1
|
Menapree P, Duangthim N, Sae-Fung A, Sonkaew S, Jitkaew S. CDK4/6 inhibitors upregulate cIAP1/2, and Smac mimetic LCL161 enhances their antitumor effects in cholangiocarcinoma cells. Sci Rep 2025; 15:6826. [PMID: 40000765 PMCID: PMC11861974 DOI: 10.1038/s41598-025-90997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive bile duct cancer with a poor prognosis and high mortality rates, primarily due to the lack of early diagnosis and effective treatments. We have shown that cyclin D and CDK4/6, key regulators of cell cycle progression, are highly expressed in CCA patients. Moreover, high levels of cyclin D, CDK4, and CDK6 are associated with shorter survival in CCA patients, suggesting that cyclin D and CDK4/6 might be potential targets for CCA therapy. However, we have demonstrated that CDK4/6 inhibitor palbociclib monotherapy is less effective in CCA cells. We have identified Cellular Inhibitor of Apoptosis Proteins 1 and 2 (cIAP1/2), NF-κB target genes that their expression is associated with shorter survival in CCA patients, as potential key regulators of the CDK4/6 inhibitor response. We showed that palbociclib, a CDK4/6 inhibitor, increases phosphorylated p65 and its nuclear translocation, resulting in cIAP1/2 upregulation in CCA cells. Therefore, we hypothesized that the combination of a cIAP1/2 antagonist and a CDK4/6 inhibitor might enhance the CDK4/6 inhibitor response. Interestingly, combined treatment with the Smac mimetic LCL161, a cIAP1/2 antagonist, and palbociclib synergistically inhibits cell proliferation and induces cell death in both 2D monolayer and 3D spheroid CCA cultures. We further showed that this combination treatment has less effect on non-tumor cholangiocytes and human peripheral blood mononuclear cells (PBMCs). Our findings demonstrate for the first time that the combined treatment of Smac mimetics and CDK4/6 inhibitors is a promising novel targeted therapy for CCA patients.
Collapse
Affiliation(s)
- Pimchanok Menapree
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattaya Duangthim
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apiwit Sae-Fung
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasiprapa Sonkaew
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Zhou B, Chen M, Hao Z, Li L, Zhang Y, Fang B, Shao M, Ren G, Wang K, Liu H, Zhu J, Zhang X, Yuan S, Sitou I, Zhao J, Huang J, Yu Z, Qiu F. Zinc-copper bimetallic nanoplatforms trigger photothermal-amplified cuproptosis and cGAS-STING activation for enhancing triple-negative breast cancer immunotherapy. J Nanobiotechnology 2025; 23:137. [PMID: 39994712 PMCID: PMC11849371 DOI: 10.1186/s12951-025-03186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by high rates of metastasis and recurrence, along with a low sensitivity to immunotherapy, resulting in a paucity of effective therapeutic strategies. Herein, we have developed polydopamine-coated zinc-copper bimetallic nanoplatforms (Cu-ZnO2@PDA nanoplatforms, abbreviated CZP NPs) that can efficiently induce photothermal amplified cuproptosis and cGAS-STING signaling pathway activation, thereby reversing the immunosuppressive tumor microenvironment of TNBC, upregulating PD-L1 expression, and boosting the efficacy of anti-programmed death-ligand 1 antibody (αPD-L1)-based immunotherapy. Within the acidic tumor microenvironment (TME), CZP NPs spontaneously release copper and zinc ions and hydrogen peroxide, generating highly oxidative hydroxyl radicals and downregulating iron-sulfur cluster proteins. These actions lead to the disruption of mitochondrial integrity, the release of mitochondrial DNA (mtDNA) and irreversible cuproptosis. The further synergy between mtDNA and zinc ions potentiates the activation of the cGAS-STING signaling pathway, triggering a robust antitumor immune response and sensitizing TNBC to αPD-L1 therapy. Additionally, using an 808 nm near-infrared laser for photothermal therapy significantly augments these effects, resulting in a cascade amplification of therapeutic efficacy against TNBC. The strategic combination of CZP NPs with αPD-L1 markedly bolsters antitumor immunity and suppresses tumor growth. Collectively, our findings present a promising synergistic strategy for TNBC treatment by linking cuproptosis, cGAS-STING activation, photothermal therapy, and immunotherapy.
Collapse
Affiliation(s)
- Bangyi Zhou
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Mengyao Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Zhixing Hao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Yixin Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Baoru Fang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, P. R. China
| | - Miner Shao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Guohong Ren
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Ke Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, P. R. China
| | - Huiying Liu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Jingxuan Zhu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Xinyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Shuyan Yuan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - I Sitou
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Jing Zhao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, P. R. China.
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
| |
Collapse
|
3
|
Jiang Q, Chen Z, Jiang J, Chen Q, Lan H, Zhu J, Mao W. The role of cGAS-STING in remodeling the tumor immune microenvironment induced by radiotherapy. Crit Rev Oncol Hematol 2025; 209:104658. [PMID: 39956501 DOI: 10.1016/j.critrevonc.2025.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
The activation of the cGAS-STING pathway occurs when tumor cell DNA is damaged by ionizing radiation. Once triggered, this pathway reshapes the tumor immune microenvironment by promoting the maturation, activation, polarization, and immune-killing capacity of immune cells, as well as by inducing the release of interferons and the expression of immune-related genes. In addition, the gut microbiota and various mechanisms of programmed cell death interact with the cGAS-STING pathway, further influencing its function in remodeling the immune microenvironment after radiotherapy. Therefore, investigating the mechanisms of the cGAS-STING pathway in reshaping the tumor immune microenvironment post-radiotherapy can not only optimize the efficacy of combined radiotherapy and immunotherapy but also provide new research directions and potential targets for cancer treatment.
Collapse
Affiliation(s)
- Qingyu Jiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Zhejiang Chinese Medical University, Hangzhou 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Zhiheng Chen
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| |
Collapse
|
4
|
Gao M, Li H, Zhang J. RB functions as a key regulator of senescence and tumor suppression. Semin Cancer Biol 2025; 109:1-7. [PMID: 39675647 DOI: 10.1016/j.semcancer.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
The Retinoblastoma (RB) protein is crucial for regulating gene transcription and chromatin remodeling, impacting cell cycle progression, cellular senescence, and tumorigenesis. Cellular senescence, characterized by irreversible growth arrest and phenotypic alterations, serves as a vital barrier against tumor progression and age-related diseases. RB is crucial in mediating senescence and tumor suppression by modulating the RB-E2F pathway and cross talking with other key senescence effectors such as p53 and p16INK4a. The interplay between RB-mediated cell cycle arrest and cellular senescence offers critical insights into tumorigenesis and potential therapeutic strategies. Leveraging RB-mediated senescence presents promising opportunities for cancer therapy, including novel approaches in tumor immunotherapy designed to enhance treatment efficacy. This review highlights recent advancements in the RB signaling pathway, focusing on its roles in cellular senescence and tumor suppression, and discusses its potential to improve tumor management and clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior/Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Haiou Li
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior/Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Chen XP, Yang ZT, Yang SX, Li EM, Xie L. PAK2 as a therapeutic target in cancer: Mechanisms, challenges, and future perspectives. Biochim Biophys Acta Rev Cancer 2025; 1880:189246. [PMID: 39694422 DOI: 10.1016/j.bbcan.2024.189246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
P21-activated kinases (PAKs) are crucial regulators within cellular signaling pathways and have been implicated in a range of human diseases, including cancer. Among the PAK family, PAK2 is widely expressed across various tissues and has emerged as a significant driver of cancer progression. However, systematic studies on PAK2 remain limited. This review provides a comprehensive overview of PAK2's role in cancer, focusing on its involvement in processes such as angiogenesis, metastasis, cell survival, metabolism, immune response, and drug resistance. We also explore its function in key cancer signaling pathways and the potential of small-molecule inhibitors targeting PAK2 for therapeutic purposes. Despite promising preclinical data, no PAK2 inhibitors have reached clinical practice, underscoring challenges related to their specificity and therapeutic application. This review highlights the biological significance of PAK2 in cancer and its interactions with critical signaling pathways, offering valuable insights for future research. We also discuss the major obstacles in developing PAK inhibitors and propose strategies to overcome these barriers, paving the way for their clinical translation.
Collapse
Affiliation(s)
- Xin-Pan Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zi-Tao Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shang-Xin Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; The Laboratory for Cancer Molecular Biology, Shantou Academy Medical Sciences, Shantou 515041, Guangdong, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515041, Guangdong, China.
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
6
|
Wu F, Zhang H, Hao M. Interactions between key genes and pathways in prostate cancer progression and therapy resistance. Front Oncol 2025; 15:1467540. [PMID: 39917165 PMCID: PMC11799259 DOI: 10.3389/fonc.2025.1467540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Prostate cancer is one of the most prevalent malignant tumors in men, particularly in regions with a high Human Development Index. While the long-term survival rate for localized prostate cancer is relatively high, the mortality rate remains significantly elevated once the disease progresses to advanced stages, even with various intensive treatment modalities. The primary obstacle to curing advanced prostate cancer is the absence of comprehensive treatment strategies that effectively target the highly heterogeneous tumors at both genetic and molecular levels. Prostate cancer development is a complex, multigenic, and multistep process that involves numerous gene mutations, alteration in gene expression, and changes in signaling pathways. Key genetic and pathway alterations include the amplification and/or mutation of the androgen receptor, the loss of Rb, PTEN, and p53, the activation of the WNT signaling pathway, and the amplification of the MYC oncogene. This review summarizes the mechanisms by which these genes influence the progression of prostate cancer and highlights the interactions between multiple genes and their relationship with prostate cancer. Additionally, we reviewed the current state of treatments targeting these genes and signaling pathways, providing a comprehensive overview of therapeutic approaches in the context of prostate cancer.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hengsen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Miaomiao Hao
- Department of Pathology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Shangguan X, Huang Y, Chen C, Wu W, Ma X, You C, Chen L, Huang J. Prognostic assessment value of immune escape-related genes in patients with acute myeloid leukemia. Leuk Lymphoma 2025; 66:72-83. [PMID: 39311489 DOI: 10.1080/10428194.2024.2404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Abstract
This study explores the prognostic value of immune escape-related genes in acute myeloid leukemia (AML) patients. Using TARGET_AML and GSE37642 datasets, we identified CEP55, DNAJC13, and EMC2 as significant prognostic indicators, with high transcript abundance correlating with poor outcomes. Consensus clustering divided patients into two groups, with Cluster 1 showing worse prognosis. A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the high-risk group experiencing worse outcomes. The risk score was an independent prognostic factor. Functional analysis revealed that high-risk genes could promote cell cycle progression. The selected genes were strongly associated with immune cells, particularly mast cells and CD8+ T cells. This study enriches the prognostic evaluation system for AML and suggests a new therapeutic direction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Female
- Male
- Tumor Escape/genetics
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiaohui Shangguan
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanhong Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Congjie Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihao Wu
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaomei Ma
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chongdeng You
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Longtian Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jianqing Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
8
|
Asciolla JJ, Wu X, Adamopoulos C, Gavathiotis E, Poulikakos PI. Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer. NATURE CANCER 2025; 6:24-40. [PMID: 39885369 DOI: 10.1038/s43018-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR+) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting. Recent studies also suggest the use of CDK4/6-targeting agents in cancer immunotherapy. In this Review, we highlight recent advancements in the mechanistic understanding and development of pharmacological approaches targeting CDK4/6. Collectively, these developments pose new challenges and opportunities for rationally designing more effective treatments.
Collapse
Affiliation(s)
- James J Asciolla
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Innovation Center of Roche, Shanghai, China
| | - Christos Adamopoulos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
10
|
Liu Y, Deng Y, Yang C, Naranmandura H. Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering (Basel) 2024; 11:1084. [PMID: 39593745 PMCID: PMC11591775 DOI: 10.3390/bioengineering11111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) are generally involved in the progression of cell cycle and cell division in normal cells, while abnormal activations of CDKs are deemed to be a driving force for accelerating cell proliferation and tumorigenesis. Therefore, CDKs have become ideal therapeutic targets for cancer treatment. The U.S FDA has approved three CDK4/6 inhibitors (CDK4/6is) for the treatment of patients with hormone receptor-positive (HR+) or human epidermal growth factor receptor 2-negative (HER2-) advanced or metastatic breast cancer, and these drugs showed impressive results in clinics. Besides cell-cycle arrest, there is growing evidence that CDK4/6is exert paradoxical roles on cancer treatment by altering the immune system. Indeed, clinical data showed that CDK4/6is could change the immune system to exert antitumor effects, while these changes also caused tumor resistance to CDK4/6i. However, the molecular mechanism for the regulation of the immune system by CDK4/6is is unclear. In this review, we comprehensively discuss the paradoxical immunological effects of CDK4/6is in cancer treatment, elucidating their anticancer mechanisms through immunomodulatory activity and induction of acquired drug resistance by dysregulating the immune microenvironment. More importantly, we suggest a few strategies including combining CDK4/6is with immunotherapy to overcome drug resistance.
Collapse
Affiliation(s)
- Yongqin Liu
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiying Deng
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chang Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Jovanović B, Church SE, Gorman KM, North K, Richardson ET, DiLullo M, Attaya V, Kasparian J, Mohammed-Abreu A, Kirkner G, Hughes ME, Lin NU, Mittendorf EA, Schnitt SJ, Tolaney SM, Goel S. Integrative Multiomic Profiling of Triple-Negative Breast Cancer for Identifying Suitable Therapies. Clin Cancer Res 2024; 30:4768-4779. [PMID: 39136550 PMCID: PMC11474168 DOI: 10.1158/1078-0432.ccr-23-1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 10/16/2024]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a heterogeneous disease that carries the poorest prognosis of all breast cancers. Although novel TNBC therapies in development are frequently targeted toward tumors carrying a specific genomic, transcriptomic, or protein biomarker, it is poorly understood how these biomarkers are correlated. EXPERIMENTAL DESIGN To better understand the molecular features of TNBC and their correlation with one another, we performed multimodal profiling on a cohort of 95 TNBC. Our approach involved quantifying tumor-infiltrating lymphocytes through hematoxylin and eosin staining, assessing the abundance of retinoblastoma, androgen receptor, and PDL1 proteins through IHC, and carrying out transcriptomic profiling using the NanoString BC360 platform, targeted DNA sequencing on a subset of cases, as well as evaluating associations with overall survival. RESULTS Levels of RB1 mRNA and RB proteins are better correlated with markers of retinoblastoma functionality than RB1 mutational status. Luminal androgen receptor tumors clustered into two groups with transcriptomes that cluster with either basal or mesenchymal tumors. Tumors classified as PDL1-positive by the presence of immune or tumor cells showed similar biological characteristics. HER2-low TNBC showed no distinct biological phenotype when compared with HER2-zero. The majority of TNBC were classified as basal or HER2-enriched by PAM50, the latter showing significantly improved overall survival. CONCLUSIONS Our study contributes new insights into biomarker utility for identifying suitable TNBC therapies and the intercorrelations between genomic, transcriptomic, protein, and cellular biomarkers. Additionally, our rich data resource can be used by other researchers to explore the interplay between DNA, RNA, and protein biomarkers in TNBC.
Collapse
Affiliation(s)
- Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
| | | | | | | | - Edward T. Richardson
- Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Molly DiLullo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Victoria Attaya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Julie Kasparian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Ayesha Mohammed-Abreu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Gregory Kirkner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Melissa E. Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
| | - Elizabeth A. Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Stuart J. Schnitt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
| | - Shom Goel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.
- Peter MacCallum Cancer Centre, Victoria, Australia.
| |
Collapse
|
12
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
13
|
Herbstein F, Sapochnik M, Attorresi A, Pollak C, Senin S, Gonilski‐Pacin D, Ciancio del Giudice N, Fiz M, Elguero B, Fuertes M, Müller L, Theodoropoulou M, Pontel LB, Arzt E. The SASP factor IL-6 sustains cell-autonomous senescent cells via a cGAS-STING-NFκB intracrine senescent noncanonical pathway. Aging Cell 2024; 23:e14258. [PMID: 39012326 PMCID: PMC11464112 DOI: 10.1111/acel.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.
Collapse
Affiliation(s)
- Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Sergio Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - David Gonilski‐Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lara Müller
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Lucas B. Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Present address:
Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
14
|
Weiss AM, Lopez MA, Rosenberger MG, Kim JY, Shen J, Chen Q, Ung T, Ibeh UM, Knight HR, Rutledge NS, Studnitzer B, Rowan SJ, Esser-Kahn AP. Identification of CDK4/6 Inhibitors as Small Molecule NLRP3 Inflammasome Activators that Facilitate IL-1β Secretion and T Cell Adjuvanticity. J Med Chem 2024; 67:14974-14985. [PMID: 39162654 PMCID: PMC11736968 DOI: 10.1021/acs.jmedchem.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1β release. Identifying small molecules that induce IL-1β release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1β release. We find that ribociclib induces IL-1β release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Marcos A. Lopez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew G. Rosenberger
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeremiah Y. Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jingjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Udoka M. Ibeh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Hannah Riley Knight
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Bradley Studnitzer
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Liu Q, Guan Y, Li S. Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers : the "all-around warrior" in immunotherapy. Mol Cancer 2024; 23:183. [PMID: 39223527 PMCID: PMC11367915 DOI: 10.1186/s12943-024-02095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death receptor-1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1) are essential molecules that are key in modulating immune responses. PD-L1 is constitutively expressed on various immune cells, epithelial cells, and cancer cells, where it functions as a co-stimulatory molecule capable of impairing T-cell mediated immune responses. Upon binding to PD-1 on activated T-cells, the PD-1/PD-L1 interaction triggers signaling pathways that can induce T-cell apoptosis or anergy, thereby facilitating the immune escape of tumors. In urological cancers, including bladder cancer (BCa), renal cell carcinoma (RCC), and prostate cancer (PCa), the upregulation of PD-L1 has been demonstrated. It is linked to poor prognosis and enhanced tumor immune evasion. Recent studies have highlighted the significant role of the PD-1/PD-L1 axis in the immune escape mechanisms of urological cancers. The interaction between PD-L1 and PD-1 on T-cells further contributes to immunosuppression by inhibiting T-cell activation and proliferation. Clinical applications of PD-1/PD-L1 checkpoint inhibitors have shown promising efficacy in treating advanced urological cancers, significantly improving patient outcomes. However, resistance to these therapies, either intrinsic or acquired, remains a significant challenge. This review aims to provide a comprehensive overview of the role of the PD-1/PD-L1 signaling pathway in urological cancers. We summarize the regulatory mechanism underlying PD-1 and PD-L1 expression and activity, including genetic, epigenetic, post-transcriptional, and post-translational modifications. Additionally, we discuss current clinical research on PD-1/PD-L1 inhibitors, their therapeutic potential, and the challenges associated with resistance. Understanding these mechanisms is crucial for developing new strategies to overcome therapeutic limitations and enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China.
| |
Collapse
|
16
|
Xiao M, Yang J, Dong M, Mao X, Pan H, Lei Y, Tong X, Yu X, Yu X, Shi S. NLRP4 renders pancreatic cancer resistant to olaparib through promotion of the DNA damage response and ROS-induced autophagy. Cell Death Dis 2024; 15:620. [PMID: 39187531 PMCID: PMC11347561 DOI: 10.1038/s41419-024-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Olaparib has been approved as a therapeutic option for metastatic pancreatic ductal adenocarcinoma patients with BRCA1/2 mutations. However, a significant majority of pancreatic cancer patients have inherent resistance or develop tolerance to olaparib. It is crucial to comprehend the molecular mechanism underlying olaparib resistance to facilitate the development of targeted therapies for pancreatic cancer. In this study, we conducted an analysis of the DepMap database to investigate gene expression variations associated with olaparib sensitivity. Our findings revealed that NLRP4 upregulation contributes to increased resistance to olaparib in pancreatic cancer cells, both in vitro and in vivo. RNA sequencing and Co-IP MS analysis revealed that NLRP4 is involved in the DNA damage response and autophagy pathway. Our findings confirmed that NLRP4 enhances the capacity for DNA repair and induces the production of significant levels of reactive oxygen species (ROS) and autophagy in response to treatment with olaparib. Specifically, NLRP4-generated mitochondrial ROS promote autophagy in pancreatic cancer cells upon exposure to olaparib. However, NLRP4-induced ROS do not affect DNA damage. The inhibition of mitochondrial ROS using MitoQ and autophagy using chloroquine (CQ) may render cells more susceptible to the effects of olaparib. Taken together, our findings highlight the significant roles played by NLRP4 in the processes of autophagy and DNA repair when pancreatic cancer cells are treated with olaparib, thereby suggesting the potential therapeutic utility of olaparib in pancreatic cancer patients with low NLRP4 expression.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingwei Dong
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haoqi Pan
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoning Yu
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Wu B, Zhan X, Jiang M. CD58 defines regulatory macrophages within the tumor microenvironment. Commun Biol 2024; 7:1025. [PMID: 39164573 PMCID: PMC11335740 DOI: 10.1038/s42003-024-06712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
CD58 has been implicated in immune suppression and is associated with stemness in various types of cancer. Nonetheless, efficient biomarkers for assessing cancer patient response to immunotherapy are lacking. The present work focused on assessing the immune predictive significance of CD58 for patients with glioma. The expression of CD58 correlates with the clinicopathologic characteristics of patients with glioma, suggesting CD58high cells to signify glioma with tumorigenic potential. The CD58high cells displayed accelerated tumor formation compared to CD58low cells in vivo. Taken together, CD58 could potentially serve as a marker for glioma. CD58high glioma induces macrophage polarization through CXCL5 secretion, where M2 macrophages regulate PD-L1 expression within CD58high glioma via IL-6 production in vitro. Moreover, it was found that combination treatment with CD58 significantly increased the volume of tumors in the xenograft specimens. Evaluating CD58 expression represents a promising approach for identifying patients who can benefit from immunotherapy.
Collapse
Affiliation(s)
- Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, 110032, Shenyang, China
| | - Xiaoni Zhan
- School of Forensic Genetics and Biology, China Medical University, 110032, Shenyang, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, 110032, Shenyang, China.
| |
Collapse
|
18
|
Li W, Guo F, Zeng R, Liang H, Wang Y, Xiong W, Wu H, Yang C, Jin X. CDK4/6 Alters TBK1 Phosphorylation to Inhibit the STING Signaling Pathway in Prostate Cancer. Cancer Res 2024; 84:2588-2606. [PMID: 38861362 DOI: 10.1158/0008-5472.can-23-3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The efficacy of immunotherapy in patients with prostate cancer is limited due to the "cold" tumor microenvironment and the paucity of neoantigens. The STING-TBK1-IRF3 signaling axis is involved in innate immunity and has been increasingly recognized as a candidate target for cancer immunotherapy. Here, we found that treatment with CDK4/6 inhibitors stimulates the STING pathway and enhances the antitumor effect of STING agonists in prostate cancer. Mechanistically, CDK4/6 phosphorylated TBK1 at S527 to inactivate the STING signaling pathway independent of RB1 in prostate cancer cells. CDK4/6-mediated phosphorylation of RB1 at S249/T252 also induced the interaction of RB1 with TBK1 to diminish the phosphorylation of TBK1 at S172, which suppressed STING pathway activation. Overall, this study showed that CDK4/6 suppresses the STING pathway through RB1-dependent and RB1-independent pathways, indicating that CDK4/6 inhibition could be a potential strategy to overcome immunosuppression in prostate cancer. Significance: Inhibiting CDK4/6 activates STING-TBK1-IRF3 signaling in prostate cancer by regulating TBK1 phosphorylation, suggesting that the combination of CDK4/6 inhibitors and STING agonists could be an effective approach to stimulate innate immunity.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| |
Collapse
|
19
|
Guo Z, Wang Y, Qin W, Heng Y, Chen X, Liu N, Li J, Wu H, Zhou Y, Zhang R, Song S, Wu Z. miR-122-3p targets UBE2I to regulate the immunosuppression of liver cancer and the intervention of Liujunzi formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118081. [PMID: 38570148 DOI: 10.1016/j.jep.2024.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liujunzi formula has been used to treat liver cancer in China for many years, but its underlying mechanism remains unclear. We previously found that decreased expression of miR-122-3p was associated with liver cancer. In this study, we aimed to explore the target of miR-122-3p and the effect of the Liujunzi formula on miR-122-3p and its downstream events in liver cancer. MATERIAL AND METHODS Bioinformatics pinpointed potential targets of miR-122-3p. The actual target was confirmed by miRNA mimic/inhibitor transfections and a dual-luciferase reporter assay. RNA-seq looked at downstream genes impacted by this target. Flow cytometry checked for changes in T cell apoptosis levels after exposing them to liver cancer cells. Gene expression was measured by RT-qPCR, western blotting, and immunofluorescence staining. RESULTS Cell experiments found the Liujunzi extract (LJZ) upregulated miR-122-3p and in a dose-dependent manner. Bioinformatics analysis found UBE2I was a potential target of miR-122-3p, which was validated through experiments using miRNA mimics/inhibitors and a dual-luciferase reporter assay. RNA-seq data implicated the NF-κB pathway as being downstream of the miR-122-3p/UBE2I axis, further confirmed by forcing overexpression of UBE2I. Bioinformatic evidence suggested a link between UBE2I and T cell infiltration in liver cancer. Given that the NF-κB pathway drives PD-L1 expression, which can inhibit T cell infiltration, we investigated whether PD-L1 is a downstream effector of miR-122-3p/UBE2I. This was corroborated through mining public databases, UBE2I overexpression studies, and tumor-T cell co-culture assays. In addition, we also confirmed that LJZ downregulates UBE2I and NF-κB/PD-L1 pathways through miR-122-3p. LJZ also suppressed SUMOylation in liver cancer cells and protected PD-1+ T cells from apoptosis induced by co-culture with tumor cells. Strikingly, a miR-122-3p inhibitor abrogated LJZ's effects on UBE2I and PD-L1, and UBE2I overexpression rescued the LJZ-mediated effects on NF-κB and PD-L1. CONCLUSIONS miR-122-3p targets UBE2I, thereby suppressing the NF-κB signaling cascade and downregulating PD-L1 expression, which potentiates anti-tumor immune responses. LJZ bolsters anti-tumor immunity by modulating the miR-122-3p/UBE2I/NF-κB/PD-L1 axis in liver cancer cells.
Collapse
Affiliation(s)
- Zhenhui Guo
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yiqi Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wanting Qin
- Department of Diagnostics of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yin Heng
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510080, China
| | - Xi Chen
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Na Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinzhe Li
- Department of Diagnostics of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haitao Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ying Zhou
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ren Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shanshan Song
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Zheli Wu
- Department of Diagnostics of Chinese Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
22
|
Guo HZ, Feng RX, Zhang YJ, Yu YH, Lu W, Liu JJ, Yang SX, Zhao C, Zhang ZL, Yu SH, Jin H, Qian SX, Li JY, Zhu J, Shi J. A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML. Cell Rep Med 2024; 5:101592. [PMID: 38843841 PMCID: PMC11228649 DOI: 10.1016/j.xcrm.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.
Collapse
MESH Headings
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lipid Metabolism/drug effects
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Lipoproteins, LDL/metabolism
- Animals
- NF-kappa B/metabolism
- Cell Line, Tumor
- Myeloid Differentiation Factor 88/metabolism
- Myeloid Differentiation Factor 88/genetics
- Mice
- Signal Transduction/drug effects
- Tumor Escape/drug effects
- Drug Resistance, Neoplasm/drug effects
- Toll-Like Receptor 4/metabolism
- Acyltransferases/genetics
- Immunity, Innate/drug effects
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- He-Zhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Rui-Xue Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Yan-Jie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ye-Hua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jia-Jia Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shao-Xin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhao-Li Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Si-Xuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Pathania AS. Immune Microenvironment in Childhood Cancers: Characteristics and Therapeutic Challenges. Cancers (Basel) 2024; 16:2201. [PMID: 38927907 PMCID: PMC11201451 DOI: 10.3390/cancers16122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The tumor immune microenvironment is pivotal in cancer initiation, advancement, and regulation. Its molecular and cellular composition is critical throughout the disease, as it can influence the balance between suppressive and cytotoxic immune responses within the tumor's vicinity. Studies on the tumor immune microenvironment have enriched our understanding of the intricate interplay between tumors and their immunological surroundings in various human cancers. These studies illuminate the role of significant components of the immune microenvironment, which have not been extensively explored in pediatric tumors before and may influence the responsiveness or resistance to therapeutic agents. Our deepening understanding of the pediatric tumor immune microenvironment is helping to overcome challenges related to the effectiveness of existing therapeutic strategies, including immunotherapies. Although in the early stages, targeted therapies that modulate the tumor immune microenvironment of pediatric solid tumors hold promise for improved outcomes. Focusing on various aspects of tumor immune biology in pediatric patients presents a therapeutic opportunity that could improve treatment outcomes. This review offers a comprehensive examination of recent literature concerning profiling the immune microenvironment in various pediatric tumors. It seeks to condense research findings on characterizing the immune microenvironment in pediatric tumors and its impact on tumor development, metastasis, and response to therapeutic modalities. It covers the immune microenvironment's role in tumor development, interactions with tumor cells, and its impact on the tumor's response to immunotherapy. The review also discusses challenges targeting the immune microenvironment for pediatric cancer therapies.
Collapse
Affiliation(s)
- Anup Singh Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Zhang X, Ding T, Yang F, Xu H, Zhang J, Bai Y, Shi Y, Yang J, Chen C, Zhang H. Induced dual-target rebalance simultaneously enhances efficient therapeutical efficacy in tumors. Cell Death Discov 2024; 10:249. [PMID: 38782895 PMCID: PMC11116470 DOI: 10.1038/s41420-024-02018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple gene abnormalities are major drivers of tumorigenesis. NF-κB p65 overactivation and cGAS silencing are important triggers and genetic defects that accelerate tumorigenesis. However, the simultaneous correction of NF-κB p65 and cGAS abnormalities remains to be further explored. Here, we propose a novel Induced Dual-Target Rebalance (IDTR) strategy for simultaneously correcting defects in cGAS and NF-κB p65. By using our IDTR approach, we showed for the first time that oncolytic adenovirus H101 could reactivate silenced cGAS, while silencing GAU1 long noncoding RNA (lncRNA) inhibited NF-κB p65 overactivation, resulting in efficient in vitro and in vivo antitumor efficacy in colorectal tumors. Intriguingly, we further demonstrated that oncolytic adenoviruses reactivated cGAS by promoting H3K4 trimethylation of the cGAS promoter. In addition, silencing GAU1 using antisense oligonucleotides significantly reduced H3K27 acetylation at the NF-κB p65 promoter and inhibited NF-κB p65 transcription. Our study revealed an aberrant therapeutic mechanism underlying two tumor defects, cGAS and NF-κB p65, and provided an alternative IDTR approach based on oncolytic adenovirus and antisense oligonucleotides for efficient therapeutic efficacy in tumors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Tianyi Ding
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Fan Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Haowen Xu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Jixing Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yiran Bai
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yibing Shi
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Jiaqi Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - He Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, 343009, China.
- School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
25
|
Ren D, Li W, Zeng R, Liu X, Liang H, Xiong W, Yang C, Jin X. Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer. Cell Death Differ 2024; 31:592-604. [PMID: 38514847 PMCID: PMC11094112 DOI: 10.1038/s41418-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
27
|
Huang MF, Wang YX, Chou YT, Lee DF. Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy. Cancers (Basel) 2024; 16:1558. [PMID: 38672640 PMCID: PMC11049207 DOI: 10.3390/cancers16081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The retinoblastoma (RB) transcriptional corepressor 1 (RB1) is a critical tumor suppressor gene, governing diverse cellular processes implicated in cancer biology. Dysregulation or deletion in RB1 contributes to the development and progression of various cancers, making it a prime target for therapeutic intervention. RB1's canonical function in cell cycle control and DNA repair mechanisms underscores its significance in restraining aberrant cell growth and maintaining genomic stability. Understanding the complex interplay between RB1 and cellular pathways is beneficial to fully elucidate its tumor-suppressive role across different cancer types and for therapeutic development. As a result, investigating vulnerabilities arising from RB1 deletion-associated mechanisms offers promising avenues for targeted therapy. Recently, several findings highlighted multiple methods as a promising strategy for combating tumor growth driven by RB1 loss, offering potential clinical benefits in various cancer types. This review summarizes the multifaceted role of RB1 in cancer biology and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yuan-Xin Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
28
|
Liu J, Cheng M, Xu J, Liang Y, Yin B, Liang J. Effect of CDK4/6 Inhibitors on Tumor Immune Microenvironment. Immunol Invest 2024; 53:437-449. [PMID: 38314676 DOI: 10.1080/08820139.2024.2304565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Cancer is an abnormal proliferation of cells that is stimulated by cyclin-dependent kinases (CDKs) and defective cell cycle regulation. The essential agent that drive the cell cycle, CDK4/6, would be activated by proliferative signals. Activated CDK4/6 results in the phosphorylation of the neuroblastoma protein (RB) and the release of the transcription factor E2F, which promotes the cell cycle progression. CDK4/6 inhibitor (CDK4/6i) has been currently a research focus, which inhibits the CDK4/6-RB-E2F axis, thereby reducing the cell cycle transition from G1 to S phase and mediating the cell cycle arrest. This action helps achieve an anti-tumor effect. Recent research has demonstrated that CDK4/6i, in addition to contributing to cell cycle arrest, is also essential for the interaction between the tumor cells and the host immune system, i.e., activating the immune system, strengthening the tumor antigen presentation, and reducing the number of regulatory T cells (Treg). Additionally, CDK4/6i would elevate the level of PD-L1, an immunosuppressive factor, in tumor cells, and CDK4/6i in combination with anti-PD-L1 therapy would more effectively reduce the tumor growth. Our results showed that CDK4/6i caused autophagy and senescence in tumor cells. Herein, the impact of CDK4/6i on the immune microenvironment of malignant tumors was mainly focused, as well as their interaction with immune checkpoint inhibitors in affecting anti-tumor immunity.
Collapse
Affiliation(s)
- Jie Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Min Cheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jiamei Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yue Liang
- Department of General Surgery (Breast Surgery), The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
29
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
30
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q, Awadasseid A, Wang J, Zhang W. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. Eur J Med Chem 2024; 268:116267. [PMID: 38422701 DOI: 10.1016/j.ejmech.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruiya Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China; Moganshan Institute, Zhejiang University of Technology, Deqing, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
31
|
Zhou M, Tang J, Fan J, Wen X, Shen J, Jia R, Chai P, Fan X. Recent progress in retinoblastoma: Pathogenesis, presentation, diagnosis and management. Asia Pac J Ophthalmol (Phila) 2024; 13:100058. [PMID: 38615905 DOI: 10.1016/j.apjo.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jieling Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jianfeng Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| |
Collapse
|
32
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
33
|
Ma J, Li L, Ma B, Liu T, Wang Z, Ye Q, Peng Y, Wang B, Chen Y, Xu S, Wang K, Dang F, Wang X, Zeng Z, Jian Y, Ren Z, Fan Y, Li X, Liu J, Gao Y, Wei W, Li L. MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation. Nat Commun 2024; 15:1871. [PMID: 38424044 PMCID: PMC10904810 DOI: 10.1038/s41467-024-45796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixuan Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhihua Ren
- Kintor Parmaceutical, Inc, Suzhou, 215123, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xudong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
34
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Zhao L, Wang Y, Mu P, Zhang X, Qi R, Zhang Y, Zhang H, Zhu X, Dong Z, Dong Y. IGFBP3 induces PD-L1 expression to promote glioblastoma immune evasion. Cancer Cell Int 2024; 24:60. [PMID: 38326861 PMCID: PMC10851611 DOI: 10.1186/s12935-024-03234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) characterized by immune escape is the most malignant primary brain tumors, which has strong immunosuppressive effect. Programmed death ligand-1 (PD-L1) is a recognized immunosuppressive member on the surface of tumor cells, and plays a crucial role in immune evasion of tumors. Actually, little is known about the regulation of PD-L1 expression in GBM. Insulin-like growth factor binding protein 3 (IGFBP3) is upregulated in GBM and is related to poor patient prognosis. However, it remains unclear whether IGFBP3 plays a role in the regulation of PD-L1 expression in GBM. METHODS The role of IGFBP3 in the glioma immune microenvironment was investigated using the CIBERSORT algorithm. The correlation between IGFBP3 and PD-L1 expression was analyzed using TCGA and CGGA databases. QRT-PCR, immunoblotting and RNA-seq were used to examine the regulatory effect of IGFBP3 on PD-L1 expression. Co-culture assay, cell counting kit (CCK-8), qRT-PCR, ELISA and flow cytometry were performed to explore the function of IGFBP3 in inducing immunosuppression. The biological role of IGFBP3 was verified using immunohistochemical, immunofluorescence and mice orthotopic tumor model. RESULTS In this study, we analyzed immune cells infiltration in gliomas and found that IGFBP3 may be associated with an immunosuppressive microenvironment. Then, by analyzing TCGA and CGGA databases, our results showed that IGFBP3 and PD-L1 expression were positively correlated in GBM patients, but not in LGG patients. In vitro experiments conducted on different GBM cell lines revealed that the overexpression of IGFBP3 led to an increase in PD-L1 expression, which was reversible upon knockdown IGFBP3. Mechanistically, IGFBP3 activated the JAK2/STAT3 signaling pathway, leading to an increase in PD-L1 expression. Additionally, co-culture experiments results showed IGFBP3 overexpression induced upregulation of PD-L1 expression promoted apoptosis in Jurkat cells, and this effect was blocked by IGFBP3 antibody and PDL-1 inhibitors. Importantly, in vivo experiments targeting IGFBP3 suppressed tumor growth and significantly prolonged the survival of mice. CONCLUSIONS This research demonstrated IGFBP3 is a novel regulator for PD-L1 expression in GBM, and identified a new mechanism by which IGFBP3 regulates immune evasion through PD-L1, suggesting that IGFBP3 may be a potential novel target for GBM therapy.
Collapse
Affiliation(s)
- Leilei Zhao
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - Peizheng Mu
- School of Computer and Normal Engineering, Yantai University, Qingquan Road 30, Yantai, 264005, Shandong, China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ruomei Qi
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xiao Zhu
- School of Computer and Normal Engineering, Yantai University, Qingquan Road 30, Yantai, 264005, Shandong, China.
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China.
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China.
| |
Collapse
|
36
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin Cancer Biol 2024; 98:51-63. [PMID: 38135020 DOI: 10.1016/j.semcancer.2023.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; INSERM, Montpellier, France.
| |
Collapse
|
38
|
Xu L, Li K, Li J, Xu F, Liang S, Kong Y, Chen B. IL-18 serves as a main effector of CAF-derived METTL3 against immunosuppression of NSCLC via driving NF-κB pathway. Epigenetics 2023; 18:2265625. [PMID: 37871286 PMCID: PMC10595399 DOI: 10.1080/15592294.2023.2265625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/07/2023] [Indexed: 10/25/2023] Open
Abstract
Background: N6-methyladenosine (m6A) is the most abundant modification in eukaryotic mRNA. However, its role in non-small cell lung cancer (NSCLC) has not been completely elucidated.Objective: To explore whether methyltransferase like 3 (METTL3) in cancer associated fibroblasts (CAFs) affects the secretion of IL-18, which drives NSCLC cells to regulate PD-L1-mediated immunosuppression via the nuclear factor kappa B (NF-κB) pathway.Methods: Histopathological features of NSCLC tissues were identified by H&E and IHC staining. The levels of m6A writers (METTL3), IL-18 and NF-κB pathway related genes were assessed. The quantity of CD8+ T cells was evaluated by flow cytometry (FCM). The direct binding relationship between METTL3 and IL-18 mRNA was detected by RIP assay and RNA pulldown and confirmed by dual - luciferase reporter assay. The level of RNA m6A was detected by RNA m6A dot blot and meRIP assays. A heterotopic implantation model of NSCLC was established in NOD-SCID mice for further explore the effect of CAF derived METTL3 on immunosuppression of NSCLC in vivo.Results: Our results illustrated that METTL3 was down-regulated in CAFs, and CAF derived METTL3 alleviated PD-L1-mediated immunosuppression of NSCLC through IL-18. Subsequently, we found that IL-18 was main effector of CAF-derived METTL3 against immunosuppression of NSCLC, and IL-18 accelerated immunosuppression of NSCLC by driving NF-κB pathway. In vivo, METTL3 knockdown-derived CAFs accelerated immunosuppression of NSCLC.Conclusion: IL-18 served as a main effector of CAF-derived METTL3 against immunosuppression of NSCLC via driving NF-κB pathway.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| | - Kang Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| | - Jia Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| | - Fang Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| | - Yi Kong
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
39
|
Liang H, Yang C, Zeng R, Song Y, Wang J, Xiong W, Yan B, Jin X. Targeting CBX3 with a Dual BET/PLK1 Inhibitor Enhances the Antitumor Efficacy of CDK4/6 Inhibitors in Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302368. [PMID: 37949681 PMCID: PMC10754129 DOI: 10.1002/advs.202302368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/10/2023] [Indexed: 11/12/2023]
Abstract
The development of castration-resistant prostate cancer (CRPC) is a significant factor that reduces life expectancy among patients with prostate cancer. Previously, it is reported that CDK4/6 inhibitors can overcome the resistance of CRPC to BET inhibitors by destabilizing BRD4, suggesting that the combination of CDK4/6 inhibitors and BET inhibitors is a promising approach for treating CRPC. In this study, candidates that affect the combined antitumor effect of CDK4/6 inhibitors and BET inhibitors on CRPC is aimed to examine. The data demonstrates that CBX3 is abnormally upregulated in CDK4/6 inhibitors-resistant cells. CBX3 is almost positively correlated with the cell cycle in multiple malignancies and is downregulated by BET inhibitors. Mechanistically, it is showed that CBX3 is transcriptionally upregulated by BRD4 in CRPC cells. Moreover, it is demonstrated that CBX3 modulated the sensitivity of CRPC to CDK4/6 inhibitors by binding with RB1 to release E2F1. Furthermore, it is revealed that PLK1 phosphorylated CBX3 to enhance the interaction between RB1 and CBX3, and desensitize CRPC cells to CDK4/6 inhibitors. Given that BRD4 regulates CBX3 expression and PLK1 affects the binding between RB1 and CBX3, it is proposed that a dual BRD4/PLK1 inhibitor can increase the sensitivity of CRPC cells to CDK4/6 inhibitors partially through CBX3.
Collapse
Affiliation(s)
- Huaiyuan Liang
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Chunguang Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ruijiang Zeng
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Yingqiu Song
- Cancer centerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianxi Wang
- Department of UrologyThe Third Hospital of ChangshaChangshaHunan410011China
| | - Wei Xiong
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Binyuan Yan
- Department of UrologyPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| |
Collapse
|
40
|
Wu H, Chen Y, Li M, Chen Z, Liu J, Lai G. Characterization of tumor microenvironment infiltration and therapeutic responses of cell cycle-related genes' signature in breast cancer. J Cancer Res Clin Oncol 2023; 149:13889-13904. [PMID: 37540256 DOI: 10.1007/s00432-023-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND It is unknown how the cell cycle plays a role in breast cancer (BC). This study aimed to establish a clinically applicable predictive model to predict the therapeutic responses and overall survival in BC patients. MATERIALS AND METHODS Cell cycle-related genes (CCGs) were identified within the Cancer Genome Atlas cohort (n is equal to 1001) and the Gene Expression Omnibus cohort (n is equal to 3265). An analysis of univariate and multivariate Cox was then conducted to develop a nomogram based on CCGs. After validating the nomogram, risk cohort stratification was established and the predictive value was examined. Finally, immune cell infiltration and therapeutic responses were analysed. RESULTS Based on 15 CCGs, 4 prognostic predictors were identified and entered into the nomogram. According to the curves of calibration, the estimated and observed value of the nomogram is in optimal agreement. Subsequently, stratification into two risk cohorts showed that the predictive value, immune cell infiltration and overall survival were better among patients with low risk. Immune checkpoint expression in patients with BC at higher risk was downregulated. Furthermore, the results of the study revealed that doxorubicin, paclitaxel, docetaxel, cisplatin and vinorelbine all had higher IC50 values in patients with high-risk BC. CONCLUSION The nomogram based on CCG could assess tumour immune micro-environment regulation and therapeutic responses of immunotherapy in BC. Moreover, it may provide novel information on the control of immune micro-environment infiltration in BC and aid in the development of targeted immunotherapy.
Collapse
Affiliation(s)
- Huacong Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Yutao Chen
- The Second Clinical School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengyi Li
- Department of Thyroid and Breast Surgery, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Zijun Chen
- The Second Clinical School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Health Care Hospital, Southern Medical University, Foshan, China.
| | - Guie Lai
- Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
41
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
42
|
Motolani A, Martin M, Wang B, Jiang G, Alipourgivi F, Huang X, Safa A, Liu Y, Lu T. Critical Role of Novel O-GlcNAcylation of S550 and S551 on the p65 Subunit of NF-κB in Pancreatic Cancer. Cancers (Basel) 2023; 15:4742. [PMID: 37835439 PMCID: PMC10571874 DOI: 10.3390/cancers15194742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with a mere 5-year survival of ~10%. This highlights the urgent need for innovative treatment options for PDAC patients. The nuclear factor κB (NF-κB) is a crucial transcription factor that is constitutively activated in PDAC. It mediates the transcription of oncogenic and inflammatory genes that facilitate multiple PDAC phenotypes. Thus, a better understanding of the mechanistic underpinnings of NF-κB activation holds great promise for PDAC diagnosis and effective therapeutics. Here, we report a novel finding that the p65 subunit of NF-κB is O-GlcNAcylated at serine 550 and 551 upon NF-κB activation. Importantly, the overexpression of either serine-to-alanine (S-A) single mutant (S550A or S551A) or double mutant (S550A/S551A) of p65 in PDAC cells impaired NF-κB nuclear translocation, p65 phosphorylation, and transcriptional activity, independent of IκBα degradation. Moreover, the p65 mutants downregulate a category of NF-κB-target genes, which play a role in perpetuating major cancer hallmarks. We further show that overexpression of the p65 mutants inhibited cellular proliferation, migration, and anchorage-independent growth of PDAC cells compared to WT-p65. Collectively, we discovered novel serine sites of p65 O-GlcNAcylation that drive NF-κB activation and PDAC phenotypes, thus opening new avenues by inhibiting the NF-κB O-GlcNAcylation enzyme, O-GlcNAc transferase (OGT), for PDAC treatment in the future.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (A.S.)
| | - Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (A.S.)
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Guanglong Jiang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
| | - Faranak Alipourgivi
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (X.H.)
| | - Xiumei Huang
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (X.H.)
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ahmad Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (A.S.)
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (A.S.)
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.J.); (Y.L.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (F.A.); (X.H.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
43
|
Kohlmeyer JL, Lingo JJ, Kaemmer CA, Scherer A, Warrier A, Voigt E, Garay JAR, McGivney GR, Brockman QR, Tang A, Calizo A, Pollard K, Zhang X, Hirbe AC, Pratilas CA, Leidinger M, Breheny P, Chimenti MS, Sieren JC, Monga V, Tanas MR, Meyerholz DK, Darbro BW, Dodd RD, Quelle DE. CDK4/6-MEK Inhibition in MPNSTs Causes Plasma Cell Infiltration, Sensitization to PD-L1 Blockade, and Tumor Regression. Clin Cancer Res 2023; 29:3484-3497. [PMID: 37410426 PMCID: PMC10528807 DOI: 10.1158/1078-0432.ccr-23-0749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are lethal, Ras-driven sarcomas that lack effective therapies. We investigated effects of targeting cyclin-dependent kinases 4 and 6 (CDK4/6), MEK, and/or programmed death-ligand 1 (PD-L1) in preclinical MPNST models. EXPERIMENTAL DESIGN Patient-matched MPNSTs and precursor lesions were examined by FISH, RNA sequencing, IHC, and Connectivity-Map analyses. Antitumor activity of CDK4/6 and MEK inhibitors was measured in MPNST cell lines, patient-derived xenografts (PDX), and de novo mouse MPNSTs, with the latter used to determine anti-PD-L1 response. RESULTS Patient tumor analyses identified CDK4/6 and MEK as actionable targets for MPNST therapy. Low-dose combinations of CDK4/6 and MEK inhibitors synergistically reactivated the retinoblastoma (RB1) tumor suppressor, induced cell death, and decreased clonogenic survival of MPNST cells. In immune-deficient mice, dual CDK4/6-MEK inhibition slowed tumor growth in 4 of 5 MPNST PDXs. In immunocompetent mice, combination therapy of de novo MPNSTs caused tumor regression, delayed resistant tumor outgrowth, and improved survival relative to monotherapies. Drug-sensitive tumors that regressed contained plasma cells and increased cytotoxic T cells, whereas drug-resistant tumors adopted an immunosuppressive microenvironment with elevated MHC II-low macrophages and increased tumor cell PD-L1 expression. Excitingly, CDK4/6-MEK inhibition sensitized MPNSTs to anti-PD-L1 immune checkpoint blockade (ICB) with some mice showing complete tumor regression. CONCLUSIONS CDK4/6-MEK inhibition induces a novel plasma cell-associated immune response and extended antitumor activity in MPNSTs, which dramatically enhances anti-PD-L1 therapy. These preclinical findings provide strong rationale for clinical translation of CDK4/6-MEK-ICB targeted therapies in MPNST as they may yield sustained antitumor responses and improved patient outcomes.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joshua J Lingo
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Courtney A Kaemmer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Amanda Scherer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Akshaya Warrier
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Gavin R McGivney
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Qierra R Brockman
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Amy Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Ana Calizo
- Department of Oncology, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Kai Pollard
- Department of Oncology, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xiaochun Zhang
- Division of Medical Oncology, Washington University, St. Louis, Missouri
| | - Angela C Hirbe
- Division of Medical Oncology, Washington University, St. Louis, Missouri
| | - Christine A Pratilas
- Department of Oncology, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Mariah Leidinger
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Patrick Breheny
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jessica C. Sieren
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Radiation, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Varun Monga
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Munir R Tanas
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Benjamin W Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Cancer Biology Graduate Program, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
44
|
Lin X, Yang S, Zhou C, Ao C, Sun D. The NEDD8-activating enzyme E1 UBA3 orchestrates the immunosuppressive microenvironment in lung adenocarcinoma via the NF-кB pathway. Med Oncol 2023; 40:286. [PMID: 37656220 PMCID: PMC10474176 DOI: 10.1007/s12032-023-02162-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Immunosuppressive cells play important roles in generating an immunosuppressive tumor microenvironment and facilitating tumor immune escape. However, the molecular mechanisms underlying their immunosuppressive effects remain unclear. UBA3, the sole catalytic subunit of the neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8)-activating enzyme E1, is highly expressed in various human malignancies, along with an activated neddylation pathway. In this study, we investigated the relationships between the UBA3-dependent neddylation pathway and the infiltration of several immunosuppressive cell populations in lung adenocarcinoma (LUAD). We explored the regulatory mechanisms of UBA3 in LUAD cells by using mRNA sequencing and functional enrichment analyses. Correlations between neddylation and immune infiltrates were assessed by Western blotting, real-time PCR, and analyses of public databases. We found elevated levels of UBA3 expression in LUAD tissues compared to adjacent normal tissues. Blocking UBA3 and the neddylation pathway promoted the accumulation of the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκBα), inhibiting the gene expression of tumor cell-derived cytokines such as C-C motif chemokine ligand (CCL) 2, C-X-C motif ligand (CXCL)1, CXCL2, colony-stimulating factor (CSF) 1, CSF2 interleukin (IL)-6, and IL-1B. Moreover, the overexpression of UBA3 in LUAD cells was associated with the secretion of these cytokines, and the recruitment and infiltration of immunosuppressive cells including tumor-associated macrophages (TAMs), plasmacytoid dendritic cells (pDCs), Th2 cells and T-regulatory cells (Tregs). This could facilitate the tumor immune escape and malignant progression of LUAD. Our findings provide new insights into the role of UBA3 in establishing an immunosuppressive tumor microenvironment by modulating nuclear factor kappa B (NF-кB) signaling and the neddylation pathway.
Collapse
Affiliation(s)
- Xiongzhi Lin
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Shuhan Yang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Caichuan Zhou
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Chengcheng Ao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Dongsheng Sun
- Medical School, Taizhou University, Taizhou, Zhejiang, China.
| |
Collapse
|
45
|
Yu M, Wu W, Sun Y, Yan H, Zhang L, Wang Z, Gong Y, Wang T, Li Q, Song J, Wang M, Zhang J, Tang Y, Zhan J, Zhang H. FRMD8 targets both CDK4 activation and RB degradation to suppress colon cancer growth. Cell Rep 2023; 42:112886. [PMID: 37527040 DOI: 10.1016/j.celrep.2023.112886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) and retinoblastoma protein (RB) are both important cell-cycle regulators that function in different scenarios. Here, we report that FERM domain-containing 8 (FRMD8) inhibits CDK4 activation and stabilizes RB, thereby causing cell-cycle arrest and inhibiting colorectal cancer (CRC) cell growth. FRMD8 interacts separately with CDK7 and CDK4, and it disrupts the interaction of CDK7 with CDK4, subsequently inhibiting CDK4 activation. FRMD8 competes with MDM2 to bind RB and attenuates MDM2-mediated RB degradation. Frmd8 deficiency in mice accelerates azoxymethane/dextran-sodium-sulfate-induced colorectal adenoma formation. The FRMD8 promoter is hypermethylated, and low expression of FRMD8 predicts poor prognosis in CRC patients. Further, we identify an LKCHE-containing FRMD8 peptide that blocks MDM2 binding to RB and stabilizes RB. Combined application of the CDK4 inhibitor and FRMD8 peptide leads to marked suppression of CRC cell growth. Therefore, using an LKCHE-containing peptide to interfere with the MDM2-RB interaction may have therapeutic value in CDK4/6 inhibitor-resistant patients.
Collapse
Affiliation(s)
- Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weijie Wu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Yan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
46
|
Schrank TP, Kothari A, Weir WH, Stepp WH, Rehmani H, Liu X, Wang X, Sewell A, Li X, Tasoulas J, Kim S, Yarbrough G, Xie Y, Flamand Y, Marur S, Hayward MC, Wu D, Burtness B, Anderson KS, Baldwin AS, Yarbrough WG, Issaeva N. Noncanonical HPV carcinogenesis drives radiosensitization of head and neck tumors. Proc Natl Acad Sci U S A 2023; 120:e2216532120. [PMID: 37523561 PMCID: PMC10410762 DOI: 10.1073/pnas.2216532120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
We analyzed transcriptional data from 104 HPV+ (Human papillomavirus) HNSCC (head and neck squamous cell carcinoma) tumors together with two publicly available sources to identify highly robust transcriptional programs (modules) which could be detected consistently despite heterogeneous sequencing and quantification methodologies. Among 22 modules identified, we found a single module that naturally subclassifies HPV+ HNSCC tumors based on a bimodal pattern of gene expression, clusters all atypical features of HPV+ HNSCC biology into a single subclass, and predicts patient outcome in four independent cohorts. The subclass-defining gene set was strongly correlated with Nuclear factor kappa B (NF-κB) target expression. Tumors with high expression of this NF-κB module were rarely associated with activating PIK3CA alterations or viral integration, and also expressed higher levels of HPHPV E2 and had decreased APOBEC mutagenesis. Alternatively, they harbored inactivating alterations of key regulators of NF-κB, TNF receptor associated factor 3 (TRAF3), and cylindromatosis (CYLD), as well as retinoblastoma protein (RB1). HPV+ HNSCC cells in culture with experimental depletion of TRAF3 or CYLD displayed increased expression of the subclass-defining genes, as well as robust radio-sensitization, thus recapitulating both the tumor transcriptional state and improved treatment response observed in patient data. Across all gene sets investigated, methylation to expression correlations were the strongest for the subclass-defining, NF-κB-related genes. Increased tumor-infiltrating CD4+ T cells and increased Estrogen receptors alpha (ERα) expression were identified in NF-κB active tumors. Based on the relatively high rates of cure in HPV+ HNSCC, deintensification of therapy to reduce treatment-related morbidity is being studied at many institutions. Tumor subclassification based on oncogenic subtypes may help guide the selection of therapeutic intensity or modality for patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Aditi Kothari
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - William H. Weir
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Wesley H. Stepp
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hina Rehmani
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL60612
- University of Illinois Cancer Center, Chicago, IL60612
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL60612
- University of Illinois Cancer Center, Chicago, IL60612
| | - Andrew Sewell
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Xue Li
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jason Tasoulas
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Sulgi Kim
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gray Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Yue Xie
- Dana Farber Cancer Institute Eastern Cooperative Oncology Group and the American College of Radiology Imaging Network Biostatistics Center, Boston, MA02109
| | - Yael Flamand
- Dana Farber Cancer Institute Eastern Cooperative Oncology Group and the American College of Radiology Imaging Network Biostatistics Center, Boston, MA02109
| | - Shanthi Marur
- Johns Hopkins Univ/Sidney Kimmel Cancer Center, Baltimore, MD21231
| | - Michele C. Hayward
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Di Wu
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC27599
| | - Barbara Burtness
- Department of Internal Medicine and Yale Cancer Center, New Haven, CT06510
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Albert S. Baldwin
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
47
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
48
|
Zhang S, Xu Q, Sun W, Zhou J, Zhou J. Immunomodulatory effects of CDK4/6 inhibitors. Biochim Biophys Acta Rev Cancer 2023; 1878:188912. [PMID: 37182667 DOI: 10.1016/j.bbcan.2023.188912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
The dysregulation of the cell cycle is one of the hallmarks of cancer. Cyclin-dependent kinase 4 (CDK4) and CDK6 play crucial roles in regulating cell cycle and other cellular functions. CDK4/6 inhibitors have achieved great success in treating breast cancers and are currently being tested extensively in other tumor types as well. Accumulating evidence suggests that CDK4/6 inhibitors exert antitumor effects through immunomodulation aside from cell cycle arrest. Here we outline the immunomodulatory activities of CDK4/6 inhibitors, discuss the immune mechanisms of drug resistance and explore avenues to harness their immunotherapeutic potential when combined with immune checkpoint inhibitors (ICIs) or chimeric antigen receptor (CAR) T-cell therapy to improve the clinical outcomes.
Collapse
Affiliation(s)
- Shumeng Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Dong X, Dai H, Lin Y, Sheng X, Li Y, Wang Y, Zhang X, Jiang S, Yin W, Lu J. TIMELESS upregulates PD-L1 expression and exerts an immunosuppressive role in breast cancer. J Transl Med 2023; 21:400. [PMID: 37340461 DOI: 10.1186/s12967-023-04257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Upregulation of the PD-L1 (CD274) immune checkpoint ligand on the tumor surface facilitates tumor immune escape and limits the application of immunotherapy in various cancers, including breast cancer. However, the mechanisms underlying high PD-L1 levels in cancers are still poorly understood. METHODS Bioinformatics analyses and in vivo and in vitro experiments were carried out to assess the association between CD8+ T lymphocytes and TIMELESS (TIM) expression, and to discover the mechanisms of TIM, the transcription factor c-Myc, and PD-L1 in breast cancer cell lines. RESULTS The circadian gene TIM enhanced PD-L1 transcription and facilitated the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Bioinformatic analyses of our RNA sequencing data in TIM-knockdown breast cancer cells and public transcriptomic datasets showed that TIM might play an immunosuppressive role in breast cancer. We found that TIM expression was inversely associated with CD8+ T lymphocyte infiltration in human breast cancer samples and subcutaneous tumor tissues. In vivo and in vitro experiments demonstrated that TIM knockdown increased CD8+ T lymphocyte antitumor activity. Furthermore, our results showed that TIM interacts with c-Myc to enhance the transcriptional capability of PD-L1 and facilitates the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Moreover, public database analysis suggested that high TIM levels were positively related to PD-L1 inhibitor therapeutic response. CONCLUSIONS Mechanistically, we first found that TIM could upregulate PD-L1 by interacting with c-Myc to enhance the transcriptional capability of c-Myc to PD-L1. Altogether, our findings not only provide a novel therapeutic strategy to treat breast cancer by targeting the oncogenic effect of TIM but also indicate that TIM is a promising biomarker for predicting the benefit of anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xinrui Dong
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China.
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Ye Li
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1630 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
50
|
Olson BM, Chaudagar K, Bao R, Saha SS, Hong C, Li M, Rameshbabu S, Chen R, Thomas A, Patnaik A. BET Inhibition Sensitizes Immunologically Cold Rb-Deficient Prostate Cancer to Immune Checkpoint Blockade. Mol Cancer Ther 2023; 22:751-764. [PMID: 37014264 PMCID: PMC10239341 DOI: 10.1158/1535-7163.mct-22-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Non-T-cell-inflamed immunologically "cold" tumor microenvironments (TME) are associated with poor responsiveness to immune checkpoint blockade (ICB) and can be sculpted by tumor cell genomics. Here, we evaluated how retinoblastoma (Rb) tumor-suppressor loss-of-function (LOF), one of the most frequent alterations in human cancer and associated with lineage plasticity, poor prognosis, and therapeutic outcomes, alters the TME, and whether therapeutic strategies targeting the molecular consequences of Rb loss enhance ICB efficacy. We performed bioinformatics analysis to elucidate the impact of endogenous Rb LOF on the immune TME in human primary and metastatic tumors. Next, we used isogenic murine models of Rb-deficient prostate cancer for in vitro and in vivo mechanistic studies to examine how Rb loss and bromodomain and extraterminal (BET) domain inhibition (BETi) reprograms the immune landscape, and evaluated in vivo therapeutic efficacy of BETi, singly and in combination with ICB and androgen deprivation therapy. Rb loss was enriched in non-T-cell-inflamed tumors, and Rb-deficient murine tumors demonstrated decreased immune infiltration in vivo. The BETi JQ1 increased immune infiltration into the TME through enhanced tumor cell STING/NF-κB activation and type I IFN signaling within tumor cells, resulting in differential macrophage and T-cell-mediated tumor growth inhibition and sensitization of Rb-deficient prostate cancer to ICB. BETi can reprogram the immunologically cold Rb-deficient TME via STING/NF-κB/IFN signaling to sensitize Rb-deficient prostate cancer to ICB. These data provide the mechanistic rationale to test combinations of BETi and ICB in clinical trials of Rb-deficient prostate cancer.
Collapse
Affiliation(s)
- Brian M. Olson
- Department of Hematology and Medical Oncology; Emory University, Atlanta, GA
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Kiranj Chaudagar
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Riyue Bao
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
- Center for Research Informatics, University of Chicago, Chicago, IL
- Cancer Bioinformatics Services, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sweta Sharma Saha
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
- Department of Pediatrics, University of Chicago, Chicago, IL; Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Christina Hong
- Department of Hematology and Medical Oncology; Emory University, Atlanta, GA
| | - Marguerite Li
- Department of Hematology and Medical Oncology; Emory University, Atlanta, GA
| | - Srikrishnan Rameshbabu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Raymond Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Alison Thomas
- Department of Hematology and Medical Oncology; Emory University, Atlanta, GA
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|