1
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
2
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
3
|
Martitz A, Schulz EG. Spatial orchestration of the genome: topological reorganisation during X-chromosome inactivation. Curr Opin Genet Dev 2024; 86:102198. [PMID: 38663040 DOI: 10.1016/j.gde.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Genomes are organised through hierarchical structures, ranging from local kilobase-scale cis-regulatory contacts to large chromosome territories. Most notably, (sub)-compartments partition chromosomes according to transcriptional activity, while topologically associating domains (TADs) define cis-regulatory landscapes. The inactive X chromosome in mammals has provided unique insights into the regulation and function of the three-dimensional (3D) genome. Concurrent with silencing of the majority of genes and major alterations of its chromatin state, the X chromosome undergoes profound spatial rearrangements at multiple scales. These include the emergence of megadomains, alterations of the compartment structure and loss of the majority of TADs. Moreover, the Xist locus, which orchestrates X-chromosome inactivation, has provided key insights into regulation and function of regulatory domains. This review provides an overview of recent insights into the control of these structural rearrangements and contextualises them within a broader understanding of 3D genome organisation.
Collapse
Affiliation(s)
- Alexandra Martitz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
6
|
Balasubramanian D, Borges Pinto P, Grasso A, Vincent S, Tarayre H, Lajoignie D, Ghavi-Helm Y. Enhancer-promoter interactions can form independently of genomic distance and be functional across TAD boundaries. Nucleic Acids Res 2024; 52:1702-1719. [PMID: 38084924 PMCID: PMC10899756 DOI: 10.1093/nar/gkad1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/29/2024] Open
Abstract
Topologically Associating Domains (TADs) have been suggested to facilitate and constrain enhancer-promoter interactions. However, the role of TAD boundaries in effectively restricting these interactions remains unclear. Here, we show that a significant proportion of enhancer-promoter interactions are established across TAD boundaries in Drosophila embryos, but that developmental genes are strikingly enriched in intra- but not inter-TAD interactions. We pursued this observation using the twist locus, a master regulator of mesoderm development, and systematically relocated one of its enhancers to various genomic locations. While this developmental gene can establish inter-TAD interactions with its enhancer, the functionality of these interactions remains limited, highlighting the existence of topological constraints. Furthermore, contrary to intra-TAD interactions, the formation of inter-TAD enhancer-promoter interactions is not solely driven by genomic distance, with distal interactions sometimes favored over proximal ones. These observations suggest that other general mechanisms must exist to establish and maintain specific enhancer-promoter interactions across large distances.
Collapse
Affiliation(s)
- Deevitha Balasubramanian
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
- Indian Institute of Science Education and Research (IISER) Tirupati; Tirupati 517507 Andhra Pradesh, India
| | - Pedro Borges Pinto
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Alexia Grasso
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Séverine Vincent
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Hélène Tarayre
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Damien Lajoignie
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| |
Collapse
|
7
|
Malcore RM, Kalantry S. A Comparative Analysis of Mouse Imprinted and Random X-Chromosome Inactivation. EPIGENOMES 2024; 8:8. [PMID: 38390899 PMCID: PMC10885068 DOI: 10.3390/epigenomes8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation.
Collapse
Affiliation(s)
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. EPIGENOMES 2024; 8:6. [PMID: 38390897 PMCID: PMC10885031 DOI: 10.3390/epigenomes8010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nat Cell Biol 2023; 25:1704-1715. [PMID: 37932452 PMCID: PMC10635832 DOI: 10.1038/s41556-023-01266-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.
Collapse
Affiliation(s)
- Liat Ravid Lustig
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Till Schwämmle
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gemma Noviello
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elodie Limberg
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Guido Pacini
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Afrah Ghauri
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Allou L, Mundlos S. Disruption of regulatory domains and novel transcripts as disease-causing mechanisms. Bioessays 2023; 45:e2300010. [PMID: 37381881 DOI: 10.1002/bies.202300010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Deletions, duplications, insertions, inversions, and translocations, collectively called structural variations (SVs), affect more base pairs of the genome than any other sequence variant. The recent technological advancements in genome sequencing have enabled the discovery of tens of thousands of SVs per human genome. These SVs primarily affect non-coding DNA sequences, but the difficulties in interpreting their impact limit our understanding of human disease etiology. The functional annotation of non-coding DNA sequences and methodologies to characterize their three-dimensional (3D) organization in the nucleus have greatly expanded our understanding of the basic mechanisms underlying gene regulation, thereby improving the interpretation of SVs for their pathogenic impact. Here, we discuss the various mechanisms by which SVs can result in altered gene regulation and how these mechanisms can result in rare genetic disorders. Beyond changing gene expression, SVs can produce novel gene-intergenic fusion transcripts at the SV breakpoints.
Collapse
Affiliation(s)
- Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Schwämmle T, Schulz EG. Regulatory principles and mechanisms governing the onset of random X-chromosome inactivation. Curr Opin Genet Dev 2023; 81:102063. [PMID: 37356341 PMCID: PMC10465972 DOI: 10.1016/j.gde.2023.102063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
X-chromosome inactivation (XCI) has evolved in mammals to compensate for the difference in X-chromosomal dosage between the sexes. In placental mammals, XCI is initiated during early embryonic development through upregulation of the long noncoding RNA Xist from one randomly chosen X chromosome in each female cell. The Xist locus must thus integrate both X-linked and developmental trans-regulatory factors in a dosage-dependent manner. Furthermore, the two alleles must coordinate to ensure inactivation of exactly one X chromosome per cell. In this review, we summarize the regulatory principles that govern the onset of XCI. We go on to provide an overview over the factors that have been implicated in Xist regulation and discuss recent advances in our understanding of how Xist's cis-regulatory landscape integrates information in a precise fashion.
Collapse
Affiliation(s)
- Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany. https://twitter.com/@TSchwammle
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
12
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
15
|
Lppnx lncRNA: The new kid on the block or an old friend in X-inactivation choice? Proc Natl Acad Sci U S A 2023; 120:e2218989120. [PMID: 36749727 PMCID: PMC9963819 DOI: 10.1073/pnas.2218989120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Reply to Galupa et al: Discussing the role of Lppnx in the complexity of the X controlling element, Xce. Proc Natl Acad Sci U S A 2023; 120:e2219685120. [PMID: 36749726 PMCID: PMC9962993 DOI: 10.1073/pnas.2219685120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Chakraborty S, Kopitchinski N, Zuo Z, Eraso A, Awasthi P, Chari R, Mitra A, Tobias IC, Moorthy SD, Dale RK, Mitchell JA, Petros TJ, Rocha PP. Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat Genet 2023; 55:280-290. [PMID: 36717694 PMCID: PMC10758292 DOI: 10.1038/s41588-022-01295-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
How enhancers activate their distal target promoters remains incompletely understood. Here we dissect how CTCF-mediated loops facilitate and restrict such regulatory interactions. Using an allelic series of mouse mutants, we show that CTCF is neither required for the interaction of the Sox2 gene with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs, between Sox2 and its distal enhancers, generated boundaries with varying degrees of insulation that directly correlated with reduced transcriptional output. However, in both epiblast and neural tissues, enhancer contacts and transcriptional induction could not be fully abolished, and insertions failed to disrupt implantation and neurogenesis. In contrast, Sox2 expression was undetectable in the anterior foregut of mutants carrying the strongest boundaries, and these animals fully phenocopied loss of SOX2 in this tissue. We propose that enhancer clusters with a high density of regulatory activity can better overcome physical barriers to maintain faithful gene expression and phenotypic robustness.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nina Kopitchinski
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhenyu Zuo
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Abstract
X chromosome inactivation (XCI) is the process of silencing one of the X chromosomes in cells of the female mammal which ensures dosage compensation between the sexes. Although theoretically random in somatic tissues, the choice of which X chromosome is chosen to be inactivated can be biased in mice by genetic element(s) associated with the so-called X-controlling element (Xce). Although the Xce was first described and genetically localized nearly 40 y ago, its mode of action remains elusive. In the approach presented here, we identify a single long noncoding RNA (lncRNA) within the Xce locus, Lppnx, which may be the driving factor in the choice of which X chromosome will be inactivated in the developing female mouse embryo. Comparing weak and strong Xce alleles we show that Lppnx modulates the expression of Xist lncRNA, one of the key factors in XCI, by controlling the occupancy of pluripotency factors at Intron1 of Xist. This effect is counteracted by enhanced binding of Rex1 in DxPas34, another key element in XCI regulating the activity of Tsix lncRNA, the main antagonist of Xist, in the strong but not in the weak Xce allele. These results suggest that the different susceptibility for XCI observed in weak and strong Xce alleles results from differential transcription factor binding of Xist Intron 1 and DxPas34, and that Lppnx represents a decisive factor in explaining the action of the Xce.
Collapse
|
19
|
Dossin F, Heard E. The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harb Perspect Biol 2022; 14:a040196. [PMID: 34312245 PMCID: PMC9121902 DOI: 10.1101/cshperspect.a040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In female eutherian mammals, dosage compensation of X-linked gene expression is achieved during development through transcriptional silencing of one of the two X chromosomes. Following X chromosome inactivation (XCI), the inactive X chromosome remains faithfully silenced throughout somatic cell divisions. XCI is dependent on Xist, a long noncoding RNA that coats and silences the X chromosome from which it is transcribed. Xist coating triggers a cascade of chromosome-wide changes occurring at the levels of transcription, chromatin composition, chromosome structure, and spatial organization within the nucleus. XCI has emerged as a paradigm for the study of such crucial nuclear processes and the dissection of their functional interplay. In the past decade, the advent of tools to characterize and perturb these processes have provided an unprecedented understanding into their roles during XCI. The mechanisms orchestrating the initiation of XCI as well as its maintenance are thus being unraveled, although many questions still remain. Here, we introduce key aspects of the XCI process and review the recent discoveries about its molecular basis.
Collapse
Affiliation(s)
- François Dossin
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| |
Collapse
|
20
|
Galupa R, Picard C, Servant N, Nora EP, Zhan Y, van Bemmel JG, El Marjou F, Johanneau C, Borensztein M, Ancelin K, Giorgetti L, Heard E. Inversion of a topological domain leads to restricted changes in its gene expression and affects interdomain communication. Development 2022; 149:275259. [PMID: 35502750 PMCID: PMC9148567 DOI: 10.1242/dev.200568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023]
Abstract
The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, Paris 75005, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris 75006, France
| | - Elphège P Nora
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland.,University of Basel, Basel 4001, Switzerland
| | - Joke G van Bemmel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | | | | | - Maud Borensztein
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Katia Ancelin
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France.,Collège de France, Paris 75231, France
| |
Collapse
|
21
|
Franke M, Daly AF, Palmeira L, Tirosh A, Stigliano A, Trifan E, Faucz FR, Abboud D, Petrossians P, Tena JJ, Vitali E, Lania AG, Gómez-Skarmeta JL, Beckers A, Stratakis CA, Trivellin G. Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism. Am J Hum Genet 2022; 109:553-570. [PMID: 35202564 DOI: 10.1016/j.ajhg.2022.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.
Collapse
|
22
|
Zuin J, Roth G, Zhan Y, Cramard J, Redolfi J, Piskadlo E, Mach P, Kryzhanovska M, Tihanyi G, Kohler H, Eder M, Leemans C, van Steensel B, Meister P, Smallwood S, Giorgetti L. Nonlinear control of transcription through enhancer-promoter interactions. Nature 2022; 604:571-577. [PMID: 35418676 PMCID: PMC9021019 DOI: 10.1038/s41586-022-04570-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.
Collapse
Affiliation(s)
- Jessica Zuin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julie Cramard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Josef Redolfi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Gergely Tihanyi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathias Eder
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christ Leemans
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
23
|
Galouzis CC, Furlong EEM. Regulating specificity in enhancer-promoter communication. Curr Opin Cell Biol 2022; 75:102065. [PMID: 35240372 DOI: 10.1016/j.ceb.2022.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Enhancers are cis-regulatory elements that can activate transcription remotely to regulate a specific pattern of a gene's expression. Genes typically have many enhancers that are often intermingled in the loci of other genes. To regulate expression, enhancers must therefore activate their correct promoter while ignoring others that may be in closer linear proximity. In this review, we discuss mechanisms by which enhancers engage with promoters, including recent findings on the role of cohesin and the Mediator complex, and how this specificity in enhancer-promoter communication is encoded. Genetic dissection of model loci, in addition to more recent findings using genome-wide approaches, highlight the core promoter sequence, its accessibility, cofactor-promoter preference, in addition to the surrounding genomic context, as key components.
Collapse
Affiliation(s)
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
24
|
Mechanisms of Choice in X-Chromosome Inactivation. Cells 2022; 11:cells11030535. [PMID: 35159344 PMCID: PMC8833938 DOI: 10.3390/cells11030535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Early in development, placental and marsupial mammals harbouring at least two X chromosomes per nucleus are faced with a choice that affects the rest of their lives: which of those X chromosomes to transcriptionally inactivate. This choice underlies phenotypical diversity in the composition of tissues and organs and in their response to the environment, and can determine whether an individual will be healthy or affected by an X-linked disease. Here, we review our current understanding of the process of choice during X-chromosome inactivation and its implications, focusing on the strategies evolved by different mammalian lineages and on the known and unknown molecular mechanisms and players involved.
Collapse
|
25
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
26
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
27
|
Nora EP. Lesson of regulatory anatomy: Using integrated functional genomics to dissect the X-inactivation center. Mol Cell 2022; 82:10-12. [PMID: 34995506 DOI: 10.1016/j.molcel.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gjaltema et al. (2021) perform systematic screens to identify the long-sought cis-regulatory elements of Xist. They discover that distal elements give Xist a boost as cells exit pluripotency, while proximal elements restrict Xist expression to cells with two X chromosomes.
Collapse
Affiliation(s)
- Elphège P Nora
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Robert-Finestra T, Tan BF, Mira-Bontenbal H, Timmers E, Gontan C, Merzouk S, Giaimo BD, Dossin F, van IJcken WFJ, Martens JWM, Borggrefe T, Heard E, Gribnau J. SPEN is required for Xist upregulation during initiation of X chromosome inactivation. Nat Commun 2021; 12:7000. [PMID: 34853312 PMCID: PMC8636516 DOI: 10.1038/s41467-021-27294-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
At initiation of X chromosome inactivation (XCI), Xist is monoallelically upregulated from the future inactive X (Xi) chromosome, overcoming repression by its antisense transcript Tsix. Xist recruits various chromatin remodelers, amongst them SPEN, which are involved in silencing of X-linked genes in cis and establishment of the Xi. Here, we show that SPEN plays an important role in initiation of XCI. Spen null female mouse embryonic stem cells (ESCs) are defective in Xist upregulation upon differentiation. We find that Xist-mediated SPEN recruitment to the Xi chromosome happens very early in XCI, and that SPEN-mediated silencing of the Tsix promoter is required for Xist upregulation. Accordingly, failed Xist upregulation in Spen-/- ESCs can be rescued by concomitant removal of Tsix. These findings indicate that SPEN is not only required for the establishment of the Xi, but is also crucial in initiation of the XCI process.
Collapse
Affiliation(s)
- Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Beatrice F Tan
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Erika Timmers
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | | | - François Dossin
- European Molecular Biology Laboratory, Director's Research, 69117, Heidelberg, Germany
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, 35392, Giessen, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Research, 69117, Heidelberg, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Ridnik M, Schoenfelder S, Gonen N. Cis-Regulatory Control of Mammalian Sex Determination. Sex Dev 2021; 15:317-334. [PMID: 34710870 PMCID: PMC8743899 DOI: 10.1159/000519244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
30
|
Heskett MB, Spellman PT, Thayer MJ. Differential Allelic Expression among Long Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040066. [PMID: 34698262 PMCID: PMC8544735 DOI: 10.3390/ncrna7040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNA) comprise a diverse group of non-protein-coding RNAs >200 bp in length that are involved in various normal cellular processes and disease states, and can affect coding gene expression through mechanisms in cis or in trans. Since the discovery of the first functional lncRNAs transcribed by RNA Polymerase II, H19 and Xist, many others have been identified and noted for their unusual transcriptional pattern, whereby expression from one chromosome homolog is strongly favored over the other, also known as mono-allelic or differential allelic expression. lncRNAs with differential allelic expression have been observed to play critical roles in developmental gene regulation, chromosome structure, and disease. Here, we will focus on known examples of differential allelic expression of lncRNAs and highlight recent research describing functional lncRNAs expressed from both imprinted and random mono-allelic expression domains.
Collapse
Affiliation(s)
- Michael B. Heskett
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Paul T. Spellman
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Mathew J. Thayer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
31
|
Abstract
Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ,
| | - Barbara J Meyer
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; ,
| |
Collapse
|
32
|
A Novel cis Regulatory Element Regulates Human XIST in a CTCF-Dependent Manner. Mol Cell Biol 2021; 41:e0038220. [PMID: 34060915 DOI: 10.1128/mcb.00382-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The long noncoding RNA XIST is the master regulator for the process of X chromosome inactivation (XCI) in mammalian females. Here, we report the existence of a hitherto-uncharacterized cis regulatory element (cRE) within the first exon of human XIST, which determines the transcriptional status of XIST during the initiation and maintenance phases of XCI. In the initiation phase, pluripotency factors bind to this cRE and keep XIST repressed. In the maintenance phase of XCI, the cRE is enriched for CTCF, which activates XIST transcription. By employing a CRISPR-dCas9-KRAB-based interference strategy, we demonstrate that binding of CTCF to the newly identified cRE is critical for regulating XIST in a YY1-dependent manner. Collectively, our study uncovers the combinatorial effect of multiple transcriptional regulators influencing XIST expression during the initiation and maintenance phases of XCI.
Collapse
|
33
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
34
|
Chromosome compartments on the inactive X guide TAD formation independently of transcription during X-reactivation. Nat Commun 2021; 12:3499. [PMID: 34108480 PMCID: PMC8190187 DOI: 10.1038/s41467-021-23610-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
A hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments, and into topologically associating domains (TADs). Both structures were regarded to be absent from the inactive mouse X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC reprogramming system and high-resolution Hi-C to produce a time course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we observe A/B-like compartments on the inactive X harbouring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, concomitant with downregulation of Xist. Importantly, we find that TAD formation precedes transcription and initiates from Xist-poor compartments. Here, we show that TAD formation and transcriptional reactivation are causally independent during X-reactivation while establishing Xist as a common denominator.
Collapse
|
35
|
Mutzel V, Schulz EG. Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X-Chromosome Inactivation. Bioessays 2021; 42:e1900163. [PMID: 32189388 DOI: 10.1002/bies.201900163] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Indexed: 02/06/2023]
Abstract
X-chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X-linked genes might be converted to an all-or-nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| |
Collapse
|
36
|
Eres IE, Gilad Y. A TAD Skeptic: Is 3D Genome Topology Conserved? Trends Genet 2021; 37:216-223. [PMID: 33203573 PMCID: PMC8120795 DOI: 10.1016/j.tig.2020.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The notion that topologically associating domains (TADs) are highly conserved across species is prevalent in the field of 3D genomics. However, what exactly is meant by 'highly conserved' and what are the actual comparative data that support this notion? To address these questions, we performed a historical review of the relevant literature and retraced numerous citation chains to reveal the primary data that were used as the basis for the widely accepted conclusion that TADs are highly conserved across evolution. A thorough review of the available evidence suggests the answer may be more complex than what is commonly presented.
Collapse
Affiliation(s)
- Ittai E Eres
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., N417, MC6091, Chicago, IL 60637, USA.
| |
Collapse
|
37
|
Migeon BR. Stochastic gene expression and chromosome interactions in protecting the human active X from silencing by XIST. Nucleus 2021; 12:1-5. [PMID: 33211621 PMCID: PMC7833733 DOI: 10.1080/19491034.2020.1850981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mammals use X chromosome inactivation to compensate for the sex difference in numbers of X chromosomes. A relatively unexplored question is how the active X is protected from inactivation by its own XIST gene, the long non-coding RNA, which initiates silence of the inactive X. Previous studies of autosomal duplications show that human chromosome 19 plays a critical role in protecting the active X. I proposed that it genetically interacts with the X chromosome to repress XIST function on the future active X. Here, I show that the type of chromosome 19 duplication influences the outcome of the interaction: the presence of three chromosome 19s is tolerated whereas duplications affecting only one chromosome 19 are not. The different outcomes have mechanistic implications for how chromosome 19 interacts with the future active X, pointing to a role for stochastic gene expression and possibly physical interaction.
Collapse
Affiliation(s)
- Barbara R Migeon
- Departments of Genetic Medicine and Pediatrics, The Johns Hopkins University , Baltimore, MD, USA
| |
Collapse
|
38
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
39
|
Sánchez-Gaya V, Mariner-Faulí M, Rada-Iglesias A. Rare or Overlooked? Structural Disruption of Regulatory Domains in Human Neurocristopathies. Front Genet 2020; 11:688. [PMID: 32765580 PMCID: PMC7379850 DOI: 10.3389/fgene.2020.00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, the role of non-coding regulatory elements and their involvement in human disease have received great attention. Among the non-coding regulatory sequences, enhancers are particularly important for the proper establishment of cell type-specific gene-expression programs. Furthermore, the disruption of enhancers can lead to human disease through two main mechanisms: (i) Mutations or copy number variants can directly alter the enhancer sequences and thereby affect expression of their target genes; (ii) structural variants can provoke changes in 3-D chromatin organization that alter neither the enhancers nor their target genes, but rather the physical communication between them. In this review, these pathomechanisms are mostly discussed in the context of neurocristopathies, congenital disorders caused by defects that occur during neural crest development. We highlight why, due to its contribution to multiple tissues and organs, the neural crest represents an important, yet understudied, cell type involved in multiple congenital disorders. Moreover, we discuss currently available resources and experimental models for the study of human neurocristopathies. Last, we provide some practical guidelines that can be followed when investigating human neurocristopathies caused by structural variants. Importantly, these guidelines can be useful not only to uncover the etiology of human neurocristopathies, but also of other human congenital disorders in which enhancer disruption is involved.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
|
41
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|