1
|
Engel JL, Zhang X, Wu M, Wang Y, Espejo Valle-Inclán J, Hu Q, Woldehawariat KS, Sanders MA, Smogorzewska A, Chen J, Cortés-Ciriano I, Lo RS, Ly P. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 2024; 187:6055-6070.e22. [PMID: 39181133 PMCID: PMC11490392 DOI: 10.1016/j.cell.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.
Collapse
Affiliation(s)
- Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingming Wu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kidist S Woldehawariat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SD, UK; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Blaize JL, Garzon JLN, Howlett NG. FANCD2 genome binding is nonrandom and is enriched at large transcriptionally active neural genes prone to copy number variation. Funct Integr Genomics 2024; 24:180. [PMID: 39365306 PMCID: PMC11452531 DOI: 10.1007/s10142-024-01453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities and increased risk for bone marrow failure and cancer. Central nervous system defects, including acute and irreversible loss of neurological function and white matter lesions with calcifications, have become increasingly recognized among FA patients, and are collectively referred to as Fanconi Anemia Neurological Syndrome or FANS. The molecular etiology of FANS is poorly understood. In this study, we have used a functional integrative genomics approach to further define the function of the FANCD2 protein and FA pathway. Combined analysis of new and existing FANCD2 ChIP-seq datasets demonstrates that FANCD2 binds nonrandomly throughout the genome with binding enriched at transcription start sites and in broad regions spanning protein-coding gene bodies. FANCD2 demonstrates a strong preference for large neural genes involved in neuronal differentiation, synapse function, and cell adhesion, with many of these genes implicated in neurodevelopmental and neuropsychiatric disorders. Furthermore, FANCD2 binds to regions of the genome that replicate late, undergo mitotic DNA synthesis (MiDAS) under conditions of replication stress, and are hotspots for copy number variation. Our analysis describes an important targeted role for FANCD2 and the FA pathway in the maintenance of large neural gene stability.
Collapse
Affiliation(s)
- Justin L Blaize
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
| | - Jada Lauren N Garzon
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA.
| |
Collapse
|
3
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels. Biochemistry 2024; 63:969-983. [PMID: 38623046 DOI: 10.1021/acs.biochem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.
Collapse
Affiliation(s)
- Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
4
|
Lumeau A, Bery N, Francès A, Gayral M, Labrousse G, Ribeyre C, Lopez C, Nevot A, El Kaoutari A, Hanoun N, Sarot E, Perrier M, Pont F, Cerapio JP, Fournié JJ, Lopez F, Madrid-Mencia M, Pancaldi V, Pillaire MJ, Bergoglio V, Torrisani J, Dusetti N, Hoffmann JS, Buscail L, Lutzmann M, Cordelier P. Cytidine Deaminase Resolves Replicative Stress and Protects Pancreatic Cancer from DNA-Targeting Drugs. Cancer Res 2024; 84:1013-1028. [PMID: 38294491 PMCID: PMC10982645 DOI: 10.1158/0008-5472.can-22-3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.
Collapse
Affiliation(s)
- Audrey Lumeau
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Nicolas Bery
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Audrey Francès
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Marion Gayral
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Guillaume Labrousse
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Charlene Lopez
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Adele Nevot
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Université Aix-Marseille, Marseille, France
| | - Naima Hanoun
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Emeline Sarot
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Marion Perrier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Frederic Pont
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Juan-Pablo Cerapio
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Frederic Lopez
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Miguel Madrid-Mencia
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | | | - Jerome Torrisani
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Université Aix-Marseille, Marseille, France
| | - Jean-Sebastien Hoffmann
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Laboratoire de pathologie, Institut Universitaire du Cancer-Toulouse, Toulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Service de gastroentérologie et d'hépatologie, CHU Rangueil, Université de Toulouse, Toulouse, France
| | - Malik Lutzmann
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| |
Collapse
|
5
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
7
|
Leung W, Baxley RM, Traband E, Chang YC, Rogers CB, Wang L, Durrett W, Bromley KS, Fiedorowicz L, Thakar T, Tella A, Sobeck A, Hendrickson EA, Moldovan GL, Shima N, Bielinsky AK. FANCD2-dependent mitotic DNA synthesis relies on PCNA K164 ubiquitination. Cell Rep 2023; 42:113523. [PMID: 38060446 PMCID: PMC10842461 DOI: 10.1016/j.celrep.2023.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) at lysine 164 (K164) activates DNA damage tolerance pathways. Currently, we lack a comprehensive understanding of how PCNA K164 ubiquitination promotes genome stability. To evaluate this, we generated stable cell lines expressing PCNAK164R from the endogenous PCNA locus. Our data reveal that the inability to ubiquitinate K164 causes perturbations in global DNA replication. Persistent replication stress generates under-replicated regions and is exacerbated by the DNA polymerase inhibitor aphidicolin. We show that these phenotypes are due, in part, to impaired Fanconi anemia group D2 protein (FANCD2)-dependent mitotic DNA synthesis (MiDAS) in PCNAK164R cells. FANCD2 mono-ubiquitination is significantly reduced in PCNAK164R mutants, leading to reduced chromatin association and foci formation, both prerequisites for FANCD2-dependent MiDAS. Furthermore, K164 ubiquitination coordinates direct PCNA/FANCD2 colocalization in mitotic nuclei. Here, we show that PCNA K164 ubiquitination maintains human genome stability by promoting FANCD2-dependent MiDAS to prevent the accumulation of under-replicated DNA.
Collapse
Affiliation(s)
- Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emma Traband
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wesley Durrett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kendall S Bromley
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lidia Fiedorowicz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Institute for Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eric A Hendrickson
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
8
|
Madireddy A, Gerhardt J. Visualizing DNA replication by single-molecule analysis of replicated DNA. STAR Protoc 2023; 4:102721. [PMID: 38048218 PMCID: PMC10730367 DOI: 10.1016/j.xpro.2023.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Single-molecule analysis of replicated DNA (SMARD) is a unique technique that enables visualization of DNA replication at specific genomic regions at single-molecule resolution. Here, we present a protocol for visualizing DNA replication by SMARD. We describe steps for pulse labeling DNA, followed by isolating and stretching of genomic DNA. We then detail the detection of the replication at chromosomal regions through immunostaining and fluorescence in situ hybridization. Using SMARD, we can visualize replication initiation, progression, termination, and fork stalling. For complete details on the use and execution of this protocol, please refer to Norio et al. (2001) and Gerhardt et al. (2014).1,2.
Collapse
Affiliation(s)
- Advaitha Madireddy
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Department of Pediatrics Hematology/Oncology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Irony-Tur Sinai M, Kerem B. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences. Emerg Top Life Sci 2023; 7:277-287. [PMID: 37876349 PMCID: PMC10754330 DOI: 10.1042/etls20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types. Over the years, it became clear that a combination of different characteristics underlies the enhanced sensitivity of CFSs to replication stress. As of today, there is a strong evidence that the core fragility regions along CFSs overlap with actively transcribed large genes with delayed replication timing upon replication stress. Recently, the mechanistic basis for CFS instability was further extended to regions which span topologically associated domain (TAD) boundaries, generating a fragility signature composed of replication, transcription and genome organization. The presence of difficult-to-replicate AT-rich repeats was one of the early features suggested to characterize a subgroup of CFSs. These long stretches of AT-dinucleotide have the potential to fold into stable secondary structures which may impede replication fork progression, leaving the region under-replicated. Here, we focus on the molecular mechanisms underlying repeat instability at CFSs and on the proteins involved in the resolution of secondary structure impediments arising along repetitive sequence elements which are essential for the maintenance of genome stability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
10
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 microsatellite sequences by human DNA polymerase δ holoenzymes is dependent on dNTP and RPA levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566133. [PMID: 37986888 PMCID: PMC10659299 DOI: 10.1101/2023.11.07.566133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Difficult-to-Replicate Sequences (DiToRS) are natural impediments in the human genome that inhibit DNA replication under endogenous replication. Some of the most widely-studied DiToRS are A+T-rich, high "flexibility regions," including long stretches of perfect [AT/TA] microsatellite repeats that have the potential to collapse into hairpin structures when in single-stranded DNA (ssDNA) form and are sites of recurrent structural variation and double-stranded DNA (dsDNA) breaks. Currently, it is unclear how these flexibility regions impact DNA replication, greatly limiting our fundamental understanding of human genome stability. To investigate replication through flexibility regions, we utilized FRET to characterize the effects of the major ssDNA-binding complex, RPA, on the structure of perfect [AT/TA]25 microsatellite repeats and also re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with A+T-rich DNA template sequences. The results indicate that [AT/TA]25 sequences adopt hairpin structures that are unwound by RPA and pol δ holoenzymes support dNTP incorporation through the [AT/TA]25 sequences as well as an A+T-rich, non-structure forming sequence. Furthermore, the extent of dNTP incorporation is dependent on the sequence of the DNA template and the concentration of dNTPs. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on the concentration of dNTPs, whereas the effects of RPA on the replication of an A+T-rich, non-structure forming sequence are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how flexibility regions contribute to genome instability.
Collapse
Affiliation(s)
- Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristin A. Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
11
|
Wang N, Xu S, Egli D. Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol 2023; 33:872-886. [PMID: 37202286 PMCID: PMC11214770 DOI: 10.1016/j.tcb.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Duplicating a genome of 3 billion nucleotides is challenged by a variety of obstacles that can cause replication stress and affect the integrity of the genome. Recent studies show that replication fork slowing and stalling is prevalent in early mammalian development, resulting in genome instability and aneuploidy, and constituting a barrier to development in human reproduction. Genome instability resulting from DNA replication stress is a barrier to the cloning of animals and to the reprogramming of differentiated cells to induced pluripotent stem cells, as well as a barrier to cell transformation. Remarkably, the regions most impacted by replication stress are shared in these different cellular contexts, affecting long genes and flanking intergenic areas. In this review we integrate our knowledge of DNA replication stress in mammalian embryos, in programming, and in reprogramming, and we discuss a potential role for fragile sites in sensing replication stress and restricting cell cycle progression in health and disease.
Collapse
Affiliation(s)
- Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
12
|
Hoffman TE, Nangia V, Ryland C, Passanisi VJ, Armstrong C, Yang C, Spencer SL. Multiple cancers escape from multiple MAPK pathway inhibitors and use DNA replication stress signaling to tolerate aberrant cell cycles. Sci Signal 2023; 16:eade8744. [PMID: 37527351 PMCID: PMC10704347 DOI: 10.1126/scisignal.ade8744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway. In BRAF-driven melanoma cells treated with BRAF inhibitors, subpopulations of cells escape drug-induced quiescence through a nongenetic manner of adaptation and resume slow proliferation. Here, we found that this phenomenon is common to many cancer types driven by EGFR, KRAS, or BRAF mutations in response to multiple, clinically approved MAPK pathway inhibitors. In 2D cultures and 3D spheroid models of various cancer cell lines, a subset of cells escaped drug-induced quiescence within 4 days to resume proliferation. These "escapee" cells exhibited DNA replication deficits, accumulated DNA lesions, and mounted a stress response that depended on the ataxia telangiectasia and RAD3-related (ATR) kinase. We further identified that components of the Fanconi anemia (FA) DNA repair pathway are recruited to sites of mitotic DNA synthesis (MiDAS) in escapee cells, enabling successful completion of cell division. Analysis of patient tumor samples and clinical data correlated disease progression with an increase in DNA replication stress response factors. Our findings suggest that many MAPK pathway-mutant cancers rapidly escape drug action and that suppressing early stress tolerance pathways may achieve more durable clinical responses to MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Timothy E. Hoffman
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Varuna Nangia
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado-Anschutz Medical School, Aurora, CO, 80045, USA
| | - C. Ryland
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Victor J. Passanisi
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Claire Armstrong
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Chen Yang
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L. Spencer
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
13
|
Barreto-Galvez A, Niljikar M, Gagliardi J, Zhang R, Kumar V, Juruwala A, Pradeep A, Shaikh A, Tiwari P, Sharma K, Gerhardt J, Cao J, Kataoka K, Durbin A, Qi J, Ye BH, Madireddy A. Acetyl transferase EP300 deficiency leads to chronic replication stress mediated by defective fork protection at stalled replication forks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538781. [PMID: 37163075 PMCID: PMC10168362 DOI: 10.1101/2023.04.29.538781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the epigenetic regulator and global transcriptional activator, E1A binding protein (EP300), is being increasingly reported in aggressive hematological malignancies including adult T-cell leukemia/lymphoma (ATLL). However, the mechanistic contribution of EP300 dysregulation to cancer initiation and progression are currently unknown. Independent inhibition of EP300 in human cells results in the differential expression of genes involved in regulating the cell cycle, DNA replication and DNA damage response. Nevertheless, specific function played by EP300 in DNA replication initiation, progression and replication fork integrity has not been studied. Here, using ATLL cells as a model to study EP300 deficiency and an p300-selective PROTAC degrader, degrader as a pharmacologic tool, we reveal that EP300-mutated cells display prolonged cell cycle kinetics, due to pronounced dysregulations in DNA replication dynamics leading to persistent genomic instability. Aberrant DNA replication in EP300-mutated cells is characterized by elevated replication origin firing due to increased replisome pausing genome-wide. We demonstrate that EP300 deficiency results in nucleolytic degradation of nascently synthesized DNA at stalled forks due to a prominent defect in fork stabilization and protection. This in turn results in the accumulation of single stranded DNA gaps at collapsed replication forks, in EP300-deficient cells. Inhibition of Mre11 nuclease rescues the ssDNA accumulation indicating a dysregulation in downstream mechanisms that restrain nuclease activity at stalled forks. Importantly, we find that the absence of EP300 results in decreased expression of BRCA2 protein expression and a dependency on POLD3-mediated error-prone replication restart mechanisms. The overall S-phase abnormalities observed lead to under-replicated DNA in G2/M that instigates mitotic DNA synthesis. This in turn is associated with mitotic segregation defects characterized by elevated micronuclei formation, accumulation of cytosolic DNA and transmission of unrepaired inherited DNA lesions in the subsequent G1-phase in EP300-deficient cells. We demonstrate that the DNA replication dynamics of EP300-mutated cells ATLL cells recapitulate features of BRCA-deficient cancers. Altogether these results suggest that mutations in EP300 cause chronic DNA replication stress and defective replication fork restart results in persistent genomic instability that underlie aggressive chemo-resistant tumorigenesis in humans.
Collapse
|
14
|
Hoffman TE, Yang C, Nangia V, Ill CR, Spencer SL. Multiple cancer types rapidly escape from multiple MAPK inhibitors to generate mutagenesis-prone subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533211. [PMID: 36993538 PMCID: PMC10055235 DOI: 10.1101/2023.03.17.533211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway and many targeted inhibitors now exist for clinical use, but drug resistance remains a major issue. We recently showed that BRAF-driven melanoma cells treated with BRAF inhibitors can non-genetically adapt to drug within 3-4 days to escape quiescence and resume slow proliferation. Here we show that this phenomenon is not unique to melanomas treated with BRAF inhibitors but rather is widespread across many clinical MAPK inhibitors and cancer types driven by EGFR, KRAS, and BRAF mutations. In all treatment contexts examined, a subset of cells can escape drug-induced quiescence within four days to resume proliferation. These escapee cells broadly experience aberrant DNA replication, accumulate DNA lesions, spend longer in G2-M cell cycle phases, and mount an ATR-dependent stress response. We further identify the Fanconi anemia (FA) DNA repair pathway as critical for successful mitotic completion in escapees. Long-term cultures, patient samples, and clinical data demonstrate a broad dependency on ATR- and FA-mediated stress tolerance. Together, these results highlight the pervasiveness with which MAPK-mutant cancers are able to rapidly escape drug and the importance of suppressing early stress tolerance pathways to potentially achieve more durable clinical responses to targeted MAPK pathway inhibitors.
Collapse
|
15
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Benitez A, Sebald M, Kanagaraj R, Rodrigo-Brenni MC, Chan YW, Liang CC, West SC. GEN1 promotes common fragile site expression. Cell Rep 2023; 42:112062. [PMID: 36729836 DOI: 10.1016/j.celrep.2023.112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.
Collapse
Affiliation(s)
- Anaid Benitez
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Radhakrishnan Kanagaraj
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Monica C Rodrigo-Brenni
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Ying Wai Chan
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Chih-Chao Liang
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
17
|
Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells. Nat Commun 2023; 14:706. [PMID: 36759509 PMCID: PMC9911744 DOI: 10.1038/s41467-023-35992-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Oncogene activation creates DNA replication stress (RS) in cancer cells, which can generate under-replicated DNA regions (UDRs) that persist until cells enter mitosis. UDRs also have the potential to generate DNA bridges in anaphase cells or micronuclei in the daughter cells, which could promote genomic instability. To suppress such damaging changes to the genome, human cells have developed a strategy to conduct 'unscheduled' DNA synthesis in mitosis (termed MiDAS) that serves to rescue under-replicated loci. Previous studies have shown that MiDAS proceeds via a POLD3-dependent pathway that shows some features of break-induced replication. Here, we define how human cells utilize both DNA gap filling (REV1 and Pol ζ) and replicative (Pol δ) DNA polymerases to complete genome duplication following a perturbed S-phase. We present evidence for the existence of a polymerase-switch during MiDAS that is required for new DNA synthesis at UDRs. Moreover, we reveal that, upon oncogene activation, cancer cell survival is significantly compromised when REV1 is depleted, suggesting that REV1 inhibition might be a feasible approach for the treatment of some human cancers.
Collapse
|
18
|
Sebert M, Gachet S, Leblanc T, Rousseau A, Bluteau O, Kim R, Ben Abdelali R, Sicre de Fontbrune F, Maillard L, Fedronie C, Murigneux V, Bellenger L, Naouar N, Quentin S, Hernandez L, Vasquez N, Da Costa M, Prata PH, Larcher L, de Tersant M, Duchmann M, Raimbault A, Trimoreau F, Fenneteau O, Cuccuini W, Gachard N, Auger N, Tueur G, Blanluet M, Gazin C, Souyri M, Langa Vives F, Mendez-Bermudez A, Lapillonne H, Lengline E, Raffoux E, Fenaux P, Adès L, Forcade E, Jubert C, Domenech C, Strullu M, Bruno B, Buchbinder N, Thomas C, Petit A, Leverger G, Michel G, Cavazzana M, Gluckman E, Bertrand Y, Boissel N, Baruchel A, Dalle JH, Clappier E, Gilson E, Deriano L, Chevret S, Sigaux F, Socié G, Stoppa-Lyonnet D, de Thé H, Antoniewski C, Bluteau D, Peffault de Latour R, Soulier J. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 2023; 30:153-170.e9. [PMID: 36736290 DOI: 10.1016/j.stem.2023.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.
Collapse
Affiliation(s)
- Marie Sebert
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Stéphanie Gachet
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Thierry Leblanc
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Alix Rousseau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France
| | - Olivier Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Raouf Ben Abdelali
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Flore Sicre de Fontbrune
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Loïc Maillard
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Carèle Fedronie
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Naira Naouar
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Samuel Quentin
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Lucie Hernandez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Nadia Vasquez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Mélanie Da Costa
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Pedro H Prata
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lise Larcher
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Marie de Tersant
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Anna Raimbault
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Franck Trimoreau
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | | | - Wendy Cuccuini
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Nathalie Gachard
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | - Nathalie Auger
- Département de Biologie et Pathologie Médicales, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Giulia Tueur
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Maud Blanluet
- Department of Genetics, Institut Curie, Université de Paris, INSERM U830, Paris, France
| | - Claude Gazin
- INSERM U944/CNRS UMR7212, Paris, France; Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Michèle Souyri
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM UMR S1131, Hôpital Saint Louis, Paris, France
| | | | - Aaron Mendez-Bermudez
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | | | - Etienne Lengline
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Emmanuel Raffoux
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Pierre Fenaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lionel Adès
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Edouard Forcade
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Charlotte Jubert
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Carine Domenech
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Marion Strullu
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France
| | | | - Nimrod Buchbinder
- Centre Pédiatrique de Transplantation de Cellules Souches Hématopoïétiques, CHU de Rouen, Rouen, France
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, CHU de Nantes, Nantes, France
| | - Arnaud Petit
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Guy Leverger
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Gérard Michel
- Timone Enfants Hospital, Department of Pediatric Hematology and Oncology, Aix-Marseille University, EA 3279, Marseille, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, APHP Centre, Biotherapy Clinical Investigation Center, Inserm U1416, University of Paris, Imagine Institute, Paris, France
| | - Eliane Gluckman
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Eurocord, Department of Hematology, Saint-Louis Hospital, Paris, France
| | - Yves Bertrand
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France
| | - André Baruchel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean-Hugues Dalle
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Sylvie Chevret
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Division of Biostatistics, Saint-Louis Hospital, APHP, Paris, France
| | - François Sigaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Gérard Socié
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM UMR-976, Saint-Louis Hospital, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | | | - Hugues de Thé
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Collège de France, Paris, France
| | - Christophe Antoniewski
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Dominique Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; EPHE, PSL University, Paris, France.
| | - Régis Peffault de Latour
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean Soulier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France.
| |
Collapse
|
19
|
Barnes RP, Thosar SA, Opresko PL. Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road. Genes (Basel) 2023; 14:genes14020348. [PMID: 36833275 PMCID: PMC9956152 DOI: 10.3390/genes14020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed "telomere fragility". A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.
Collapse
Affiliation(s)
- Ryan P. Barnes
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
- Correspondence: (R.P.B.); (P.L.O.)
| | - Sanjana A. Thosar
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Patricia L. Opresko
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (R.P.B.); (P.L.O.)
| |
Collapse
|
20
|
Eckert KA. Nontraditional Roles of DNA Polymerase Eta Support Genome Duplication and Stability. Genes (Basel) 2023; 14:genes14010175. [PMID: 36672916 PMCID: PMC9858799 DOI: 10.3390/genes14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
DNA polymerase eta (Pol η) is a Y-family polymerase and the product of the POLH gene. Autosomal recessive inheritance of POLH mutations is the cause of the xeroderma pigmentosum variant, a cancer predisposition syndrome. This review summarizes mounting evidence for expanded Pol η cellular functions in addition to DNA lesion bypass that are critical for maintaining genome stability. In vitro, Pol η displays efficient DNA synthesis through difficult-to-replicate sequences, catalyzes D-loop extensions, and utilizes RNA-DNA hybrid templates. Human Pol η is constitutively present at the replication fork. In response to replication stress, Pol η is upregulated at the transcriptional and protein levels, and post-translational modifications regulate its localization to chromatin. Numerous studies show that Pol η is required for efficient common fragile site replication and stability. Additionally, Pol η can be recruited to stalled replication forks through protein-protein interactions, suggesting a broader role in replication fork recovery. During somatic hypermutations, Pol η is recruited by mismatch repair proteins and is essential for VH gene A:T basepair mutagenesis. Within the global context of repeat-dense genomes, the recruitment of Pol η to perform specialized functions during replication could promote genome stability by interrupting pure repeat arrays with base substitutions. Alternatively, not engaging Pol η in genome duplication is costly, as the absence of Pol η leads to incomplete replication and increased chromosomal instability.
Collapse
Affiliation(s)
- Kristin A Eckert
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17036, USA
| |
Collapse
|
21
|
Said M, Barra V, Balzano E, Talhaoui I, Pelliccia F, Giunta S, Naim V. FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells. Commun Biol 2022; 5:1395. [PMID: 36543851 PMCID: PMC9772326 DOI: 10.1038/s42003-022-04360-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Replication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs). One such protein is Senataxin (SETX), an RNA:DNA helicase involved in resolution of TRCs and R-loops. Here we identify a synthetic lethal interaction between SETX and proteins of the Fanconi anemia (FA) pathway. Depletion of SETX induces spontaneous under-replication and chromosome fragility due to active transcription and R-loops that persist in mitosis. These fragile loci are targeted by the Fanconi anemia protein, FANCD2, to facilitate the resolution of under-replicated DNA, thus preventing chromosome mis-segregation and allowing cells to proliferate. Mechanistically, we show that FANCD2 promotes mitotic DNA synthesis that is dependent on XPF and MUS81 endonucleases. Importantly, co-depleting FANCD2 together with SETX impairs cancer cell proliferation, without significantly affecting non-cancerous cells. Therefore, we uncovered a synthetic lethality between SETX and FA proteins for tolerance of transcription-mediated RS that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Maha Said
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Viviana Barra
- grid.10776.370000 0004 1762 5517Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Elisa Balzano
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ibtissam Talhaoui
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Franca Pelliccia
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Simona Giunta
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Valeria Naim
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
22
|
RAD18 opposes transcription-associated genome instability through FANCD2 recruitment. PLoS Genet 2022; 18:e1010309. [DOI: 10.1371/journal.pgen.1010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
DNA replication is a vulnerable time for genome stability maintenance. Intrinsic stressors, as well as oncogenic stress, can challenge replication by fostering conflicts with transcription and stabilizing DNA:RNA hybrids. RAD18 is an E3 ubiquitin ligase for PCNA that is involved in coordinating DNA damage tolerance pathways to preserve genome stability during replication. In this study, we show that RAD18 deficient cells have higher levels of transcription-replication conflicts and accumulate DNA:RNA hybrids that induce DNA double strand breaks and replication stress. We find that these effects are driven in part by failure to recruit the Fanconi Anemia protein FANCD2 at difficult to replicate and R-loop prone genomic sites. FANCD2 activation caused by splicing inhibition or aphidicolin treatment is critically dependent on RAD18 activity. Thus, we highlight a RAD18-dependent pathway promoting FANCD2-mediated suppression of R-loops and transcription-replication conflicts.
Collapse
|
23
|
Hodson C, van Twest S, Dylewska M, O'Rourke JJ, Tan W, Murphy VJ, Walia M, Abbouche L, Nieminuszczy J, Dunn E, Bythell-Douglas R, Heierhorst J, Niedzwiedz W, Deans AJ. Branchpoint translocation by fork remodelers as a general mechanism of R-loop removal. Cell Rep 2022; 41:111749. [PMID: 36476850 DOI: 10.1016/j.celrep.2022.111749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | | | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Winnie Tan
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Mannu Walia
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | | | - Elyse Dunn
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jörg Heierhorst
- Department of Medicine (St Vincent's Health), University of Melbourne, Fitzroy, VIC 3065, Australia; Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine (St Vincent's Health), University of Melbourne, Fitzroy, VIC 3065, Australia.
| |
Collapse
|
24
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Deshpande M, Paniza T, Jalloul N, Nanjangud G, Twarowski J, Koren A, Zaninovic N, Zhan Q, Chadalavada K, Malkova A, Khiabanian H, Madireddy A, Rosenwaks Z, Gerhardt J. Error-prone repair of stalled replication forks drives mutagenesis and loss of heterozygosity in haploinsufficient BRCA1 cells. Mol Cell 2022; 82:3781-3793.e7. [PMID: 36099913 DOI: 10.1016/j.molcel.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theodore Paniza
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nahed Jalloul
- Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08903, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jerzy Twarowski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nikica Zaninovic
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qiansheng Zhan
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08903, USA
| | - Advaitha Madireddy
- Department of Pediatric Hematology/Oncology, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
26
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
27
|
Caballero M, Ge T, Rebelo AR, Seo S, Kim S, Brooks K, Zuccaro M, Kanagaraj R, Vershkov D, Kim D, Smogorzewska A, Smolka M, Benvenisty N, West SC, Egli D, Mace EM, Koren A. Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for MCM10 in replication timing regulation. Hum Mol Genet 2022; 31:2899-2917. [PMID: 35394024 PMCID: PMC9433724 DOI: 10.1093/hmg/ddac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular proliferation depends on the accurate and timely replication of the genome. Several genetic diseases are caused by mutations in key DNA replication genes; however, it remains unclear whether these genes influence the normal program of DNA replication timing. Similarly, the factors that regulate DNA replication dynamics are poorly understood. To systematically identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a rigorous approach that considers the background variability of replication timing, we concluded that most samples displayed normal replication timing. However, mutations in two genes showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of replication timing. The second was MCM10, a highly conserved member of the pre-replication complex. Cells from a single patient carrying MCM10 mutations demonstrated replication timing variability comprising 46% of the genome and at different locations than RIF1 knockouts. Replication timing alterations in the mutated MCM10 cells were predominantly comprised of replication delays and initiation site gains and losses. Taken together, this study demonstrates the remarkable robustness of the human replication timing program and reveals MCM10 as a novel candidate modulator of DNA replication timing.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany Ge
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ana Rita Rebelo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seungmae Seo
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sean Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Kayla Brooks
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | | | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Marcus Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Huang H, Zhou G, Liu X, Deng L, Wu C, Zhang D, Liu H. Contrastive learning-based computational histopathology predict differential expression of cancer driver genes. Brief Bioinform 2022; 23:6651307. [PMID: 35901472 DOI: 10.1093/bib/bbac294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Digital pathological analysis is run as the main examination used for cancer diagnosis. Recently, deep learning-driven feature extraction from pathology images is able to detect genetic variations and tumor environment, but few studies focus on differential gene expression in tumor cells. RESULTS In this paper, we propose a self-supervised contrastive learning framework, HistCode, to infer differential gene expression from whole slide images (WSIs). We leveraged contrastive learning on large-scale unannotated WSIs to derive slide-level histopathological features in latent space, and then transfer it to tumor diagnosis and prediction of differentially expressed cancer driver genes. Our experiments showed that our method outperformed other state-of-the-art models in tumor diagnosis tasks, and also effectively predicted differential gene expression. Interestingly, we found the genes with higher fold change can be more precisely predicted. To intuitively illustrate the ability to extract informative features from pathological images, we spatially visualized the WSIs colored by the attention scores of image tiles. We found that the tumor and necrosis areas were highly consistent with the annotations of experienced pathologists. Moreover, the spatial heatmap generated by lymphocyte-specific gene expression patterns was also consistent with the manually labeled WSIs.
Collapse
Affiliation(s)
- Haojie Huang
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Gongming Zhou
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Xuejun Liu
- School of Computer Science and Technology, Nanjing Tech University, 211816, Nanjing, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Chen Wu
- The third affiliated hospital of Soochow University, 213100, Changzhou, China
| | - Dachuan Zhang
- The third affiliated hospital of Soochow University, 213100, Changzhou, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, 211816, Nanjing, China
| |
Collapse
|
30
|
Cui S, Walker JR, Batenburg NL, Zhu XD. Cockayne syndrome group B protein uses its DNA translocase activity to promote mitotic DNA synthesis. DNA Repair (Amst) 2022; 116:103354. [PMID: 35738143 DOI: 10.1016/j.dnarep.2022.103354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/30/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
Mitotic DNA synthesis, also known as MiDAS, has been suggested to be a form of RAD52-dependent break-induced replication (BIR) that repairs under-replicated DNA regions of the genome in mitosis prior to chromosome segregation. Cockayne syndrome group B (CSB) protein, a chromatin remodeler of the SNF2 family, has been implicated in RAD52-dependent BIR repair of stalled replication forks. However, whether CSB plays a role in MiDAS has not been characterized. Here, we report that CSB functions epistatically with RAD52 to promote MiDAS at common fragile sites in response to replication stress, and prevents genomic instability associated with defects in MiDAS. We show that CSB is dependent upon the conserved phenylalanine at position 796 (F796), which lies in the recently-reported pulling pin that is required for CSB's translocase activity, to mediate MiDAS, suggesting that CSB uses its DNA translocase activity to promote MiDAS. Structural analysis reveals that CSB shares with a subset of SNF2 family proteins a translocase regulatory region (TRR), which is important for CSB's function in MiDAS. We further demonstrate that phosphorylation of S1013 in the TRR regulates the function of CSB in MiDAS and restart of stalled forks but not in fork degradation in BRCA2-deficient cells and UV repair. Taken together, these results suggest that the DNA translocase activity of CSB in vivo is likely to be highly regulated by post-translational modification in a context-specific manner.
Collapse
Affiliation(s)
- Shixin Cui
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - John R Walker
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Nicole L Batenburg
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
31
|
Alvarez S, da Silva Almeida AC, Albero R, Biswas M, Barreto-Galvez A, Gunning TS, Shaikh A, Aparicio T, Wendorff A, Piovan E, Van Vlierberghe P, Gygi S, Gautier J, Madireddy A, A Ferrando A. Functional mapping of PHF6 complexes in chromatin remodeling, replication dynamics, and DNA repair. Blood 2022; 139:3418-3429. [PMID: 35338774 PMCID: PMC9185155 DOI: 10.1182/blood.2021014103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/27/2022] [Indexed: 01/05/2023] Open
Abstract
The Plant Homeodomain 6 gene (PHF6) encodes a nucleolar and chromatin-associated leukemia tumor suppressor with proposed roles in transcription regulation. However, specific molecular mechanisms controlled by PHF6 remain rudimentarily understood. Here we show that PHF6 engages multiple nucleosome remodeling protein complexes, including nucleosome remodeling and deacetylase, SWI/SNF and ISWI factors, the replication machinery and DNA repair proteins. Moreover, after DNA damage, PHF6 localizes to sites of DNA injury, and its loss impairs the resolution of DNA breaks, with consequent accumulation of single- and double-strand DNA lesions. Native chromatin immunoprecipitation sequencing analyses show that PHF6 specifically associates with difficult-to-replicate heterochromatin at satellite DNA regions enriched in histone H3 lysine 9 trimethyl marks, and single-molecule locus-specific analyses identify PHF6 as an important regulator of genomic stability at fragile sites. These results extend our understanding of the molecular mechanisms controlling hematopoietic stem cell homeostasis and leukemia transformation by placing PHF6 at the crossroads of chromatin remodeling, replicative fork dynamics, and DNA repair.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Mayukh Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Thomas S Gunning
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Anam Shaikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Tomas Aparicio
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Erich Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Università di Padova, Padova, Italy
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Genetics and Development, College of Physicians and Surgeons, and
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY; and
- Department of Pediatrics and
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
32
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Jang SW, Kim JM. The RPA inhibitor HAMNO sensitizes Fanconi anemia pathway-deficient cells. Cell Cycle 2022; 21:1468-1478. [PMID: 35506981 PMCID: PMC9278452 DOI: 10.1080/15384101.2022.2074200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The Fanconi anemia (FA) DNA repair pathway is required for DNA inter-strand crosslink (ICL) repair. Besides its role in ICL repair, FA proteins play a central role in stabilizing stalled replication forks, thereby ensuring genome integrity. We previously demonstrated that depletion of replication protein A (RPA) induces the activation of FA pathway leading to FANCD2 monoubiquitination and FANCD2 foci formation. Thus, we speculated that FA-deficient cells would be more sensitive to RPA inhibition compared to FA-proficient cells. Following treatment with RPA inhibitor HAMNO, we observed significant induction in FANCD2 monoubiquitination and foci formation as observed in RPA depletion. In addition, HAMNO treatment caused increased levels of ϒ-H2AX and S-phase accumulation in FA-deficient cells. Importantly, FA-deficient cells showed more increased sensitivity to HAMNO than FA-proficient cells. Moreover, in combination with cisplatin, HAMNO further enhanced the cytotoxicity of cisplatin in FA-deficient cells, while being less toxic against FA-proficient cells. This result suggests that RPA inhibition might be a potential therapeutic candidate for the treatment of FA pathway-deficient tumors.
Collapse
Affiliation(s)
- Seok-Won Jang
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| |
Collapse
|
34
|
Jasra S, Giricz O, Zeig-Owens R, Pradhan K, Goldfarb DG, Barreto-Galvez A, Silver AJ, Chen J, Sahu S, Gordon-Mitchell S, Choudhary GS, Aluri S, Bhagat TD, Shastri A, Bejan CA, Stockton SS, Spaulding TP, Thiruthuvanathan V, Goto H, Gerhardt J, Haider SH, Veerappan A, Bartenstein M, Nwankwo G, Landgren O, Weiden MD, Lekostaj J, Bender R, Fletcher F, Greenberger L, Ebert BL, Steidl U, Will B, Nolan A, Madireddy A, Savona MR, Prezant DJ, Verma A. High burden of clonal hematopoiesis in first responders exposed to the World Trade Center disaster. Nat Med 2022; 28:468-471. [PMID: 35256801 PMCID: PMC9394171 DOI: 10.1038/s41591-022-01708-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
Abstract
The terrorist attacks on the World Trade Center (WTC) created an unprecedented environmental exposure to aerosolized dust, gases and potential carcinogens. Clonal hematopoiesis (CH) is defined as the acquisition of somatic mutations in blood cells and is associated with smoking and exposure to genotoxic stimuli. Here we show that deep targeted sequencing of blood samples identified a significantly higher proportion of WTC-exposed first responders with CH (10%; 48 out of 481) when compared with non-WTC-exposed firefighters (6.7%; 17 out of 255; odds ratio, 3.14; 95% confidence interval, 1.64-6.03; P = 0.0006) after controlling for age, sex and race/ethnicity. The frequency of somatic mutations in WTC-exposed first responders showed an age-related increase and predominantly affected DNMT3A, TET2 and other CH-associated genes. Exposure of lymphoblastoid cells to WTC particulate matter led to dysregulation of DNA replication at common fragile sites in vitro. Moreover, mice treated with WTC particulate matter developed an increased burden of mutations in hematopoietic stem and progenitor cell compartments. In summary, the high burden of CH in WTC-exposed first responders provides a rationale for enhanced screening and preventative efforts in this population.
Collapse
Affiliation(s)
- Sakshi Jasra
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Division of Hematology and Medical Oncology, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Orsi Giricz
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Rachel Zeig-Owens
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Fire Department of the City of New York, Bureau of Health Services, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradhan
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David G Goldfarb
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Fire Department of the City of New York, Bureau of Health Services, Brooklyn, NY, USA
| | - Angelica Barreto-Galvez
- Department of Pediatrics Hematology/Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alexander J Silver
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jiahao Chen
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Srabani Sahu
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Shanisha Gordon-Mitchell
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Gaurav S Choudhary
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Srinivas Aluri
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Tushar D Bhagat
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Cosmin A Bejan
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon S Stockton
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Travis P Spaulding
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Victor Thiruthuvanathan
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Hiroki Goto
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Syed Hissam Haider
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Arul Veerappan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthias Bartenstein
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - George Nwankwo
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ola Landgren
- Myeloma Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Michael D Weiden
- Fire Department of the City of New York, Bureau of Health Services, Brooklyn, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | | | | | - Benjamin L Ebert
- Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anna Nolan
- Fire Department of the City of New York, Bureau of Health Services, Brooklyn, NY, USA.
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Advaitha Madireddy
- Department of Pediatrics Hematology/Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Michael R Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - David J Prezant
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA.
- Fire Department of the City of New York, Bureau of Health Services, Brooklyn, NY, USA.
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
35
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
36
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
37
|
Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 2022; 145:3072-3094. [PMID: 35045161 PMCID: PMC9536298 DOI: 10.1093/brain/awab464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Mutation in the senataxin (SETX) gene causes an autosomal dominant neuromuscular disorder, amyotrophic lateral sclerosis 4 (ALS4), characterized by degeneration of motor neurons, muscle weakness and atrophy. SETX is an RNA-DNA helicase that mediates resolution of co-transcriptional RNA:DNA hybrids (R-loops). The process of R-loop resolution is essential for the normal functioning of cells, including neurons. The molecular basis of ALS4 pathogenesis and the mechanism of R-loop resolution are unclear. We report that the zinc finger protein ZPR1 binds to RNA:DNA hybrids, recruits SETX onto R-loops and is critical for R-loop resolution. ZPR1 deficiency disrupts the integrity of R-loop resolution complexes containing SETX and causes increased R-loop accumulation throughout gene transcription. We uncover that SETX is a downstream target of ZPR1 and that overexpression of ZPR1 can rescue R-loop resolution complexe assembly in SETX-deficient cells but not vice versa. To uncover the mechanism of R-loop resolution, we examined the function of SETX-ZPR1 complexes using two genetic motor neuron disease models with altered R-loop resolution. Notably, chronic low levels of SETX-ZPR1 complexes onto R-loops result in a decrease of R-loop resolution activity causing an increase in R-loop levels in spinal muscular atrophy. ZPR1 overexpression increases recruitment of SETX onto R-loops, decreases R-loops and rescues the spinal muscular atrophy phenotype in motor neurons and patient cells. Strikingly, interaction of SETX with ZPR1 is disrupted in ALS4 patients that have heterozygous SETX (L389S) mutation. ZPR1 fails to recruit the mutant SETX homodimer but recruits the heterodimer with partially disrupted interaction between SETX and ZPR1. Interestingly, disruption of SETX-ZPR1 complexes causes increase in R-loop resolution activity leading to fewer R-loops in ALS4. Modulation of ZPR1 levels regulates R-loop accumulation and rescues the pathogenic R-loop phenotype in ALS4 patient cells. These findings originate a new concept, ‘opposite alterations in a cell biological activity (R-loop resolution) result in similar pathogenesis (neurodegeneration) in different genetic motor neuron disorders’. We propose that ZPR1 collaborates with SETX and may function as a molecular brake to regulate SETX-dependent R-loop resolution activity critical for the normal functioning of motor neurons.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Juliana Cuartas
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Pratik Gangwani
- Automated Driving Compute System Architecture, GM Global Technical Center - Sloan Engineering Center, Warren, Michigan 48092, USA
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology Foundation, IFOM Foundation, Via Adamello 16, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| |
Collapse
|
38
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
39
|
Stoy H, S Lang K, Merrikh H, Lopes M. Locus-Specific Analysis of Replication Dynamics and Detection of DNA-RNA Hybrids by Immuno Electron Microscopy. Methods Mol Biol 2022; 2528:67-89. [PMID: 35704186 PMCID: PMC9505203 DOI: 10.1007/978-1-0716-2477-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA-RNA hybrids can interfere with DNA replication, but the underlying intermediates and molecular mechanisms have remained elusive. Here, we describe a single molecule approach that allows to monitor DNA-RNA hybrids locus-specifically in the context of ongoing replication. Using restriction digestion, gel electrophoresis and gel elution, this workflow allows to efficiently isolate replication intermediates and to study replication dynamics across a specific genomic locus. Here, we applied this procedure to isolate a bacterial genomic locus carrying an inducible transcription-replication conflict. Moreover, we combined electron microscopy with S9.6-Gold immuno-labeling to detect DNA-RNA hybrids on the isolated replication intermediates. With some limitations, this approach may be adapted to locus-specific replication analyses in different organisms.
Collapse
Affiliation(s)
- Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Kevin S Lang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Wu W, He JN, Lan M, Zhang P, Chu WK. Transcription-Replication Collisions and Chromosome Fragility. Front Genet 2021; 12:804547. [PMID: 34956339 PMCID: PMC8703014 DOI: 10.3389/fgene.2021.804547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate replication of the entire genome is critical for cell division and propagation. Certain regions in the genome, such as fragile sites (common fragile sites, rare fragile sites, early replicating fragile sites), rDNA and telomeres, are intrinsically difficult to replicate, especially in the presence of replication stress caused by, for example, oncogene activation during tumor development. Therefore, these regions are particularly prone to deletions and chromosome rearrangements during tumorigenesis, rendering chromosome fragility. Although, the mechanism underlying their “difficult-to-replicate” nature and genomic instability is still not fully understood, accumulating evidence suggests transcription might be a major source of endogenous replication stress (RS) leading to chromosome fragility. Here, we provide an updated overview of how transcription affects chromosome fragility. Furthermore, we will use the well characterized common fragile sites (CFSs) as a model to discuss pathways involved in offsetting transcription-induced RS at these loci with a focus on the recently discovered atypical DNA synthesis repair pathway Mitotic DNA Synthesis (MiDAS).
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Mengjiao Lan
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Sci Rep 2021; 11:23429. [PMID: 34873180 PMCID: PMC8648741 DOI: 10.1038/s41598-021-02787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.
Collapse
|
42
|
Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proc Natl Acad Sci U S A 2021; 118:2106477118. [PMID: 34815340 PMCID: PMC8640788 DOI: 10.1073/pnas.2106477118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/23/2023] Open
Abstract
Common fragile sites (CFSs) are difficult-to-replicate genomic regions that form gaps and breaks on metaphase chromosomes under replication stress. They are hotspots for chromosomal instability in cancer. Repetitive sequences located at CFS loci are inefficiently copied by replicative DNA polymerase (Pol) delta. However, translesion synthesis Pol eta has been shown to efficiently polymerize CFS-associated repetitive sequences in vitro and facilitate CFS stability by a mechanism that is not fully understood. Here, by locus-specific, single-molecule replication analysis, we identified a crucial role for Pol eta (encoded by the gene POLH) in the in vivo replication of CFSs, even without exogenous stress. We find that Pol eta deficiency induces replication pausing, increases initiation events, and alters the direction of replication-fork progression at CFS-FRA16D in both lymphoblasts and fibroblasts. Furthermore, certain replication pause sites at CFS-FRA16D were associated with the presence of non-B DNA-forming motifs, implying that non-B DNA structures could increase replication hindrance in the absence of Pol eta. Further, in Pol eta-deficient fibroblasts, there was an increase in fork pausing at fibroblast-specific CFSs. Importantly, while not all pause sites were associated with non-B DNA structures, they were embedded within regions of increased genetic variation in the healthy human population, with mutational spectra consistent with Pol eta activity. From these findings, we propose that Pol eta replicating through CFSs may result in genetic variations found in the human population at these sites.
Collapse
|
43
|
Warburton A, Markowitz TE, Katz JP, Pipas JM, McBride AA. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genom Med 2021; 6:101. [PMID: 34848725 PMCID: PMC8632991 DOI: 10.1038/s41525-021-00264-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Oncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.
Collapse
Affiliation(s)
- Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua P Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M. Genomic Instability and Cancer Risk Associated with Erroneous DNA Repair. Int J Mol Sci 2021; 22:12254. [PMID: 34830134 PMCID: PMC8625880 DOI: 10.3390/ijms222212254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.
Collapse
Affiliation(s)
- Ken-ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Rika Kusumoto-Matsuo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
45
|
Ishiai M. Regulation of the Fanconi Anemia DNA Repair Pathway by Phosphorylation and Monoubiquitination. Genes (Basel) 2021; 12:genes12111763. [PMID: 34828369 PMCID: PMC8624177 DOI: 10.3390/genes12111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The Fanconi anemia (FA) DNA repair pathway coordinates a faithful repair mechanism for stalled DNA replication forks caused by factors such as DNA interstrand crosslinks (ICLs) or replication stress. An important role of FA pathway activation is initiated by monoubiquitination of FANCD2 and its binding partner of FANCI, which is regulated by the ATM-related kinase, ATR. Therefore, regulation of the FA pathway is a good example of the contribution of ATR to genome stability. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via phosphorylation and monoubiquitination.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
46
|
Lokanga RA, Kumari D, Usdin K. Common Threads: Aphidicolin-Inducible and Folate-Sensitive Fragile Sites in the Human Genome. Front Genet 2021; 12:708860. [PMID: 34567068 PMCID: PMC8456018 DOI: 10.3389/fgene.2021.708860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
The human genome has many chromosomal regions that are fragile, demonstrating chromatin breaks, gaps, or constrictions on exposure to replication stress. Common fragile sites (CFSs) are found widely distributed in the population, with the largest subset of these sites being induced by aphidicolin (APH). Other fragile sites are only found in a subset of the population. One group of these so-called rare fragile sites (RFSs) is induced by folate stress. APH-inducible CFSs are generally located in large transcriptionally active genes that are A + T rich and often enriched for tracts of AT-dinucleotide repeats. In contrast, all the folate-sensitive sites mapped to date consist of transcriptionally silenced CGG microsatellites. Thus, all the folate-sensitive fragile sites may have a very similar molecular basis that differs in key ways from that of the APH CFSs. The folate-sensitive FSs include FRAXA that is associated with Fragile X syndrome (FXS), the most common heritable form of intellectual disability. Both CFSs and RFSs can cause chromosomal abnormalities. Recent work suggests that both APH-inducible fragile sites and FRAXA undergo Mitotic DNA synthesis (MiDAS) when exposed to APH or folate stress, respectively. Interestingly, blocking MiDAS in both cases prevents chromosome fragility but increases the risk of chromosome mis-segregation. MiDAS of both APH-inducible and FRAXA involves conservative DNA replication and POLD3, an accessory subunit of the replicative polymerase Pol δ that is essential for break-induced replication (BIR). Thus, MiDAS is thought to proceed via some form of BIR-like process. This review will discuss the recent work that highlights the similarities and differences between these two groups of fragile sites and the growing evidence for the presence of many more novel fragile sites in the human genome.
Collapse
Affiliation(s)
| | - Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Park SH, Bennett-Baker P, Ahmed S, Arlt MF, Ljungman M, Glover TW, Wilson TE. Locus-specific transcription silencing at the FHIT gene suppresses replication stress-induced copy number variant formation and associated replication delay. Nucleic Acids Res 2021; 49:7507-7524. [PMID: 34181717 PMCID: PMC8287918 DOI: 10.1093/nar/gkab559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Impaired replication progression leads to de novo copy number variant (CNV) formation at common fragile sites (CFSs). We previously showed that these hotspots for genome instability reside in late-replicating domains associated with large transcribed genes and provided indirect evidence that transcription is a factor in their instability. Here, we compared aphidicolin (APH)-induced CNV and CFS frequency between wild-type and isogenic cells in which FHIT gene transcription was ablated by promoter deletion. Two promoter-deletion cell lines showed reduced or absent CNV formation and CFS expression at FHIT despite continued instability at the NLGN1 control locus. APH treatment led to critical replication delays that remained unresolved in G2/M in the body of many, but not all, large transcribed genes, an effect that was reversed at FHIT by the promoter deletion. Altering RNase H1 expression did not change CNV induction frequency and DRIP-seq showed a paucity of R-loop formation in the central regions of large genes, suggesting that R-loops are not the primary mediator of the transcription effect. These results demonstrate that large gene transcription is a determining factor in replication stress-induced genomic instability and support models that CNV hotspots mainly result from the transcription-dependent passage of unreplicated DNA into mitosis.
Collapse
Affiliation(s)
- So Hae Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Samreen Ahmed
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
49
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
50
|
Cyclin-Dependent Kinase-Mediated Phosphorylation of FANCD2 Promotes Mitotic Fidelity. Mol Cell Biol 2021; 41:e0023421. [PMID: 34096775 DOI: 10.1128/mcb.00234-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by increased risk for bone marrow failure and cancer. The FA proteins function together to repair damaged DNA. A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs upon exposure to DNA-damaging agents and during the S phase of the cell cycle. The regulatory mechanisms governing S-phase monoubiquitination, in particular, are poorly understood. In this study, we have identified a cyclin-dependent kinase (CDK) regulatory phosphosite (S592) proximal to the site of FANCD2 monoubiquitination. FANCD2 S592 phosphorylation was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and by immunoblotting with an S592 phospho-specific antibody. Mutation of S592 leads to abrogated monoubiquitination of FANCD2 during the S phase. Furthermore, FA-D2 (FANCD2-/-) patient cells expressing S592 mutants display reduced proliferation under conditions of replication stress and increased mitotic aberrations, including micronuclei and multinucleated cells. Our findings describe a novel cell cycle-specific regulatory mechanism for the FANCD2 protein that promotes mitotic fidelity.
Collapse
|