1
|
Kong L, Yang J, Yang H, Xu B, Yang T, Liu W. Research advances on CaMKs-mediated neurodevelopmental injury. Arch Toxicol 2024; 98:3933-3947. [PMID: 39292234 DOI: 10.1007/s00204-024-03865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are important proteins in the calcium signaling cascade response pathway, which can broadly regulate biological functions in vivo. Multifunctional CaMKs play key roles in neural development, including neuronal circuit building, synaptic plasticity establishment, and neurotrophic factor secretion. Currently, four familial proteins, calcium/calmodulin-dependent protein kinase I (CaMKI), calcium/calmodulin-dependent protein kinase II (CaMKII), eukaryotic elongation factor 2 kinase (eEF2K, popularly known as CaMKIII) and calcium/calmodulin-dependent protein kinase IV (CaMKIV), are thought to have been the most extensively studied during neurodevelopment. Although their spatial structures are extremely similar, as well as the initial starting point of activation, both require the activation of calcium and calmodulin (CaM) complexes to be involved in the process, and the phosphorylation sites and modes of each member are different. Furthermore, due to the high structural similarity of CaMKs, their members may play synergistic roles in the regulation of neural development, but different CaMKs also have their own means of regulating neural development. In this review, we first describe the visualized protein structural forms of CaMKI, CaMKII, eEF2K and CaMKIV, and then describe the functions of each kinase in neurodevelopment. After that, we focus on four main mechanisms of neurodevelopmental damage caused by CaMKs: CaMKI/ERK/CREB pathway inhibition leading to dendritic spine structural damage; Ca2+/CaM/CaMKII through induction of mitochondrial kinetic disorders leading to neurodevelopmental damage; CaMKIII/eEF2 hyperphosphorylation affects the establishment of synaptic plasticity; and CaMKIV/JNK/NF-κB through induction of an inflammatory response leading to neurodevelopmental damage. In conclusion, we briefly discuss the pathophysiological significance of aberrant CaMK family expression in neurodevelopmental disorders, as well as the protective effects of conventional CaMKII and CaMKIII antagonists against neurodevelopmental injury.
Collapse
Affiliation(s)
- Lingxu Kong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jing Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China.
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, China.
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Wood DJ, Huebschman JL, Martinez D, Tsvetkov E, Snyder K, Tjhia R, Kumar J, Hughes BW, Taniguchi M, Smith LN, Cowan CW, Penrod RD. The activity-regulated cytoskeleton-associated protein (Arc) functions in a cell type- and sex-specific manner in the adult nucleus accumbens to regulate non-contingent cocaine behaviors. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12910. [PMID: 39164860 PMCID: PMC11335578 DOI: 10.1111/gbb.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP). In contrast to the global Arc KO mice, viral-mediated reduction of Arc in the adult male, but not female, NAc (shArcNAc) reduced both CPP and cocaine-induced locomotor activity, but without altering basal miniature or evoked glutamatergic synaptic transmission. Interestingly, cell type-specific knockdown of Arc in D1 dopamine receptor-expressing NAc neurons reduced cocaine-induced locomotor sensitization, but not cocaine CPP; whereas, Arc knockdown in D2 dopamine receptor-expressing NAc neurons reduced cocaine CPP, but not cocaine-induced locomotion. Taken together, our findings reveal that global, developmental loss of Arc produces hypersensitized cocaine responses; however, these effects cannot be explained by Arc's function in the adult mouse NAc since Arc is required in a cell type- and sex-specific manner to support cocaine-context associations and locomotor responses.
Collapse
Affiliation(s)
- Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jessica L Huebschman
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dalia Martinez
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kirsten Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Tjhia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brandon W Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura N Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
3
|
Barylko B, Taylor CA, Wang J, Hedde PN, Chen Y, Hur KH, Binns DD, Brautigam CA, DeMartino GN, Mueller JD, Jameson DM, Albanesi JP. Analysis of Arc/Arg3.1 Oligomerization In Vitro and in Living Cells. Int J Mol Sci 2024; 25:6454. [PMID: 38928159 PMCID: PMC11203824 DOI: 10.3390/ijms25126454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling. Although its mechanisms of action in these forms of synaptic plasticity are not completely well established, the activities of Arc include the remodeling of the actin cytoskeleton, the facilitation of AMPA receptor (AMPAR) endocytosis, and the regulation of the transcription of AMPAR subunits. In addition, Arc has sequence and structural similarity to retroviral Gag proteins and self-associates into virus-like particles that encapsulate mRNA and perhaps other cargo for intercellular transport. Each of these activities is likely to be influenced by Arc's reversible self-association into multiple oligomeric species. Here, we used mass photometry to show that Arc exists predominantly as monomers, dimers, and trimers at approximately 20 nM concentration in vitro. Fluorescence fluctuation spectroscopy revealed that Arc is almost exclusively present as low-order (monomer to tetramer) oligomers in the cytoplasm of living cells, over a 200 nM to 5 μM concentration range. We also confirmed that an α-helical segment in the N-terminal domain contains essential determinants of Arc's self-association.
Collapse
Affiliation(s)
- Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| | - Clinton A. Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| | - Jason Wang
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (J.W.); (G.N.D.)
| | - Per Niklas Hedde
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB 222, Honolulu, HI 96813, USA;
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA 92697, USA
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; (Y.C.); (K.-H.H.); (J.D.M.)
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; (Y.C.); (K.-H.H.); (J.D.M.)
| | - Derk D. Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| | - Chad A. Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA;
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (J.W.); (G.N.D.)
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; (Y.C.); (K.-H.H.); (J.D.M.)
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB 222, Honolulu, HI 96813, USA;
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.)
| |
Collapse
|
4
|
Godoy Muñoz JM, Neset L, Markússon S, Weber S, Krokengen OC, Sutinen A, Christakou E, Lopez AJ, Bramham CR, Kursula P. Structural characterization of two nanobodies targeting the ligand-binding pocket of human Arc. PLoS One 2024; 19:e0300453. [PMID: 38683783 PMCID: PMC11057775 DOI: 10.1371/journal.pone.0300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
The activity-regulated cytoskeleton-associated protein (Arc) is a complex regulator of synaptic plasticity in glutamatergic neurons. Understanding its molecular function is key to elucidate the neurobiology of memory and learning, stress regulation, and multiple neurological and psychiatric diseases. The recent development of anti-Arc nanobodies has promoted the characterization of the molecular structure and function of Arc. This study aimed to validate two anti-Arc nanobodies, E5 and H11, as selective modulators of the human Arc N-lobe (Arc-NL), a domain that mediates several molecular functions of Arc through its peptide ligand binding site. The structural characteristics of recombinant Arc-NL-nanobody complexes were solved at atomic resolution using X-ray crystallography. Both anti-Arc nanobodies bind specifically to the multi-peptide binding site of Arc-NL. Isothermal titration calorimetry showed that the Arc-NL-nanobody interactions occur at nanomolar affinity, and that the nanobodies can displace a TARPγ2-derived peptide from the binding site. Thus, both anti-Arc-NL nanobodies could be used as competitive inhibitors of endogenous Arc ligands. Differences in the CDR3 loops between the two nanobodies indicate that the spectrum of short linear motifs recognized by the Arc-NL should be expanded. We provide a robust biochemical background to support the use of anti-Arc nanobodies in attempts to target Arc-dependent synaptic plasticity. Function-blocking anti-Arc nanobodies could eventually help unravel the complex neurobiology of synaptic plasticity and allow to develop diagnostic and treatment tools.
Collapse
Affiliation(s)
| | - Lasse Neset
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Sarah Weber
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Daudelin D, Westerhaus A, Zhang N, Leyder E, Savonenko A, Sockanathan S. Loss of GDE2 leads to complex behavioral changes including memory impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:7. [PMID: 38575965 PMCID: PMC10993612 DOI: 10.1186/s12993-024-00234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) and amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) are debilitating neurodegenerative diseases for which there are currently no cures. Familial cases with known genetic causes make up less than 10% of these diseases, and little is known about the underlying mechanisms that contribute to sporadic disease. Accordingly, it is important to expand investigations into possible pathways that may contribute to disease pathophysiology. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a membrane-bound enzyme that acts at the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers distinct proteins to the membrane. GDE2 abnormally accumulates in intracellular compartments in the brain of patients with AD, ALS, and ALS/FTD, indicative of GDE2 dysfunction. Mice lacking GDE2 (Gde2KO) show neurodegenerative changes such as neuronal loss, reduced synaptic proteins and synapse loss, and increased Aβ deposition, raising the possibility that GDE2 disruption in disease might contribute to disease pathophysiology. However, the effect of GDE2 loss on behavioral function and learning/memory has not been characterized. RESULTS Here, we show that GDE2 is expressed throughout the adult mouse brain in areas including the cortex, hippocampus, habenula, thalamus, and amygdala. Gde2KO and WT mice were tested in a set of behavioral tasks between 7 and 16 months of age. Compared to WT, Gde2KO mice display moderate hyperactivity that becomes more pronounced with age across a variety of behavioral tests assessing novelty-induced exploratory activity. Additionally, Gde2KO mice show reduced startle response, with females showing additional defects in prepulse inhibition. No changes in anxiety-associated behaviors were found, but Gde2KOs show reduced sociability. Notably, aged Gde2KO mice demonstrate impaired short/long-term spatial memory and cued fear memory/secondary contextual fear acquisition. CONCLUSIONS Taken together, these observations suggest that loss of GDE2 leads to behavioral deficits, some of which are seen in neurodegenerative disease models, implying that loss of GDE2 may be an important contributor to phenotypes associated with neurodegeneration.
Collapse
Affiliation(s)
- Daniel Daudelin
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Erica Leyder
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Molecular Microbiology and Immunology Graduate Program in Life Sciences, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Alena Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Sensory-Motor Neuroscience (SMN), Center for Scientific Review, ICN Review Branch, National Institutes of Health, 6701 Rockledge Drive, Suite 1010-F, Bethesda, MD, 20892 , USA.
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, PCTB 1004, 725 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Barylko B, Taylor CA, Wang J, Earnest S, Stippec S, Binns DD, Brautigam CA, Jameson DM, DeMartino GN, Cobb MH, Albanesi JP. Mimicking Protein Kinase C Phosphorylation Inhibits Arc/Arg3.1 Palmitoylation and Its Interaction with Nucleic Acids. Int J Mol Sci 2024; 25:780. [PMID: 38255853 PMCID: PMC10815921 DOI: 10.3390/ijms25020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) plays essential roles in diverse forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. In addition, it assembles into virus-like particles that may deliver mRNAs and/or other cargo between neurons and neighboring cells. Considering this broad range of activities, it is not surprising that Arc is subject to regulation by multiple types of post-translational modification, including phosphorylation, palmitoylation, SUMOylation, ubiquitylation, and acetylation. Here we explore the potential regulatory role of Arc phosphorylation by protein kinase C (PKC), which occurs on serines 84 and 90 within an α-helical segment in the N-terminal domain. To mimic the effect of PKC phosphorylation, we mutated the two serines to negatively charged glutamic acid. A consequence of introducing these phosphomimetic mutations is the almost complete inhibition of Arc palmitoylation, which occurs on nearby cysteines and contributes to synaptic weakening. The mutations also inhibit the binding of nucleic acids and destabilize high-order Arc oligomers. Thus, PKC phosphorylation of Arc may limit the full expression of LTD and may suppress the interneuronal transport of mRNAs.
Collapse
Affiliation(s)
- Barbara Barylko
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| | - Clinton A. Taylor
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| | - Jason Wang
- Department of Physiology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (J.W.); (G.N.D.)
| | - Svetlana Earnest
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| | - Steve Stippec
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| | - Derk D. Binns
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| | - Chad A. Brautigam
- Department of Biophysics, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA;
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96844, USA;
| | - George N. DeMartino
- Department of Physiology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (J.W.); (G.N.D.)
| | - Melanie H. Cobb
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| | - Joseph P. Albanesi
- Department of Pharmacology, U.T. Southwestern Medical Center, 6001 Forest Park, Dallas, TX 75390, USA; (B.B.); (C.A.T.4th); (D.D.B.); (M.H.C.)
| |
Collapse
|
7
|
Mabb AM. A Hier"Arc"hical Pathway for Memory Updating. Biol Psychiatry 2023; 94:686-688. [PMID: 37778863 DOI: 10.1016/j.biopsych.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Angela M Mabb
- Neuroscience Institute and the Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
8
|
Yang L, Liu W, Shi L, Wu J, Zhang W, Chuang YA, Redding-Ochoa J, Kirkwood A, Savonenko AV, Worley PF. NMDA Receptor-Arc Signaling Is Required for Memory Updating and Is Disrupted in Alzheimer's Disease. Biol Psychiatry 2023; 94:706-720. [PMID: 36796600 PMCID: PMC10423741 DOI: 10.1016/j.biopsych.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Memory deficits are central to many neuropsychiatric diseases. During acquisition of new information, memories can become vulnerable to interference, yet mechanisms that underlie interference are unknown. METHODS We describe a novel transduction pathway that links the NMDA receptor (NMDAR) to AKT signaling via the immediate early gene Arc and evaluate its role in memory. The signaling pathway is validated using biochemical tools and transgenic mice, and function is evaluated in assays of synaptic plasticity and behavior. The translational relevance is evaluated in human postmortem brain. RESULTS Arc is dynamically phosphorylated by CaMKII (calcium/calmodulin-dependent protein kinase II) and binds the NMDAR subunits NR2A/NR2B and a previously unstudied PI3K (phosphoinositide 3-kinase) adapter p55PIK (PIK3R3) in vivo in response to novelty or tetanic stimulation in acute slices. NMDAR-Arc-p55PIK recruits p110α PI3K and mTORC2 (mechanistic target of rapamycin complex 2) to activate AKT. NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT assembly occurs within minutes of exploratory behavior and localizes to sparse synapses throughout hippocampal and cortical regions. Studies using conditional (Nestin-Cre) p55PIK deletion mice indicate that NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT functions to inhibit GSK3 and mediates input-specific metaplasticity that protects potentiated synapses from subsequent depotentiation. p55PIK conditional knockout mice perform normally in multiple behaviors including working memory and long-term memory tasks but exhibit deficits indicative of increased vulnerability to interference in both short-term and long-term paradigms. The NMDAR-AKT transduction complex is reduced in postmortem brain of individuals with early Alzheimer's disease. CONCLUSIONS A novel function of Arc mediates synapse-specific NMDAR-AKT signaling and metaplasticity that contributes to memory updating and is disrupted in human cognitive disease.
Collapse
Affiliation(s)
- Liuqing Yang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wenxue Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Linyuan Shi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jing Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yang-An Chuang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alfredo Kirkwood
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
9
|
Chen Y, Wang X, Xiao B, Luo Z, Long H. Mechanisms and Functions of Activity-Regulated Cytoskeleton-Associated Protein in Synaptic Plasticity. Mol Neurobiol 2023; 60:5738-5754. [PMID: 37338805 DOI: 10.1007/s12035-023-03442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
10
|
Mergiya TF, Gundersen JET, Kanhema T, Brighter G, Ishizuka Y, Bramham CR. Detection of Arc/Arg3.1 oligomers in rat brain: constitutive and synaptic activity-evoked dimer expression in vivo. Front Mol Neurosci 2023; 16:1142361. [PMID: 37363319 PMCID: PMC10289200 DOI: 10.3389/fnmol.2023.1142361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
The immediate early gene product activity-regulated cytoskeleton-associated protein (Arc or Arg3.1) is a major regulator of long-term synaptic plasticity with critical roles in postnatal cortical development and memory formation. However, the molecular basis of Arc function is undefined. Arc is a hub protein with interaction partners in the postsynaptic neuronal compartment and nucleus. Previous in vitro biochemical and biophysical analysis of purified recombinant Arc showed formation of low-order oligomers and larger particles including retrovirus-like capsids. Here, we provide evidence for naturally occurring Arc oligomers in the mammalian brain. Using in situ protein crosslinking to trap weak Arc-Arc interactions, we identified in various preparations a prominent Arc immunoreactive band on SDS-PAGE of molecular mass corresponding to a dimer. While putative trimers, tetramers and heavier Arc species were detected, they were of lower abundance. Stimulus-evoked induction of Arc expression and dimer formation was first demonstrated in SH-SY5Y neuroblastoma cells treated with the muscarinic cholinergic agonist, carbachol, and in primary cortical neuronal cultures treated with brain-derived neurotrophic factor (BDNF). In the dentate gyrus (DG) of adult anesthetized rats, induction of long-term potentiation (LTP) by high-frequency stimulation (HFS) of medial perforant synapses or by brief intrahippocampal infusion of BDNF led to a massive increase in Arc dimer expression. Arc immunoprecipitation of crosslinked DG tissue showed enhanced dimer expression during 4 h of LTP maintenance. Mass spectrometric proteomic analysis of immunoprecipitated, gel-excised bands corroborated detection of Arc dimer. Furthermore, Arc dimer was constitutively expressed in naïve cortical, hippocampal and DG tissue, with the lowest levels in the DG. Taken together the results implicate Arc dimer as the predominant low-oligomeric form in mammalian brain, exhibiting regional differences in its constitutive expression and enhanced synaptic activity-evoked expression in LTP.
Collapse
Affiliation(s)
- Tadiwos F. Mergiya
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Jens Edvard Trygstad Gundersen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Grant Brighter
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R. Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Ghane MA, Wei W, Yakout DW, Allen ZD, Miller CL, Dong B, Yang JJ, Fang N, Mabb AM. Arc ubiquitination regulates endoplasmic reticulum-mediated Ca 2+ release and CaMKII signaling. Front Cell Neurosci 2023; 17:1091324. [PMID: 36998269 PMCID: PMC10043188 DOI: 10.3389/fncel.2023.1091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Synaptic plasticity relies on rapid, yet spatially precise signaling to alter synaptic strength. Arc is a brain enriched protein that is rapidly expressed during learning-related behaviors and is essential for regulating metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD). We previously showed that disrupting the ubiquitination capacity of Arc enhances mGluR-LTD; however, the consequences of Arc ubiquitination on other mGluR-mediated signaling events is poorly characterized. Here we find that pharmacological activation of Group I mGluRs with S-3,5-dihydroxyphenylglycine (DHPG) increases Ca2+ release from the endoplasmic reticulum (ER). Disrupting Arc ubiquitination on key amino acid residues enhances DHPG-induced ER-mediated Ca2+ release. These alterations were observed in all neuronal subregions except secondary branchpoints. Deficits in Arc ubiquitination altered Arc self-assembly and enhanced its interaction with calcium/calmodulin-dependent protein kinase IIb (CaMKIIb) and constitutively active forms of CaMKII in HEK293 cells. Colocalization of Arc and CaMKII was altered in cultured hippocampal neurons, with the notable exception of secondary branchpoints. Finally, disruptions in Arc ubiquitination were found to increase Arc interaction with the integral ER protein Calnexin. These results suggest a previously unknown role for Arc ubiquitination in the fine tuning of ER-mediated Ca2+ signaling that may support mGluR-LTD, which in turn, may regulate CaMKII and its interactions with Arc.
Collapse
Affiliation(s)
- Mohammad A. Ghane
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Dina W. Yakout
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Zachary D. Allen
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Cassandra L. Miller
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
12
|
Ouyang L, Li Q, Rao S, Su R, Zhu Y, Du G, Xie J, Zhou F, Feng C, Fan G. Cognitive outcomes caused by low-level lead, cadmium, and mercury mixture exposure at distinct phases of brain development. Food Chem Toxicol 2023; 175:113707. [PMID: 36893892 DOI: 10.1016/j.fct.2023.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Contaminated water and food are the main sources of lead, cadmium, and mercury in the human body. Long-term and low-level ingestion of these toxic heavy metals may affect brain development and cognition. However, the neurotoxic effects of exposure to lead, cadmium, and mercury mixture (Pb + Cd + Hg) at different stages of brain development are rarely elucidated. In this study, different doses of low-level Pb + Cd + Hg were administered to Sprague-Dawley rats via drinking water during the critical stage of brain development, late stage, and after maturation, respectively. Our findings showed that Pb + Cd + Hg exposure decreased the density of memory- and learning-related dendritic spines in the hippocampus during the critical period of brain development, resulting in hippocampus-dependent spatial memory deficits. Only the density of learning-related dendritic spines was reduced during the late phase of brain development and a higher-dose of Pb + Cd + Hg exposure was required, which led to hippocampus-independent spatial memory abnormalities. Exposure to Pb + Cd + Hg after brain maturation revealed no significant change in dendritic spines or cognitive function. Further molecular analysis indicated that morphological and functional changes caused by Pb + Cd + Hg exposure during the critical phase were associated with PSD95 and GluA1 dysregulation. Collectively, the effects of Pb + Cd + Hg on cognition varied depending on the brain development stages.
Collapse
Affiliation(s)
- Lu Ouyang
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Qi Li
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Shaoqi Rao
- School of Public Health, Nanchang University, Nanchang, 330006, PR China
| | - Rui Su
- School of Public Health, Nanchang University, Nanchang, 330006, PR China
| | - Yanhui Zhu
- School of Public Health, Nanchang University, Nanchang, 330006, PR China
| | - Guihua Du
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Jie Xie
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Fankun Zhou
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Chang Feng
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Guangqin Fan
- School of Public Health, Nanchang University, Nanchang, 330006, PR China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
13
|
Eriksen MS, Bramham CR. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Acta Physiol (Oxf) 2022; 236:e13886. [PMID: 36073248 PMCID: PMC9787330 DOI: 10.1111/apha.13886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA. Elucidation of the molecular basis of Arc hub and capsid functions, and the relationship between them, is vital for progress. Here, we discuss recent findings on Arc structure-function and regulation of oligomerization that are giving insight into the molecular physiology of Arc. The unique features of mammalian Arc are emphasized, while drawing comparisons with Drosophila Arc and retroviral Gag. The Arc N-terminal domain, found only in mammals, is proposed to play a key role in regulating Arc hub signaling, oligomerization, and formation of capsids. Bringing together several lines of evidence, we hypothesize that Arc function in synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-are dictated by different oligomeric forms of Arc. Specifically, monomer/dimer function in LTP, tetramer function in basic LTD, and 32-unit oligomer function in enhanced LTD. The role of mammalian Arc capsids is unclear but likely depends on the cross-section of captured neuronal activity-induced RNAs. As the functional states of Arc are revealed, it may be possible to selectively manipulate specific forms of Arc-dependent plasticity and intercellular communication involved in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Clive R. Bramham
- Department of BiomedicineUniversity of BergenBergenNorway,Mohn Research Center for the BrainUniversity of BergenBergenNorway
| |
Collapse
|
14
|
Ishizuka Y, Mergiya TF, Baldinotti R, Xu J, Hallin EI, Markússon S, Kursula P, Bramham CR. Development and Validation of Arc Nanobodies: New Tools for Probing Arc Dynamics and Function. Neurochem Res 2022; 47:2656-2666. [PMID: 35307777 PMCID: PMC9463278 DOI: 10.1007/s11064-022-03573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/06/2022]
Abstract
Activity-regulated cytoskeleton-associated (Arc) protein plays key roles in long-term synaptic plasticity, memory, and cognitive flexibility. However, an integral understanding of Arc mechanisms is lacking. Arc is proposed to function as an interaction hub in neuronal dendrites and the nucleus, yet Arc can also form retrovirus-like capsids with proposed roles in intercellular communication. Here, we sought to develop anti-Arc nanobodies (ArcNbs) as new tools for probing Arc dynamics and function. Six ArcNbs representing different clonal lines were selected from immunized alpaca. Immunoblotting with recombinant ArcNbs fused to a small ALFA-epitope tag demonstrated binding to recombinant Arc as well as endogenous Arc from rat cortical tissue. ALFA-tagged ArcNb also provided efficient immunoprecipitation of stimulus-induced Arc after carbachol-treatment of SH-SY5Y neuroblastoma cells and induction of long-term potentiation in the rat dentate gyrus in vivo. Epitope mapping showed that all Nbs recognize the Arc C-terminal region containing the retroviral Gag capsid homology domain, comprised of tandem N- and C-lobes. ArcNbs E5 and H11 selectively bound the N-lobe, which harbors a peptide ligand binding pocket specific to mammals. Four additional ArcNbs bound the region containing the C-lobe and C-terminal tail. For use as genetically encoded fluorescent intrabodies, we show that ArcNbs fused to mScarlet-I are uniformly expressed, without aggregation, in the cytoplasm and nucleus of HEK293FT cells. Finally, mScarlet-I-ArcNb H11 expressed as intrabody selectively bound the N-lobe and enabled co-immunoprecipitation of full-length intracellular Arc. ArcNbs are versatile tools for live-cell labeling and purification of Arc, and interrogation of Arc capsid domain specific functions.
Collapse
Affiliation(s)
- Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway.
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Tadiwos F Mergiya
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Center for Research on the Brain, University of Bergen, Bergen, Norway
| | - Rodolfo Baldinotti
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Center for Research on the Brain, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Sigurbjörn Markússon
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway.
- Mohn Center for Research on the Brain, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
16
|
Markússon S, Hallin EI, Bustad HJ, Raasakka A, Xu J, Muruganandam G, Loris R, Martinez A, Bramham CR, Kursula P. High-affinity anti-Arc nanobodies provide tools for structural and functional studies. PLoS One 2022; 17:e0269281. [PMID: 35671319 PMCID: PMC9173642 DOI: 10.1371/journal.pone.0269281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a multidomain protein of retroviral origin with a vital role in the regulation of synaptic plasticity and memory formation in mammals. However, the mechanistic and structural basis of Arc function is poorly understood. Arc has an N-terminal domain (NTD) involved in membrane binding and a C-terminal domain (CTD) that binds postsynaptic protein ligands. In addition, the NTD and CTD both function in Arc oligomerisation, including assembly of retrovirus-like capsids involved in intercellular signalling. To obtain new tools for studies on Arc structure and function, we produced and characterised six high-affinity anti-Arc nanobodies (Nb). The CTD of rat and human Arc were both crystallised in ternary complexes with two Nbs. One Nb bound deep into the stargazin-binding pocket of Arc CTD and suggested competitive binding with Arc ligand peptides. The crystallisation of the human Arc CTD in two different conformations, accompanied by SAXS data and molecular dynamics simulations, paints a dynamic picture of the mammalian Arc CTD. The collapsed conformation closely resembles Drosophila Arc in capsids, suggesting that we have trapped a capsid-like conformation of the human Arc CTD. Our data obtained with the help of anti-Arc Nbs suggest that structural dynamics of the CTD and dimerisation of the NTD may promote the formation of capsids. Taken together, the recombinant high-affinity anti-Arc Nbs are versatile tools that can be further developed for studying mammalian Arc structure and function, as well as mechanisms of Arc capsid formation, both in vitro and in vivo. For example, the Nbs could serve as a genetically encoded tools for inhibition of endogenous Arc interactions in the study of neuronal function and plasticity.
Collapse
Affiliation(s)
| | - Erik I. Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
17
|
Hedde PN, Barylko B, Binns DD, Jameson DM, Albanesi JP. Differential Mobility and Self-Association of Arc/Arg3.1 in the Cytoplasm and Nucleus of Living Cells. ACS Chem Neurosci 2022; 13:876-882. [PMID: 35319179 DOI: 10.1021/acschemneuro.1c00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arc, also known as Arg3.1, is an activity-dependent immediate-early gene product that plays essential roles in memory consolidation. A pool of Arc is located in the postsynaptic cytoplasm, where it promotes AMPA receptor endocytosis and cytoskeletal remodeling. However, Arc is also found in the nucleus, with a major portion being associated with promyelocytic leukemia nuclear bodies (PML-NBs). Nuclear Arc has been implicated in epigenetic control of gene transcription associated with learning and memory. In this study, we use a battery of fluorescence nanoimaging approaches to characterize the behavior of Arc ectopically expressed in heterologous cells. Our results indicate that in the cytoplasm, Arc exists predominantly as monomers and dimers associated with slowly diffusing particles. In contrast, nuclear Arc is almost exclusively monomeric and displays a higher diffusivity than cytoplasmic Arc. We further show that Arc moves freely and rapidly between PML-NBs and the nucleoplasm and that its movement within PML-NBs is relatively unobstructed.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo Street, BSB 222, University of Hawaii, Honolulu, Hawaii 96813, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, Texas 75390, United States
| | - Derk D. Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, Texas 75390, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo Street, BSB 222, University of Hawaii, Honolulu, Hawaii 96813, United States
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, Texas 75390, United States
| |
Collapse
|
18
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
19
|
Xiao MF, Roh SE, Zhou J, Chien CC, Lucey BP, Craig MT, Hayes LN, Coughlin JM, Leweke FM, Jia M, Xu D, Zhou W, Conover Talbot C, Arnold DB, Staley M, Jiang C, Reti IM, Sawa A, Pelkey KA, McBain CJ, Savonenko A, Worley PF. A biomarker-authenticated model of schizophrenia implicating NPTX2 loss of function. SCIENCE ADVANCES 2021; 7:eabf6935. [PMID: 34818031 PMCID: PMC8612534 DOI: 10.1126/sciadv.abf6935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Schizophrenia is a polygenetic disorder whose clinical onset is often associated with behavioral stress. Here, we present a model of disease pathogenesis that builds on our observation that the synaptic immediate early gene NPTX2 is reduced in cerebrospinal fluid of individuals with recent onset schizophrenia. NPTX2 plays an essential role in maintaining excitatory homeostasis by adaptively enhancing circuit inhibition. NPTX2 function requires activity-dependent exocytosis and dynamic shedding at synapses and is coupled to circadian behavior. Behavior-linked NPTX2 trafficking is abolished by mutations that disrupt select activity-dependent plasticity mechanisms of excitatory neurons. Modeling NPTX2 loss of function results in failure of parvalbumin interneurons in their adaptive contribution to behavioral stress, and animals exhibit multiple neuropsychiatric domains. Because the genetics of schizophrenia encompasses diverse proteins that contribute to excitatory synapse plasticity, the identified vulnerability of NPTX2 function can provide a framework for assessing the impact of genetics and the intersection with stress.
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P. Lucey
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael T. Craig
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M. Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F. Markus Leweke
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Youth Mental Health Team, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Min Jia
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C. Conover Talbot
- Transcriptomics and Deep Sequencing Core Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Don B. Arnold
- Department of Biology, Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Melissa Staley
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cindy Jiang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irving M. Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenneth A. Pelkey
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Chris J. McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Walczyk-Mooradally A, Holborn J, Singh K, Tyler M, Patnaik D, Wesseling H, Brandon NJ, Steen J, Graether SP, Haggarty SJ, Lalonde J. Phosphorylation-dependent control of Activity-regulated cytoskeleton-associated protein (Arc) protein by TNIK. J Neurochem 2021. [PMID: 34077555 DOI: 10.1111/jnc.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, and been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15077.
Collapse
Affiliation(s)
| | - Jennifer Holborn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Karamjeet Singh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Marshall Tyler
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Debasis Patnaik
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca Boston, Waltham, MA, USA
| | - Judith Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Walczyk-Mooradally A, Holborn J, Singh K, Tyler M, Patnaik D, Wesseling H, Brandon NJ, Steen J, Graether SP, Haggarty SJ, Lalonde J. Phosphorylation-dependent control of Activity-regulated cytoskeleton-associated protein (Arc) protein by TNIK. J Neurochem 2021; 158:1058-1073. [PMID: 34077555 DOI: 10.1111/jnc.15440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, and been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders.
Collapse
Affiliation(s)
| | - Jennifer Holborn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Karamjeet Singh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Marshall Tyler
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Debasis Patnaik
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca Boston, Waltham, MA, USA
| | - Judith Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Crystal and solution structures reveal oligomerization of individual capsid homology domains of Drosophila Arc. PLoS One 2021; 16:e0251459. [PMID: 33989344 PMCID: PMC8121366 DOI: 10.1371/journal.pone.0251459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc). Mammalian Arc forms virus-like capsid structures in a process requiring the N-terminal domain and contains two C-terminal lobes that are structural homologues to retroviral capsids. Drosophila has two isoforms of Arc, dArc1 and dArc2, with low sequence similarity to mammalian Arc, but lacking a large N-terminal domain. Both dArc isoforms are related to the Ty3/gypsy retrotransposon capsid, consisting of N- and C-terminal lobes. Structures of dArc1, as well as capsids formed by both dArc isoforms, have been recently determined. We carried out structural characterization of the four individual dArc lobe domains. As opposed to the corresponding mammalian Arc lobe domains, which are monomeric, the dArc lobes were all oligomeric in solution, indicating a strong propensity for homophilic interactions. A truncated N-lobe from dArc2 formed a domain-swapped dimer in the crystal structure, resulting in a novel dimer interaction that could be relevant for capsid assembly or other dArc functions. This domain-swapped structure resembles the dimeric protein C of flavivirus capsids, as well as the structure of histones dimers, domain-swapped transcription factors, and membrane-interacting BAK domains. The strong oligomerization properties of the isolated dArc lobe domains explain the ability of dArc to form capsids in the absence of any large N-terminal domain, in contrast to the mammalian protein.
Collapse
|
23
|
Mateus C, Campis R, Aguaded I, Parody A, Ruiz F. Analysis of personality traits and academic performance in higher education at a Colombian university. Heliyon 2021; 7:e06998. [PMID: 34036192 PMCID: PMC8134984 DOI: 10.1016/j.heliyon.2021.e06998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 04/29/2021] [Indexed: 12/01/2022] Open
Abstract
This paper arises from the question of the correlation between specific personality traits and academic performance, since it is of crucial importance to consider variables other to students' grades that also affect this phenomenon. The objective was to correlate personality traits with the academic performance of students in a higher education institution. This is a quantitative, correlational research, with a final sample of 214 students. Results confirmed that there is a positive correlation between those variables. Personality traits of abstractedness and perfectionism correlate with academic performance. Results show that perfectionism and abstractedness traits and sex, affect academic performance. It is still important to notice that there are other factors (beyond the scope of this research) that could possibly have a significant impact on academic performance.
Collapse
Affiliation(s)
- Cirit Mateus
- Universidad Metropolitana, Barranquilla, Colombia
- Colciencias, Universidad del Norte Scholar, Colombia
| | - Rodrigo Campis
- Colciencias, Universidad del Norte Scholar, Colombia
- Departamento de Posgrados, Universidad Metropolitana, Barranquilla, Colombia
| | - Ignacio Aguaded
- Departamento de Educación, Universidad de Huelva, Huelva, Spain
| | | | | |
Collapse
|
24
|
Hantak MP, Einstein J, Kearns RB, Shepherd JD. Intercellular Communication in the Nervous System Goes Viral. Trends Neurosci 2021; 44:248-259. [PMID: 33485691 PMCID: PMC8041237 DOI: 10.1016/j.tins.2020.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Viruses and transposable elements are major drivers of evolution and make up over half the sequences in the human genome. In some cases, these elements are co-opted to perform biological functions for the host. Recent studies made the surprising observation that the neuronal gene Arc forms virus-like protein capsids that can transfer RNA between neurons to mediate a novel intercellular communication pathway. Phylogenetic analyses showed that mammalian Arc is derived from an ancient retrotransposon of the Ty3/gypsy family and contains homology to the retroviral Gag polyproteins. The Drosophila Arc homologs, which are independently derived from the same family of retrotransposons, also mediate cell-to-cell signaling of RNA at the neuromuscular junction; a striking example of convergent evolution. Here we propose an Arc 'life cycle', based on what is known about retroviral Gag, and discuss how elucidating these biological processes may lead to novel insights into brain plasticity and memory.
Collapse
Affiliation(s)
- Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jenifer Einstein
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Rachel B Kearns
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Henley JM, Seager R, Nakamura Y, Talandyte K, Nair J, Wilkinson KA. SUMOylation of synaptic and synapse-associated proteins: An update. J Neurochem 2021; 156:145-161. [PMID: 32538470 PMCID: PMC8218484 DOI: 10.1111/jnc.15103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.
Collapse
Affiliation(s)
- Jeremy M. Henley
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Richard Seager
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Yasuko Nakamura
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Karolina Talandyte
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Jithin Nair
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Kevin A. Wilkinson
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| |
Collapse
|
26
|
Yakout DW, Shree N, Mabb AM. Effect of pharmacological manipulations on Arc function. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 2:100013. [PMID: 34909648 PMCID: PMC8663979 DOI: 10.1016/j.crphar.2020.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a brain-enriched immediate early gene that regulates important mechanisms implicated in learning and memory. Arc levels are controlled through a balance of induction and degradation in an activity-dependent manner. Arc further undergoes multiple post-translational modifications that regulate its stability, localization and function. Recent studies demonstrate that these features of Arc can be pharmacologically manipulated. In this review, we discuss some of these compounds, with an emphasis on drugs of abuse and psychotropic drugs. We also discuss inflammatory states that regulate Arc.
Collapse
Affiliation(s)
- Dina W. Yakout
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
27
|
Eriksen MS, Nikolaienko O, Hallin EI, Grødem S, Bustad HJ, Flydal MI, Merski I, Hosokawa T, Lascu D, Akerkar S, Cuéllar J, Chambers JJ, O'Connell R, Muruganandam G, Loris R, Touma C, Kanhema T, Hayashi Y, Stratton MM, Valpuesta JM, Kursula P, Martinez A, Bramham CR. Arc self-association and formation of virus-like capsids are mediated by an N-terminal helical coil motif. FEBS J 2020; 288:2930-2955. [PMID: 33175445 DOI: 10.1111/febs.15618] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown. Here, we identified a 28-amino-acid stretch in the mammalian Arc N-terminal (NT) domain that is necessary and sufficient for self-association. Within this region, we identified a 7-residue oligomerization motif, critical for the formation of virus-like capsids. Purified wild-type Arc formed capsids as shown by transmission and cryo-electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic-resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled-coil interface, strongly supporting NT-NT domain interactions in Arc oligomerization. The NT coil-coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc-facilitated endocytosis. Furthermore, using single-molecule photobleaching, we show that Arc mRNA greatly enhances higher-order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self-association above the dimer stage, mRNA-induced oligomerization, and formation of virus-like capsids. DATABASE: The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.
Collapse
Affiliation(s)
- Maria S Eriksen
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Oleksii Nikolaienko
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Norway
| | - Sverre Grødem
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Helene J Bustad
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Marte I Flydal
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Ian Merski
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, USA
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniela Lascu
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Shreeram Akerkar
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, USA
| | - Rory O'Connell
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, USA
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Christine Touma
- Faculty of Biochemistry and Molecular Biology & Biocenter Oulu, University of Oulu, Finland
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, USA
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway.,Faculty of Biochemistry and Molecular Biology & Biocenter Oulu, University of Oulu, Finland
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| |
Collapse
|
28
|
Zhang H, Bramham CR. Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues. Eur J Neurosci 2020; 54:6696-6712. [PMID: 32888346 DOI: 10.1111/ejn.14958] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Arc (activity-regulated cytoskeleton-associated protein) is posited as a critical regulator of long-term synaptic plasticity at excitatory synapses, including long-term potentiation, long-term depression, inverse synaptic tagging and homoeostatic scaling, with pivotal roles in memory and postnatal cortical development. However, the mechanisms underlying the bidirectional regulation of synaptic strength are poorly understood. Here we review evidence from different plasticity paradigms, highlight outstanding issues and discuss stimulus-specific mechanisms that dictate Arc function. We propose a model in which Arc bidirectionally controls synaptic strength by coordinate regulation of AMPA-type glutamate receptor (AMPAR) trafficking and actin cytoskeletal dynamics in dendritic spines. Key to this model, Arc is proposed to function as an activity-dependent regulator of AMPAR lateral membrane diffusion and trapping at synapses.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Blanchette CR, Rodal AA. Mechanisms for biogenesis and release of neuronal extracellular vesicles. Curr Opin Neurobiol 2020; 63:104-110. [PMID: 32387925 PMCID: PMC7483335 DOI: 10.1016/j.conb.2020.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
Abstract
Neurons release membrane-bound extracellular vesicles (EVs) carrying proteins, nucleic acids, and other cargoes to mediate neuronal development, plasticity, inflammation, regeneration, and degeneration. Functional studies and therapeutic interventions into EV-dependent processes will require a deep understanding of how neuronal EVs are formed and released. However, unraveling EV biogenesis and trafficking mechanisms is challenging, since there are multiple pathways governing generation of different types of EVs, which overlap mechanistically with each other, as well as with intracellular endolysosomal trafficking pathways. Further, neurons present special considerations for EVs due to their extreme morphologies and specialization for membrane traffic. Here, we review recent work elucidating neuronal pathways that regulate EV biogenesis and release, with the goal of identifying directed strategies for experimental and therapeutic targeting of specific types of EVs.
Collapse
|
30
|
Liu Z, Zhao W, Yuan P, Zhu P, Fan K, Xia Z, Xu S. The mechanism of CaMK2α-MCU-mitochondrial oxidative stress in bupivacaine-induced neurotoxicity. Free Radic Biol Med 2020; 152:363-374. [PMID: 32275945 DOI: 10.1016/j.freeradbiomed.2020.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
Ca2+/calmodulin dependent protein kinase2α (CaMK2α) is a serine/threonine protein kinase in neurons and leads to neuronal injury when it is activated abnormally. Bupivacaine, a local anesthetic commonly used in regional nerve block, could induce neurotoxicity via apoptotic injury. Whether or not CaMK2α is involved in bupivacaine-induced neurotoxicity and it is regulated remains unclear. In this study, bupivacaine was administered for intrathecal injection in C57BL/6 mice for building vivo injury model and was used to culture human neuroblastoma (SH-SY5Y) cells for building vitro injury model. The results showed that bupivacaine induced mitochondrial oxidative stress and neurons apoptotic injury, promoted phosphorylation of CaMK2α and cAMP-response element binding protein (CREB), and elevated mitochondrial Ca2+ uniporter (MCU) expression. Furthermore, it induced CaMK2α phosphorylation at Thr286 which phosphorylated CREB at Ser133 and up-regulated MCU transcriptional expression. Inhibition of CaMK2α-MCU signaling with knock-down of CaMK2α and MCU or with inhibitors (KN93 and Ru360) significantly mitigated bupivacaine-induced neurotoxic injury. Over-expression of CaMK2α significantly enhanced above oxidative injury. Activated MCU with agonist (spermine) reversed protective effect of siCaMK2α on bupivacaine-induced mitochondrial oxidative stress. Our data revealed that CaMK2α-MCU-mitochondrial oxidative stress pathway is a major mechanism whereby bupivacaine induces neurotoxicity and inhibition of above signaling could be a therapeutic strategy in the treatment of bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Pian Zhu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Keke Fan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China; Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA, 95817, USA.
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
31
|
Erlendsson S, Morado DR, Cullen HB, Feschotte C, Shepherd JD, Briggs JAG. Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. Nat Neurosci 2020; 23:172-175. [PMID: 31907439 PMCID: PMC7032958 DOI: 10.1038/s41593-019-0569-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022]
Abstract
Arc, a neuronal gene critical for synaptic plasticity, originated through
domestication of retrotransposon Gag genes and mediates
intercellular mRNA transfer. We report high-resolution structures of
retrovirus-like capsids formed by Drosophila dArc1 and dArc2
that have surface spikes and putative internal RNA-binding domains. These data
demonstrate that virus-like capsid-forming properties of Arc are evolutionarily
conserved and provide a structural basis for understanding their function in
intercellular communication.
Collapse
Affiliation(s)
- Simon Erlendsson
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dustin R Morado
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Harrison B Cullen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John A G Briggs
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|