1
|
Kuś K, Carrique L, Kecman T, Fournier M, Hassanein SS, Aydin E, Kilchert C, Grimes JM, Vasiljeva L. DSIF factor Spt5 coordinates transcription, maturation and exoribonucleolysis of RNA polymerase II transcripts. Nat Commun 2025; 16:10. [PMID: 39746995 PMCID: PMC11695829 DOI: 10.1038/s41467-024-55063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Precursor messenger RNA (pre-mRNA) is processed into its functional form during RNA polymerase II (Pol II) transcription. Although functional coupling between transcription and pre-mRNA processing is established, the underlying mechanisms are not fully understood. We show that the key transcription termination factor, RNA exonuclease Xrn2 engages with Pol II forming a stable complex. Xrn2 activity is stimulated by Spt5 to ensure efficient degradation of nascent RNA leading to Pol II dislodgement from DNA. Our results support a model where Xrn2 first forms a stable complex with the elongating Pol II to achieve its full activity in degrading nascent RNA revising the current 'torpedo' model of termination, which posits that RNA degradation precedes Xrn2 engagement with Pol II. Spt5 is also a key factor that attenuates the expression of non-coding transcripts, coordinates pre-mRNA splicing and 3'-end processing. Our findings indicate that engagement with the transcribing Pol II is an essential regulatory step modulating the activity of RNA enzymes such as Xrn2, thus advancing our understanding of how RNA maturation is controlled during transcription.
Collapse
Affiliation(s)
- Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | - Loic Carrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Sayed Hassanein
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
You L, Wang C, Molodtsov V, Kuznedelov K, Miao X, Wenck BR, Ulisse P, Sanders TJ, Marshall CJ, Firlar E, Kaelber JT, Santangelo TJ, Ebright RH. Structural basis of archaeal FttA-dependent transcription termination. Nature 2024; 635:229-236. [PMID: 39322680 PMCID: PMC11616081 DOI: 10.1038/s41586-024-07979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
The ribonuclease FttA (also known as aCPSF and aCPSF1) mediates factor-dependent transcription termination in archaea1-3. Here we report the structure of a Thermococcus kodakarensis transcription pre-termination complex comprising FttA, Spt4, Spt5 and a transcription elongation complex (TEC). The structure shows that FttA interacts with the TEC in a manner that enables RNA to proceed directly from the TEC RNA-exit channel to the FttA catalytic centre and that enables endonucleolytic cleavage of RNA by FttA, followed by 5'→3' exonucleolytic cleavage of RNA by FttA and concomitant 5'→3' translocation of FttA on RNA, to apply mechanical force to the TEC and trigger termination. The structure further reveals that Spt5 bridges FttA and the TEC, explaining how Spt5 stimulates FttA-dependent termination. The results reveal functional analogy between bacterial and archaeal factor-dependent termination, functional homology between archaeal and eukaryotic factor-dependent termination, and fundamental mechanistic similarities in factor-dependent termination in bacteria, archaea, and eukaryotes.
Collapse
Affiliation(s)
- Linlin You
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Chengyuan Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Research Institute of Molecular and Cellular Medicine RUDN, Moscow, Russia
| | - Konstantin Kuznedelov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Xinyi Miao
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Breanna R Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Paul Ulisse
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Travis J Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Craig J Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Emre Firlar
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Jason T Kaelber
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
An H, Yang H, Lee D. Spt5 orchestrates cryptic transcript suppression and transcriptional directionality. Commun Biol 2024; 7:1370. [PMID: 39438667 PMCID: PMC11496750 DOI: 10.1038/s42003-024-07014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Spt5 is a well-conserved factor that manipulates multiple stages of transcription from promoter-proximal pausing (PPP) to termination. Recent studies have revealed an unexpected increase of antisense transcripts near promoters in cells expressing mutant Spt5. Here, we identify Spt5p-restricted intragenic antisense transcripts and their close relationship with sense transcription in yeast. We confirm that Spt5 CTR phosphorylation is also important to retain Spt5's facility to regulate antisense transcription. The genes whose antisense transcription is strongly suppressed by Spt5p share strong endogenous sense transcription and weak antisense transcription, and this pattern is conserved in humans. Mechanistically, we found that Spt5p depletion increased histone acetylation to initiate intragenic antisense transcription by altering chromatin structure. We additionally identified termination factors that appear to be involved in the ability of Spt5p to restrict antisense transcription. By unveiling a new role of Spt5 in finely balancing the bidirectionality of transcription, we demonstrate that Spt5-mediated suppression of DSIF complex regulated-unstable transcripts (DUTs) is essential to sustain the accurate transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Haejin An
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeokjun Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Guérin TM, Barrington C, Pobegalov G, Molodtsov MI, Uhlmann F. An extrinsic motor directs chromatin loop formation by cohesin. EMBO J 2024; 43:4173-4196. [PMID: 39160275 PMCID: PMC11445435 DOI: 10.1038/s44318-024-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped cohesin complex topologically entraps two DNA molecules to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape with wide-ranging implications for gene regulation, and cohesin is thought to achieve this by actively extruding DNA loops without topologically entrapping DNA. The 'loop extrusion' hypothesis finds motivation from in vitro observations-whether this process underlies in vivo chromatin loop formation remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, and acts as an extrinsic motor that expands these loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis. We propose that cohesin, akin to sister chromatid cohesion establishment at replication forks, forms chromatin loops by DNA-DNA capture at places of transcription, thus unifying cohesin's two roles in chromosome segregation and interphase genome organisation.
Collapse
Affiliation(s)
- Thomas M Guérin
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Université Paris Cité and Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
O’Brien MJ, Schrader JM, Ansari A. TFIIB-Termination Factor Interaction Affects Termination of Transcription on Genome-Wide Scale. Int J Mol Sci 2024; 25:8643. [PMID: 39201330 PMCID: PMC11354755 DOI: 10.3390/ijms25168643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Apart from its well-established role in the initiation of transcription, the general transcription factor TFIIB has been implicated in the termination step as well. The ubiquity of TFIIB involvement in termination as well as mechanistic details of its termination function, however, remain largely unexplored. Using GRO-seq analyses, we compared the terminator readthrough phenotype in the sua7-1 mutant (TFIIBsua7-1) and the isogenic wild type (TFIIBWT) strains. Approximately 74% of genes analyzed exhibited a 2-3-fold increase in readthrough of the poly(A)-termination signal in the TFIIBsua7-1 mutant compared to TFIIBWT cells. To understand the mechanistic basis of TFIIB's role in termination, we performed the mass spectrometry of TFIIB-affinity purified from chromatin and soluble cellular fractions-from TFIIBsua7-1 and TFIIBWT cells. TFIIB purified from the chromatin fraction of TFIIBWT cells exhibited significant enrichment of CF1A and Rat1 termination complexes. There was, however, a drastic decrease in TFIIB interaction with CF1A and Rat1 complexes in the TFIIBsua7-1 mutant. ChIP assays revealed about a 90% decline in the recruitment of termination factors in the TFIIBsua7-1 mutant compared to wild type cells. The overall conclusion of these results is that TFIIB affects the termination of transcription on a genome-wide scale, and the TFIIB-termination factor interaction plays a crucial role in the process.
Collapse
Affiliation(s)
| | | | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, USA; (M.J.O.); (J.M.S.)
| |
Collapse
|
6
|
O'Brien MJ, Schrader J, Ansari A. Genome-wide analysis of TFIIB's role in termination of transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581640. [PMID: 38915573 PMCID: PMC11195087 DOI: 10.1101/2024.02.22.581640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Apart from its well-established role in initiation of transcription, the general transcription factor TFIIB has been implicated in the termination step as well. The ubiquity of TFIIB involvement in termination as well as mechanistic details of its termination function, however, remains largely unexplored. To determine the prevalence of TFIIB's role in termination, we performed GRO-seq analyses in sua7-1 mutant (TFIIB sua7-1 ) and the isogenic wild type (TFIIB WT ) strains of yeast. Almost a three-fold increase in readthrough of the poly(A)-termination signal was observed in TFIIB sua7-1 mutant compared to the TFIIB WT cells. Of all genes analyzed in this study, nearly 74% genes exhibited a statistically significant increase in terminator readthrough in the mutant. To gain an understanding of the mechanistic basis of TFIIB involvement in termination, we performed mass spectrometry of TFIIB, affinity purified from chromatin and soluble cellular fractions, from TFIIB sua7-1 and TFIIB WT cells. TFIIB purified from the chromatin fraction of TFIIB WT cells exhibited significant enrichment of CF1A and Rat1 termination complexes. There was, however, a drastic decrease in TFIIB interaction with both CF1A and Rat1 termination complexes in TFIIB sua7-1 mutant. ChIP assay revealed that the recruitment of Pta1 subunit of CPF complex, Rna15 subunit of CF1 complex and Rat1 subunit of Rat1 complex registered nearly 90% decline in the mutant over wild type cells. The overall conclusion of these results is that TFIIB affects termination of transcription on a genome-wide scale, and TFIIB-termination factor interaction may play a crucial role in the process.
Collapse
|
7
|
Mérida-Cerro JA, Maraver-Cárdenas P, Rondón AG, Aguilera A. Rat1 promotes premature transcription termination at R-loops. Nucleic Acids Res 2024; 52:3623-3635. [PMID: 38281203 DOI: 10.1093/nar/gkae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Certain DNA sequences can adopt a non-B form in the genome that interfere with DNA-templated processes, including transcription. Among the sequences that are intrinsically difficult to transcribe are those that tend to form R-loops, three-stranded nucleic acid structures formed by a DNA-RNA hybrid and the displaced ssDNA. Here we compared the transcription of an endogenous gene with and without an R-loop-forming sequence inserted. We show that, in agreement with previous in vivo and in vitro analyses, transcription elongation is delayed by R-loops in yeast. Importantly, we demonstrate that the Rat1 transcription terminator factor facilitates transcription throughout such structures by inducing premature termination of arrested RNAPIIs. We propose that RNase H degrades the RNA moiety of the hybrid, providing an entry site for Rat1. Thus, we have uncovered an unanticipated function of Rat1 as a transcription restoring factor opening up the possibility that it may also promote transcription through other genomic DNA structures intrinsically difficult to transcribe. If R-loop-mediated transcriptional stress is not relieved by Rat1, it will cause genomic instability, probably through the increase of transcription-replication conflicts, a deleterious situation that could lead to cancer.
Collapse
Affiliation(s)
- José Antonio Mérida-Cerro
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Pablo Maraver-Cárdenas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
8
|
Zeng Y, Zhang HW, Wu XX, Zhang Y. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 2024; 628:887-893. [PMID: 38538796 DOI: 10.1038/s41586-024-07240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Exoribonucleases/chemistry
- Exoribonucleases/metabolism
- Exoribonucleases/ultrastructure
- Models, Molecular
- Protein Binding
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Polymerase II/ultrastructure
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/ultrastructure
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/ultrastructure
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/ultrastructure
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/ultrastructure
- Transcription Termination, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
- Transcriptional Elongation Factors/ultrastructure
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/ultrastructure
- Protein Domains
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/ultrastructure
Collapse
Affiliation(s)
- Yuan Zeng
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Wei Zhang
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Graber JH, Hoskinson D, Liu H, Kaczmarek Michaels K, Benson PS, Maki NJ, Wilson CL, McGrath C, Puleo F, Pearson E, Kuehner JN, Moore C. Mutations in yeast Pcf11, a conserved protein essential for mRNA 3' end processing and transcription termination, elicit the Environmental Stress Response. Genetics 2024; 226:iyad199. [PMID: 37967370 PMCID: PMC10847720 DOI: 10.1093/genetics/iyad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.
Collapse
Affiliation(s)
- Joel H Graber
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Derick Hoskinson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Huiyun Liu
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Peter S Benson
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Nathaniel J Maki
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | | | - Caleb McGrath
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Franco Puleo
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Erika Pearson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jason N Kuehner
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Claire Moore
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
10
|
O'Brien MJ, Ansari A. Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140968. [PMID: 37863410 PMCID: PMC10872477 DOI: 10.1016/j.bbapap.2023.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Although TFIIB is widely regarded as an initiation factor, recent reports have implicated it in multiple aspects of eukaryotic transcription. To investigate the broader role of TFIIB in transcription, we performed quantitative proteomic analysis of yeast TFIIB. We purified two different populations of TFIIB; one from soluble cell lysate, which is not engaged in transcription, and the other from the chromatin fraction which yields the transcriptionally active form of the protein. TFIIB purified from the chromatin exhibits several interactions that explain its non-canonical roles in transcription. RNAPII, TFIIF and TFIIH were the only components of the preinitiation complex with a significant presence in chromatin TFIIB. A notable feature was enrichment of all subunits of CF1 and Rat1 3' end processing-termination complexes in chromatin-TFIIB preparation. Subunits of the CPF termination complex were also detected in both chromatin and soluble derived TFIIB preparations. These results may explain the presence of TFIIB at the 3' end of genes during transcription as well as its role in promoter-termination interaction.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America
| | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
11
|
Carminati M, Rodríguez-Molina JB, Manav MC, Bellini D, Passmore LA. A direct interaction between CPF and RNA Pol II links RNA 3' end processing to transcription. Mol Cell 2023; 83:4461-4478.e13. [PMID: 38029752 PMCID: PMC10783616 DOI: 10.1016/j.molcel.2023.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.
Collapse
Affiliation(s)
| | | | - M Cemre Manav
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
12
|
Gallardo A, Dutagaci B. Binding of small molecule inhibitors to RNA polymerase-Spt5 complex impacts RNA and DNA stability. J Comput Aided Mol Des 2023; 38:1. [PMID: 37987925 PMCID: PMC10663202 DOI: 10.1007/s10822-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Spt5 is an elongation factor that associates with RNA polymerase II (Pol II) during transcription and has important functions in promoter-proximal pausing and elongation processivity. Spt5 was also recognized for its roles in the transcription of expanded-repeat genes that are related to neurodegenerative diseases. Recently, a set of Spt5-Pol II small molecule inhibitors (SPIs) were reported, which selectively inhibit mutant huntingtin gene transcription. Inhibition mechanisms as well as interaction sites of these SPIs with Pol II and Spt5 are not entirely known. In this study, we predicted the binding sites of three selected SPIs at the Pol II-Spt5 interface by docking and molecular dynamics simulations. Two molecules out of three demonstrated strong binding with Spt5 and Pol II, while the other molecule was more loosely bound and sampled multiple binding sites. Strongly bound SPIs indirectly affected RNA and DNA dynamics at the exit site as DNA became more flexible while RNA was stabilized by increased interactions with Spt5. Our results suggest that the transcription inhibition mechanism induced by SPIs can be related to Spt5-nucleic acid interactions, which were altered to some extent with strong binding of SPIs.
Collapse
Affiliation(s)
- Adan Gallardo
- Department of Molecular and Cell Biology, University of California Merced, 5200 North Lake Rd, Merced, CA, 95343, USA
| | - Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California Merced, 5200 North Lake Rd, Merced, CA, 95343, USA.
| |
Collapse
|
13
|
Han Z, Moore GA, Mitter R, Lopez Martinez D, Wan L, Dirac Svejstrup AB, Rueda DS, Svejstrup JQ. DNA-directed termination of RNA polymerase II transcription. Mol Cell 2023; 83:3253-3267.e7. [PMID: 37683646 PMCID: PMC7615648 DOI: 10.1016/j.molcel.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.
Collapse
Affiliation(s)
- Zhong Han
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George A Moore
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Lopez Martinez
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Li Wan
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David S Rueda
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
14
|
Kaur P, Nagar S, Mehta R, Sahadeo K, Vancura A. Hydroxyurea and inactivation of checkpoint kinase MEC1 inhibit transcription termination and pre-mRNA cleavage at polyadenylation sites in budding yeast. Sci Rep 2023; 13:13106. [PMID: 37567961 PMCID: PMC10421882 DOI: 10.1038/s41598-023-40294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. The transcription changes triggered by DDR depend on the nature of DNA damage, activation of checkpoint kinases, and the stage of cell cycle. The transcription changes can be localized and affect only damaged DNA, but they can be also global and affect genes that are not damaged. While the purpose of localized transcription inhibition is to avoid transcription of damaged genes and make DNA accessible for repair, the purpose and mechanisms of global transcription inhibition of undamaged genes are less well understood. We show here that a brief cell treatment with hydroxyurea (HU) globally inhibits RNA synthesis and transcription by RNA polymerase I, II, and III (RNAPI, RNAPII, and RNAPIII). HU reduces efficiency of transcription termination and inhibits pre-mRNA cleavage at the polyadenylation (pA) sites, destabilizes mRNAs, and shortens poly(A) tails of mRNAs, indicating defects in pre-mRNA 3' end processing. Inactivation of the checkpoint kinase Mec1p downregulates the efficiency of transcription termination and reduces the efficiency of pre-mRNAs clevage at the pA sites, suggesting the involvement of DNA damage checkpoint in transcription termination and pre-mRNA 3' end processing.
Collapse
Affiliation(s)
- Pritpal Kaur
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Kyle Sahadeo
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
15
|
Smurova K, Damizia M, Irene C, Stancari S, Berto G, Perticari G, Iacovella MG, D'Ambrosio I, Giubettini M, Philippe R, Baggio C, Callegaro E, Casagranda A, Corsini A, Polese VG, Ricci A, Dassi E, De Wulf P. Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 2023; 14:3172. [PMID: 37263996 DOI: 10.1038/s41467-023-38920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Kinetochores assemble on centromeres via histone H3 variant CENP-A and low levels of centromere transcripts (cenRNAs). The latter are ensured by the downregulation of RNA polymerase II (RNAPII) activity, and cenRNA turnover by the nuclear exosome. Using S. cerevisiae, we now add protein kinase Rio1 to this scheme. Yeast cenRNAs are produced either as short (median lengths of 231 nt) or long (4458 nt) transcripts, in a 1:1 ratio. Rio1 limits their production by reducing RNAPII accessibility and promotes cenRNA degradation by the 5'-3'exoribonuclease Rat1. Rio1 similarly curtails the concentrations of noncoding pericenRNAs. These exist as short transcripts (225 nt) at levels that are minimally two orders of magnitude higher than the cenRNAs. In yeast depleted of Rio1, cen- and pericenRNAs accumulate, CEN nucleosomes and kinetochores misform, causing chromosome instability. The latter phenotypes are also observed with human cells lacking orthologue RioK1, suggesting that CEN regulation by Rio1/RioK1 is evolutionary conserved.
Collapse
Affiliation(s)
- Ksenia Smurova
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Damizia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Carmela Irene
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Stefania Stancari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giovanna Berto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Perticari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giuseppina Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Ilaria D'Ambrosio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Maria Giubettini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Réginald Philippe
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Chiara Baggio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Elisabetta Callegaro
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Andrea Casagranda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Corsini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Vincenzo Gentile Polese
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anna Ricci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Peter De Wulf
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
16
|
Escobedo SE, McGovern SE, Jauregui-Lozano JP, Stanhope SC, Anik P, Singhal K, DeBernardis R, Weake VM. Targeted RNAi screen identifies transcriptional mechanisms that prevent premature degeneration of adult photoreceptors. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2023; 1:1187980. [PMID: 37901602 PMCID: PMC10603763 DOI: 10.3389/freae.2023.1187980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aging is associated with a decline in visual function and increased prevalence of ocular disease, correlating with changes in the transcriptome and epigenome of cells in the eye. Here, we sought to identify the transcriptional mechanisms that are necessary to maintain photoreceptor viability and function during aging. To do this, we performed a targeted photoreceptor-specific RNAi screen in Drosophila to identify transcriptional regulators whose knockdown results in premature, age-dependent retinal degeneration. From an initial set of 155 RNAi lines each targeting a unique gene and spanning a diverse set of transcription factors, chromatin remodelers, and histone modifiers, we identified 18 high-confidence target genes whose decreased expression in adult photoreceptors leads to premature and progressive retinal degeneration. These 18 target genes were enriched for factors involved in the regulation of transcription initiation, pausing, and elongation, suggesting that these processes are essential for maintaining the health of aging photoreceptors. To identify the genes regulated by these factors, we profiled the photoreceptor transcriptome in a subset of lines. Strikingly, two of the 18 target genes, Spt5 and domino, show similar changes in gene expression to those observed in photoreceptors with advanced age. Together, our data suggest that dysregulation of factors involved in transcription initiation and elongation plays a key role in shaping the transcriptome of aging photoreceptors. Further, our findings indicate that the age-dependent changes in gene expression not only correlate but might also contribute to an increased risk of retinal degeneration.
Collapse
Affiliation(s)
- Spencer E. Escobedo
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Sarah E. McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | | | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Paul Anik
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Kratika Singhal
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Ryan DeBernardis
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Montez M, Majchrowska M, Krzyszton M, Bokota G, Sacharowski S, Wrona M, Yatusevich R, Massana F, Plewczynski D, Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J 2023; 42:e112443. [PMID: 36705062 PMCID: PMC9975946 DOI: 10.15252/embj.2022112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy. We find that expression of the DOG1 gene is induced by salt stress, thereby causing a delay in seed germination. We uncover extensive transcriptional activity on the promoter of the DOG1 gene, which produces a variety of lncRNAs. These lncRNAs, named PUPPIES, are co-directionally transcribed and extend into the DOG1 coding region. We show that PUPPIES RNAs respond to salt stress and boost DOG1 expression, resulting in delayed germination. This positive role of pervasive PUPPIES transcription on DOG1 gene expression is associated with augmented pausing of RNA polymerase II, slower transcription and higher transcriptional burst size. These findings highlight the positive role of upstream co-directional transcription in controlling transcriptional dynamics of downstream genes.
Collapse
Affiliation(s)
- Miguel Montez
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Maria Majchrowska
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ruslan Yatusevich
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ferran Massana
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| |
Collapse
|
18
|
Rodríguez-Molina JB, West S, Passmore LA. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell 2023; 83:404-415. [PMID: 36634677 PMCID: PMC7614299 DOI: 10.1016/j.molcel.2022.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Gene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression. Transcription termination on protein-coding genes is intimately linked with 3' end cleavage and polyadenylation of transcripts, and it generally results in the production of a mature mRNA that is exported from the nucleus. Termination on many non-coding genes can also result in the production of a mature transcript. Termination is dynamically regulated-premature termination and transcription readthrough occur in response to a number of cellular signals, and these can have varied consequences on gene expression. Here, we review eukaryotic transcription termination by RNA polymerase II (RNAPII), focusing on protein-coding genes.
Collapse
Affiliation(s)
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter, UK.
| | | |
Collapse
|
19
|
Slight Variations in the Sequence Downstream of the Polyadenylation Signal Significantly Increase Transgene Expression in HEK293T and CHO Cells. Int J Mol Sci 2022; 23:ijms232415485. [PMID: 36555130 PMCID: PMC9779314 DOI: 10.3390/ijms232415485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an eGFP reporter and human HEK293T cells as a model system. In total, we evaluated 227,755 mutations located at different overlapping positions within +17..+56 bp downstream of the PAS for their ability to regulate the reporter gene expression. We found that the positions +17..+44 bp downstream of the PAS are more essential for gene upregulation than those located more distal to the PAS, and that the mutation sequences ensuring high levels of eGFP mRNA expression are extremely T-rich. Next, we validated the positive effect of a couple of mutations identified in the MPRA screening on the eGFP and luciferase protein expression. The most promising mutation increased the expression of the reporter proteins 13-fold and sevenfold on average in HEK293T and CHO cells, respectively. Overall, these findings might be useful for further improving the efficiency of production of therapeutic products, e.g., recombinant antibodies.
Collapse
|
20
|
Fong N, Sheridan RM, Ramachandran S, Bentley DL. The pausing zone and control of RNA polymerase II elongation by Spt5: Implications for the pause-release model. Mol Cell 2022; 82:3632-3645.e4. [PMID: 36206739 PMCID: PMC9555879 DOI: 10.1016/j.molcel.2022.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/24/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
The pause-release model of transcription proposes that 40-100 bases from the start site RNA Pol II pauses, followed by release into productive elongation. Pause release is facilitated by the PTEFb phosphorylation of the RNA Pol II elongation factor, Spt5. We mapped paused polymerases by eNET-seq and found frequent pausing in zones that extend ∼0.3-3 kb into genes even when PTEFb is inhibited. The fraction of paused polymerases or pausing propensity declines gradually over several kb and not abruptly as predicted for a discrete pause-release event. Spt5 depletion extends pausing zones, suggesting that it promotes the maturation of elongation complexes to a low-pausing state. The expression of mutants after Spt5 depletion showed that phosphomimetic substitutions in the CTR1 domain diminished pausing throughout genes. By contrast, mutants that prevent the phosphorylation of the Spt5 RNA-binding domain strengthened pausing. Thus, distinct Spt5 phospho-isoforms set the balance between pausing and elongation.
Collapse
Affiliation(s)
- Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Srinivas Ramachandran
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Song A, Chen FX. The pleiotropic roles of SPT5 in transcription. Transcription 2022; 13:53-69. [PMID: 35876486 PMCID: PMC9467590 DOI: 10.1080/21541264.2022.2103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.
Collapse
Affiliation(s)
- Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| |
Collapse
|
22
|
Xie J, Aiello U, Clement Y, Haidara N, Girbig M, Schmitzova J, Pena V, Müller CW, Libri D, Porrua O. An integrated model for termination of RNA polymerase III transcription. SCIENCE ADVANCES 2022; 8:eabm9875. [PMID: 35857496 PMCID: PMC9278858 DOI: 10.1126/sciadv.abm9875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA polymerase III (RNAPIII) synthesizes essential and abundant noncoding RNAs such as transfer RNAs. Controlling RNAPIII span of activity by accurate and efficient termination is a challenging necessity to ensure robust gene expression and to prevent conflicts with other DNA-associated machineries. The mechanism of RNAPIII termination is believed to be simpler than that of other eukaryotic RNA polymerases, solely relying on the recognition of a T-tract in the nontemplate strand. Here, we combine high-resolution genome-wide analyses and in vitro transcription termination assays to revisit the mechanism of RNAPIII transcription termination in budding yeast. We show that T-tracts are necessary but not always sufficient for termination and that secondary structures of the nascent RNAs are important auxiliary cis-acting elements. Moreover, we show that the helicase Sen1 plays a key role in a fail-safe termination pathway. Our results provide a comprehensive model illustrating how multiple mechanisms cooperate to ensure efficient RNAPIII transcription termination.
Collapse
Affiliation(s)
- Juanjuan Xie
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Yves Clement
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Nouhou Haidara
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Mathias Girbig
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, 69117 Heidelberg, Germany
- Joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jana Schmitzova
- Max Planck Institute for Biophysical Chemistry, Macromolecular Crystallography, Am Fassberg 11, 37077 Goettingen, Germany
| | - Vladimir Pena
- Max Planck Institute for Biophysical Chemistry, Macromolecular Crystallography, Am Fassberg 11, 37077 Goettingen, Germany
| | - Christoph W. Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Corresponding author. (D.L.); (O.P.)
| | - Odil Porrua
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Corresponding author. (D.L.); (O.P.)
| |
Collapse
|
23
|
Rodríguez-Molina JB, O'Reilly FJ, Fagarasan H, Sheekey E, Maslen S, Skehel JM, Rappsilber J, Passmore LA. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF. Mol Cell 2022; 82:2490-2504.e12. [PMID: 35584695 PMCID: PMC9380774 DOI: 10.1016/j.molcel.2022.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Most eukaryotic messenger RNAs (mRNAs) are processed at their 3' end by the cleavage and polyadenylation specificity factor (CPF/CPSF). CPF mediates the endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3' end of the mature transcript. The activation of CPF is highly regulated to maintain the fidelity of RNA processing. Here, using cryo-EM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. The region of Mpe1 that contacts RNA also promotes the activation of CPF endonuclease activity and controls polyadenylation. The Cft2 subunit of CPF antagonizes the RNA-stabilized configuration of Mpe1. In vivo, the depletion or mutation of Mpe1 leads to widespread defects in transcription termination by RNA polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in accurate 3' end processing, activating CPF, and ensuring timely transcription termination.
Collapse
Affiliation(s)
| | - Francis J O'Reilly
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | | | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
24
|
Shao R, Kumar B, Lidschreiber K, Lidschreiber M, Cramer P, Elsässer SJ. Distinct transcription kinetics of pluripotent cell states. Mol Syst Biol 2022; 18:e10407. [PMID: 35020268 PMCID: PMC8754154 DOI: 10.15252/msb.202110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi). The global reduction in RNA synthesis goes along with a genome-wide decrease of polymerase elongation velocity, which is related to epigenomic features and alterations in the Pol II termination window. Our data suggest that transcription activity is the main determinant of steady state mRNA levels in the naïve state and that genome-wide changes in transcription kinetics invoke ground and paused pluripotent states.
Collapse
Affiliation(s)
- Rui Shao
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| | - Banushree Kumar
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| | - Katja Lidschreiber
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Michael Lidschreiber
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Patrick Cramer
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Simon J Elsässer
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| |
Collapse
|
25
|
Challal D, Colin J, Villa T, Libri D. A Modified Cross-Linking Analysis of cDNAs (CRAC ) Protocol for Detecting RNA-Protein Interactions and Transcription at Single-Nucleotide Resolution. Methods Mol Biol 2022; 2477:35-55. [PMID: 35524110 DOI: 10.1007/978-1-0716-2257-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detecting protein-RNA interactions in vivo is essential for deciphering many important cellular pathways. Several methods have been described for this purpose, among which cross-linking analysis of cDNA, CRAC. This method relies on a first step of UV cross-linking of living yeast cells and several subsequent steps of purification of the protein-RNA complexes, some of which under denaturing condition. Without altering the general principle of the method, we have modified and improved the protocol, with the specific aim of sequencing the nascent RNA isolated from transcription complexes and generate high-resolution and directional transcription maps.
Collapse
Affiliation(s)
- Drice Challal
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
| | - Jessie Colin
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
- Ecole Pratique des Hautes Etudes - PSL Research university, Paris, France
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Paris, France
| | - Tommaso Villa
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Domenico Libri
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| |
Collapse
|
26
|
Li J, Yue L, Li Z, Zhang W, Zhang B, Zhao F, Dong X. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 2021; 10:70464. [PMID: 34964713 PMCID: PMC8716108 DOI: 10.7554/elife.70464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, aCPSF1 was reported to function as the long-sought global transcription termination factor of archaea; however, the working mechanism remains elusive. This work, through analyzing transcript-3′end-sequencing data of Methanococcus maripaludis, found genome-wide positive correlations of both the terminator uridine(U)-tract and aCPSF1 with hierarchical transcription termination efficacies (TTEs). In vitro assays determined that aCPSF1 specifically binds to the terminator U-tract with U-tract number-related binding affinity, and in vivo assays demonstrated the two elements are indispensable in dictating high TTEs, revealing that aCPSF1 and the terminator U-tract cooperatively determine high TTEs. The N-terminal KH domains equip aCPSF1 with specific-binding capacity to terminator U-tract and the aCPSF1-terminator U-tract cooperation; while the nuclease activity of aCPSF1 was also required for TTEs. aCPSF1 also guarantees the terminations of transcripts with weak intrinsic terminator signals. aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota exhibited similar U-tract cooperation in dictating TTEs. Therefore, aCPSF1 and the intrinsic U-rich terminator could work in a noteworthy two-in-one termination mode in archaea, which may be widely employed by archaeal phyla; using one trans-action factor to recognize U-rich terminator signal and cleave transcript 3′-end, the archaeal aCPSF1-dependent transcription termination may represent a simplified archetypal mode of the eukaryotic RNA polymerase II termination machinery.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Mo W, Liu B, Zhang H, Jin X, Lu D, Yu Y, Liu Y, Jia J, Long Y, Deng X, Cao X, Guo H, Zhai J. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing. Genome Biol 2021; 22:322. [PMID: 34823554 PMCID: PMC8613925 DOI: 10.1186/s13059-021-02543-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dynamic process of transcription termination produces transient RNA intermediates that are difficult to distinguish from each other via short-read sequencing methods. RESULTS Here, we use single-molecule nascent RNA sequencing to characterize the various forms of transient RNAs during termination at genome-wide scale in wildtype Arabidopsis and in atxrn3, fpa, and met1 mutants. Our data reveal a wide range of termination windows among genes, ranging from ~ 50 nt to over 1000 nt. We also observe efficient termination before downstream tRNA genes, suggesting that chromatin structure around the promoter region of tRNA genes may block pol II elongation. 5' Cleaved readthrough transcription in atxrn3 with delayed termination can run into downstream genes to produce normally spliced and polyadenylated mRNAs in the absence of their own transcription initiation. Consistent with previous reports, we also observe long chimeric transcripts with cryptic splicing in fpa mutant; but loss of CG DNA methylation has no obvious impact on termination in the met1 mutant. CONCLUSIONS Our method is applicable to establish a comprehensive termination landscape in a broad range of species.
Collapse
Affiliation(s)
- Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianhao Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongdong Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuelin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Beyond the canonical role of TFIIB in eukaryotic transcription. Curr Genet 2021; 68:61-67. [PMID: 34797379 PMCID: PMC8602988 DOI: 10.1007/s00294-021-01223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
The role of general transcription factor TFIIB in transcription extends well beyond its evolutionarily conserved function in initiation. Chromatin localization studies demonstrating binding of TFIIB to both the 5’ and 3’ ends of genes in a diverse set of eukaryotes strongly suggested a rather unexpected role of the factor in termination. TFIIB indeed plays a role in termination of transcription. TFIIB occupancy of the 3’ end is possibly due to its interaction with the termination factors residing there. Interaction of the promoter-bound TFIIB with factors occupying the 3’ end of a gene may be the basis of transcription-dependent gene looping. The proximity of the terminator-bound factors with the promoter in a gene loop has the potential to terminate promoter-initiated upstream anti-sense transcription thereby conferring promoter directionality. TFIIB, therefore, is emerging as a factor with pleiotropic roles in the transcription cycle. This could be the reason for preferential targeting of TFIIB by viruses. Further studies are needed to understand the critical role of TFIIB in viral pathogenesis in the context of its newly identified roles in termination, gene looping and promoter directionality.
Collapse
|
29
|
Hu S, Peng L, Xu C, Wang Z, Song A, Chen FX. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol Cell 2021; 81:4425-4439.e6. [PMID: 34534457 DOI: 10.1016/j.molcel.2021.08.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Transcription progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Here we utilize a rapid degradation system and reveal crucial functions of SPT5 in maintaining cellular and chromatin RNA polymerase II (Pol II) levels. Rapid SPT5 depletion causes a pronounced reduction of paused Pol II at promoters and enhancers, distinct from negative elongation factor (NELF) degradation resulting in short-distance paused Pol II redistribution. Most genes exhibit downregulation, but not upregulation, accompanied by greatly impaired transcription activation, altered chromatin landscape at enhancers, and severe Pol II processivity defects at gene bodies. Phosphorylation of an SPT5 linker at serine 666 potentiates pause release and is antagonized by Integrator-PP2A (INTAC) targeting SPT5 and Pol II, while phosphorylation of the SPT5 C-terminal region links to 3' end termination. Our findings position SPT5 as an essential positive regulator of global transcription.
Collapse
Affiliation(s)
- Shibin Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linna Peng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Congling Xu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenning Wang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
30
|
Wiedermannová J, Krásný L. β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Res 2021; 49:10221-10234. [PMID: 34551438 PMCID: PMC8501993 DOI: 10.1093/nar/gkab803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle (‘sitting duck’) to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5′–3′ RNA exonuclease (torpedo) latches itself onto the 5′ end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5′–3′ exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5′–3′ exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Correspondence may also be addressed to Jana Wiedermannová. Tel: +44 191 208 3226; Fax: +44 191 208 3205;
| | - Libor Krásný
- To whom correspondence should be addressed. Tel: +420 241063208;
| |
Collapse
|
31
|
A BRD4-mediated elongation control point primes transcribing RNA polymerase II for 3'-processing and termination. Mol Cell 2021; 81:3589-3603.e13. [PMID: 34324863 DOI: 10.1016/j.molcel.2021.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.
Collapse
|
32
|
Dhoondia Z, Elewa H, Malik M, Arif Z, Pique-Regi R, Ansari A. A termination-independent role of Rat1 in cotranscriptional splicing. Nucleic Acids Res 2021; 49:5520-5536. [PMID: 33978753 PMCID: PMC8191773 DOI: 10.1093/nar/gkab339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Rat1 is a 5′→3′ exoribonuclease in budding yeast. It is a highly conserved protein with homologs being present in fission yeast, flies, worms, mice and humans. Rat1 and its human homolog Xrn2 have been implicated in multiple nuclear processes. Here we report a novel role of Rat1 in mRNA splicing. We observed an increase in the level of unspliced transcripts in mutants of Rat1. Accumulation of unspliced transcripts was not due to the surveillance role of Rat1 in degrading unspliced mRNA, or an indirect effect of Rat1 function in termination of transcription or on the level of splicing factors in the cell, or due to an increased elongation rate in Rat1 mutants. ChIP-Seq analysis revealed Rat1 crosslinking to the introns of a subset of yeast genes. Mass spectrometry and coimmunoprecipitation revealed an interaction of Rat1 with the Clf1, Isy1, Yju2, Prp43 and Sub2 splicing factors. Furthermore, recruitment of splicing factors on the intron was compromised in the Rat1 mutant. Based on these findings we propose that Rat1 has a novel role in splicing of mRNA in budding yeast. Rat1, however, is not a general splicing factor as it crosslinks to only long introns with an average length of 400 nucleotides.
Collapse
Affiliation(s)
- Zuzer Dhoondia
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Hesham Elewa
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Marva Malik
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zahidur Arif
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA
| | - Athar Ansari
- To whom correspondence should be addressed. Tel: +1 313 577 9251; Fax: +1 313 571 6891;
| |
Collapse
|
33
|
Jaeger MG, Winter GE. Fast-acting chemical tools to delineate causality in transcriptional control. Mol Cell 2021; 81:1617-1630. [PMID: 33689749 DOI: 10.1016/j.molcel.2021.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.
Collapse
Affiliation(s)
- Martin G Jaeger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
34
|
Yang J, Cao Y, Ma L. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. Int J Mol Sci 2021; 22:ijms22073300. [PMID: 33804866 PMCID: PMC8037041 DOI: 10.3390/ijms22073300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.
Collapse
|
35
|
Fine gene expression regulation by minor sequence variations downstream of the polyadenylation signal. Mol Biol Rep 2021; 48:1539-1547. [PMID: 33517473 DOI: 10.1007/s11033-021-06160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The termination of transcription is a complex process that substantially contributes to gene regulation in eukaryotes. Previously, it was noted that a single cytosine deletion at the position + 32 bp relative to the single polyadenylation signal AAUAAA (hereafter the dC mutation) causes a 2-fold increase in the transcription level of the upstream eGFP reporter in mouse embryonic stem cells. Here, we analyzed the conservation of this phenomenon in immortalized mouse, human and drosophila cell lines and the influence of the dC mutation on the choice of the pre-mRNA cleavage sites. We have constructed dual-reporter plasmids to accurately measure the effect of the dC and other nearby located mutations on eGFP mRNA level by RT-qPCR. In this way, we found that the dC mutation leads to a 2-fold increase in the expression level of the upstream eGFP reporter gene in cultured mouse and human, but not in drosophila cells. In addition, 3' RACE analysis demonstrated that eGFP pre-mRNAs are cut at multiple positions between + 14 to + 31, and that the most proximal cleavage site becomes almost exclusively utilized in the presence of the dC mutation. We also identified new short sequence variations located within positions + 25.. + 40 and + 33.. + 48 that increase eGFP expression up to ~2-4-fold. Altogether, the positive effect of the dC mutation seems to be conserved in mouse embryonic stem cells, mouse embryonic 3T3 fibroblasts and human HEK293T cells. In the latter cells, the dC mutation appears to be involved in regulating pre-mRNA cleavage site selection. Finally, a multiplexed approach is proposed to identify motifs located downstream of cleavage site(s) that are essential for transcription termination.
Collapse
|
36
|
Integrator is a genome-wide attenuator of non-productive transcription. Mol Cell 2020; 81:514-529.e6. [PMID: 33385327 DOI: 10.1016/j.molcel.2020.12.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.
Collapse
|
37
|
The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med Chem 2020; 13:117-141. [PMID: 33295810 DOI: 10.4155/fmc-2020-0240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.
Collapse
|
38
|
Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194657. [PMID: 33246184 DOI: 10.1016/j.bbagrm.2020.194657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The transcription cycle of RNAPII is comprised of three consecutive steps; initiation, elongation and termination. It has been assumed that the initiation and termination steps occur in spatial isolation, essentially as independent events. A growing body of evidence, however, has challenged this dogma. First, factors involved in initiation and termination exhibit both a genetic and a physical interaction during transcription. Second, the initiation and termination factors have been found to occupy both ends of a transcribing gene. Third, physical interaction of initiation and termination factors occupying distal ends of a gene sometime results in the entire terminator region of a genes looping back and contact its cognate promoter, thereby forming a looped gene architecture during transcription. A logical interpretation of these findings is that the initiation and termination steps of transcription do not occur in isolation. There is extensive communication of factors occupying promoter and terminator ends of a gene during transcription cycle. This review entails a discussion of the promoter-terminator crosstalk and its implication in the context of transcription.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Scott Medler
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
39
|
Yue L, Li J, Zhang B, Qi L, Li Z, Zhao F, Li L, Zheng X, Dong X. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode. Nucleic Acids Res 2020; 48:9589-9605. [PMID: 32857850 PMCID: PMC7515710 DOI: 10.1093/nar/gkaa702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Transcription termination defines accurate transcript 3′-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3′-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3′end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3′-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.
Collapse
Affiliation(s)
- Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
40
|
Alpert T, Straube K, Carrillo Oesterreich F, Herzel L, Neugebauer KM. Widespread Transcriptional Readthrough Caused by Nab2 Depletion Leads to Chimeric Transcripts with Retained Introns. Cell Rep 2020; 33:108324. [PMID: 33113357 DOI: 10.1016/j.celrep.2020.108324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023] Open
Abstract
Nascent RNA sequencing has revealed that pre-mRNA splicing can occur shortly after introns emerge from RNA polymerase II (RNA Pol II). Differences in co-transcriptional splicing profiles suggest regulation by cis- and/or trans-acting factors. Here, we use single-molecule intron tracking (SMIT) to identify a cohort of regulators by machine learning in budding yeast. Of these, Nab2 displays reduced co-transcriptional splicing when depleted. Unexpectedly, these splicing defects are attributable to aberrant "intrusive" transcriptional readthrough from upstream genes, as revealed by long-read sequencing. Transcripts that originate from the intron-containing gene's own transcription start site (TSS) are efficiently spliced, indicating no direct role of Nab2 in splicing per se. This work highlights the coupling between transcription, splicing, and 3' end formation in the context of gene organization along chromosomes. We conclude that Nab2 is required for proper 3' end processing, which ensures gene-specific control of co-transcriptional RNA processing.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Decker TM. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol Biol 2020; 433:166657. [PMID: 32987031 DOI: 10.1016/j.jmb.2020.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
The transcription elongation factor Spt5 is conserved from bacteria to humans. In eukaryotes, Spt5 forms a complex with Spt4 and regulates processive transcription elongation. Recent studies on transcription elongation suggest different mechanistic roles in yeast versus mammals. Higher eukaryotes utilize Spt4-Spt5 (DSIF) to regulate promoter-proximal pausing, a transcription-regulatory mechanism that connects initiation to productive elongation. DSIF is a versatile transcription factor and has been implicated in both gene-specific regulation and transcription through nucleosomes. Future studies will further elucidate the role of DSIF in transcriptional dynamics and disentangle its inhibitory and enhancing activities in transcription.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
42
|
Sansó M, Parua PK, Pinto D, Svensson JP, Pagé V, Bitton DA, MacKinnon S, Garcia P, Hidalgo E, Bähler J, Tanny JC, Fisher RP. Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res 2020; 48:7154-7168. [PMID: 32496538 PMCID: PMC7367204 DOI: 10.1093/nar/gkaa474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mono-ubiquitylation of histone H2B (H2Bub1) and phosphorylation of elongation factor Spt5 by cyclin-dependent kinase 9 (Cdk9) occur during transcription by RNA polymerase II (RNAPII), and are mutually dependent in fission yeast. It remained unclear whether Cdk9 and H2Bub1 cooperate to regulate the expression of individual genes. Here, we show that Cdk9 inhibition or H2Bub1 loss induces intragenic antisense transcription of ∼10% of fission yeast genes, with each perturbation affecting largely distinct subsets; ablation of both pathways de-represses antisense transcription of over half the genome. H2Bub1 and phospho-Spt5 have similar genome-wide distributions; both modifications are enriched, and directly proportional to each other, in coding regions, and decrease abruptly around the cleavage and polyadenylation signal (CPS). Cdk9-dependence of antisense suppression at specific genes correlates with high H2Bub1 occupancy, and with promoter-proximal RNAPII pausing. Genetic interactions link Cdk9, H2Bub1 and the histone deacetylase Clr6-CII, while combined Cdk9 inhibition and H2Bub1 loss impair Clr6-CII recruitment to chromatin and lead to decreased occupancy and increased acetylation of histones within gene coding regions. These results uncover novel interactions between co-transcriptional histone modification pathways, which link regulation of RNAPII transcription elongation to suppression of aberrant initiation.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Danny A Bitton
- Research Department of Genetics, Evolution & Environment, University College, London, UK
| | - Sarah MacKinnon
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Patricia Garcia
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment, University College, London, UK
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Eaton JD, West S. Termination of Transcription by RNA Polymerase II: BOOM! Trends Genet 2020; 36:664-675. [DOI: 10.1016/j.tig.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
|
44
|
Parua PK, Kalan S, Benjamin B, Sansó M, Fisher RP. Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II. Nat Commun 2020; 11:4338. [PMID: 32859893 PMCID: PMC7455706 DOI: 10.1038/s41467-020-18173-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Reversible phosphorylation of Pol II and accessory factors helps order the transcription cycle. Here, we define two kinase-phosphatase switches that operate at different points in human transcription. Cdk9/cyclin T1 (P-TEFb) catalyzes inhibitory phosphorylation of PP1 and PP4 complexes that localize to 3′ and 5′ ends of genes, respectively, and have overlapping but distinct specificities for Cdk9-dependent phosphorylations of Spt5, a factor instrumental in promoter-proximal pausing and elongation-rate control. PP1 dephosphorylates an Spt5 carboxy-terminal repeat (CTR), but not Spt5-Ser666, a site between Kyrpides-Ouzounis-Woese (KOW) motifs 4 and 5, whereas PP4 can target both sites. In vivo, Spt5-CTR phosphorylation decreases as transcription complexes pass the cleavage and polyadenylation signal (CPS) and increases upon PP1 depletion, consistent with a PP1 function in termination first uncovered in yeast. Depletion of PP4-complex subunits increases phosphorylation of both Ser666 and the CTR, and promotes redistribution of promoter-proximally paused Pol II into gene bodies. These results suggest that switches comprising Cdk9 and either PP4 or PP1 govern pause release and the elongation-termination transition, respectively. Cdk9 (P-TEFb) and its substrate Spt5 influence events throughout the transcription cycle. Here, the authors define two switches with the potential to regulate promoter-proximal pause release and termination, respectively containing phosphatases PP4 and PP1, which are both inhibited by Cdk9, but have different specificities for sites on Spt5 and occupy opposite ends of genes.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Sampada Kalan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Bradley Benjamin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Miriam Sansó
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA.
| |
Collapse
|
45
|
Geisberg JV, Moqtaderi Z, Struhl K. The transcriptional elongation rate regulates alternative polyadenylation in yeast. eLife 2020; 9:e59810. [PMID: 32845240 PMCID: PMC7532003 DOI: 10.7554/elife.59810] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Yeast cells undergoing the diauxic response show a striking upstream shift in poly(A) site utilization, with increased use of ORF-proximal poly(A) sites resulting in shorter 3' mRNA isoforms for most genes. This altered poly(A) pattern is extremely similar to that observed in cells containing Pol II derivatives with slow elongation rates. Conversely, cells containing derivatives with fast elongation rates show a subtle downstream shift in poly(A) sites. Polyadenylation patterns of many genes are sensitive to both fast and slow elongation rates, and a global shift of poly(A) utilization is strongly linked to increased purine content of sequences flanking poly(A) sites. Pol II processivity is impaired in diauxic cells, but strains with reduced processivity and normal Pol II elongation rates have normal polyadenylation profiles. Thus, Pol II elongation speed is important for poly(A) site selection and for regulating poly(A) patterns in response to environmental conditions.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
46
|
A panorama of transcription-coupled repair in yeast chromatin. Proc Natl Acad Sci U S A 2020; 117:20991-20993. [PMID: 32817470 DOI: 10.1073/pnas.2014392117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin. Proc Natl Acad Sci U S A 2020; 117:18608-18616. [PMID: 32690696 DOI: 10.1073/pnas.2003868117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that removes RNA polymerase (RNAP)-stalling DNA damage from the transcribed strand (TS) of active genes. TC-NER deficiency in humans is associated with the severe neurological disorder Cockayne syndrome. Initiation of TC-NER is mediated by specific factors such as the human Cockayne syndrome group B (CSB) protein or its yeast homolog Rad26. However, the genome-wide role of CSB/Rad26 in TC-NER, particularly in the context of the chromatin organization, is unclear. Here, we used single-nucleotide resolution UV damage mapping data to show that Rad26 and its ATPase activity is critical for TC-NER downstream of the first (+1) nucleosome in gene coding regions. However, TC-NER on the transcription start site (TSS)-proximal half of the +1 nucleosome is largely independent of Rad26, likely due to high occupancy of the transcription initiation/repair factor TFIIH in this nucleosome. Downstream of the +1 nucleosome, the combination of low TFIIH occupancy and high occupancy of the transcription elongation factor Spt4/Spt5 suppresses TC-NER in Rad26-deficient cells. We show that deletion of SPT4 significantly restores TC-NER across the genome in a rad26∆ mutant, particularly in the downstream nucleosomes. These data demonstrate that the requirement for Rad26 in TC-NER is modulated by the distribution of TFIIH and Spt4/Spt5 in transcribed chromatin and Rad26 mainly functions downstream of the +1 nucleosome to remove TC-NER suppression by Spt4/Spt5.
Collapse
|
48
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
49
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
50
|
Lee SD, Liu HY, Graber JH, Heller-Trulli D, Kaczmarek Michaels K, Cerezo JF, Moore CL. Regulation of the Ysh1 endonuclease of the mRNA cleavage/polyadenylation complex by ubiquitin-mediated degradation. RNA Biol 2020; 17:689-702. [PMID: 32009536 PMCID: PMC7237158 DOI: 10.1080/15476286.2020.1724717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mutation of the essential yeast protein Ipa1 has previously been demonstrated to cause defects in pre-mRNA 3' end processing and growth, but the mechanism underlying these defects was not clear. In this study, we show that the ipa1-1 mutation causes a striking depletion of Ysh1, the evolutionarily conserved endonuclease subunit of the 19-subunit mRNA Cleavage/Polyadenylation (C/P) complex, but does not decrease other C/P subunits. YSH1 overexpression rescues both the growth and 3' end processing defects of the ipa1-1 mutant. YSH1 mRNA level is unchanged in ipa1-1 cells, and proteasome inactivation prevents Ysh1 loss and causes accumulation of ubiquitinated Ysh1. Ysh1 ubiquitination is mediated by the Ubc4 ubiquitin-conjugating enzyme and Mpe1, which in addition to its function in C/P, is also a RING ubiquitin ligase. In summary, Ipa1 affects mRNA processing by controlling the availability of the C/P endonuclease and may represent a regulatory mechanism that could be rapidly deployed to facilitate reprogramming of cellular responses.
Collapse
Affiliation(s)
- Susan D. Lee
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Hui-Yun Liu
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Joel H. Graber
- Computational Biology and Bioinformatics Core, Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Daniel Heller-Trulli
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | | | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|