various cellular processes.
Collapse
Affiliation(s)
- Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Chu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| |
Collapse
|
49
|
Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov 2019; 5:35. [PMID: 31636949 PMCID: PMC6796883 DOI: 10.1038/s41421-019-0103-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Chemical modifications on histones constitute a key mechanism for gene regulation in chromatin context. Recently, histone lysine β-hydroxybutyrylation (Kbhb) was identified as a new form of histone acylation that connects starvation-responsive metabolism to epigenetic regulation. Sirtuins are a family of NAD+-dependent deacetylases. Through systematic profiling studies, we show that human SIRT3 displays class-selective histone de-β-hydroxybutyrylase activities with preference for H3 K4, K9, K18, K23, K27, and H4K16, but not for H4 K5, K8, K12, which distinguishes it from the Zn-dependent HDACs. Structural studies revealed a hydrogen bond-lined hydrophobic pocket favored for the S-form Kbhb recognition and catalysis. β-backbone but not side chain-mediated interactions around Kbhb dominate sequence motif recognition, explaining the broad site-specificity of SIRT3. The observed class-selectivity of SIRT3 is due to an entropically unfavorable barrier associated with the glycine-flanking motif that the histone Kbhb resides in. Collectively, we reveal the molecular basis for class-selective histone de-β-hydroxybutyrylation by SIRT3, shedding lights on the function of sirtuins in Kbhb biology through hierarchical deacylation.
Collapse
|
50
|
Anwer F, Gee KM, Iftikhar A, Baig M, Russ AD, Saeed S, Zar MA, Razzaq F, Carew J, Nawrocki S, Al-Kateb H, Cavalcante Parr NN, McBride A, Valent J, Samaras C. Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:397-405. [PMID: 31036508 PMCID: PMC6626550 DOI: 10.1016/j.clml.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a genetically complex disease. Identification of mutations and aberrant signaling pathways that contribute to the progression of MM and drug resistance has potential to lead to specific targets and personalized treatment. Aberrant signal pathways include RAS pathway activation due to RAS or BRAF mutations (targeted by vemurafenib alone or combined with cobimetinib), BCL-2 overexpression in t(11:14) (targeted by venetoclax), JAK2 pathway activation (targeted by ruxolitinib), NF-κB pathway activation (treated with DANFIN combined with bortezomib), MDM2 overexpression, and PI3K/mTOR pathway activation (targeted by BEZ235). Cyclin D1 (CCND1) and MYC are also emerging as key potential targets. In addition, histone deacetylase inhibitors are already in use for the treatment of MM in combination therapy, and targeted inhibition of FGFR3 (AZD4547) is effective in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein antagonists decrease the expression of MYC and have displayed promising antimyeloma activity. A better understanding of the alterations in signaling pathways that promote MM progression will further inform the development of precision therapy for patients.
Collapse
Affiliation(s)
- Faiz Anwer
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH.
| | - Kevin Mathew Gee
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ
| | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ
| | - Mirza Baig
- Department of Medicine, Summit Medical Group, Summit, NJ
| | | | - Sabina Saeed
- College of Public Health, The University of Arizona, Tucson, AZ
| | - Muhammad Abu Zar
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Faryal Razzaq
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Jennifer Carew
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Steffan Nawrocki
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Hussam Al-Kateb
- Division of Human Genetics, Children's Hospital, Cincinnati, OH
| | | | - Ali McBride
- College of Pharmacy, The University of Arizona, Tucson, AZ
| | - Jason Valent
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Christy Samaras
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|