1
|
Yu J, Zhao Y, Xie Y. Advances of E3 ligases in lung cancer. Biochem Biophys Rep 2024; 38:101740. [PMID: 38841185 PMCID: PMC11152895 DOI: 10.1016/j.bbrep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related death, and the most common type of lung cancer is non-small cell lung cancer, which accounts for approximately 85 % of lung cancer diagnoses. Recent studies have revealed that ubiquitination acts as a crucial part of the development and progression of lung cancer. The E1-E2-E3 three-enzyme cascade has a core function in ubiquitination, so targeted adjustments of E3 ligases could be used in lung cancer treatment. Hence, we elucidate research advances in lung cancer-related E3 ligases by briefly describing the structure and categorization of E3 ligases. Here, we provide a detailed review of the mechanisms by which lung cancer-related E3 ligases modify substrate proteins and regulate signaling pathways to facilitate or suppress cancer progression. We hope to show a new perspective on targeted precision therapy for lung cancer.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yiqi Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yue Xie
- Liaoning Academy of Chinese Medicine, Liaoning University Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
2
|
Hu Z, Li M, Chen Y, Chen L, Han Y, Chen C, Lu X, You N, Lou Y, Huang Y, Huo Z, Liu C, Liang C, Liu S, Deng K, Chen L, Chen S, Wan G, Wu X, Fu Y, Xu A. Disruption of PABPN1 phase separation by SNRPD2 drives colorectal cancer cell proliferation and migration through promoting alternative polyadenylation of CTNNBIP1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1212-1225. [PMID: 38811444 DOI: 10.1007/s11427-023-2495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 05/31/2024]
Abstract
Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.
Collapse
Affiliation(s)
- Zhijie Hu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengxia Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yufeng Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuting Han
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengyong Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Lu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan You
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yawen Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingye Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhanfeng Huo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cheng Liang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Susu Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ke Deng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liangfu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaojian Wu
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Collins RRJ, Gee RRF, Sanchez MCH, Tozandehjani S, Bayat T, Breznik B, Lee AK, Peters ST, Connelly JP, Pruett-Miller SM, Roussel MF, Rakheja D, Tillman HS, Potts PR, Fon Tacer K. Melanoma antigens in pediatric medulloblastoma contribute to tumor heterogeneity and species-specificity of group 3 tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594201. [PMID: 38798351 PMCID: PMC11118370 DOI: 10.1101/2024.05.14.594201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options. Abstract Figure
Collapse
|
4
|
Griffith-Jones S, Álvarez L, Mukhopadhyay U, Gharbi S, Rettel M, Adams M, Hennig J, Bhogaraju S. Structural basis for RAD18 regulation by MAGEA4 and its implications for RING ubiquitin ligase binding by MAGE family proteins. EMBO J 2024; 43:1273-1300. [PMID: 38448672 PMCID: PMC10987633 DOI: 10.1038/s44318-024-00058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.
Collapse
Affiliation(s)
| | - Lucía Álvarez
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Michael Adams
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Janosch Hennig
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
5
|
Lin P, Chen W, Long Z, Yu J, Yang J, Xia Z, Wu Q, Min X, Tang J, Cui Y, Liu F, Wang C, Zheng J, Li W, Rich JN, Li L, Xie Q. RBBP6 maintains glioblastoma stem cells through CPSF3-dependent alternative polyadenylation. Cell Discov 2024; 10:32. [PMID: 38503731 PMCID: PMC10951364 DOI: 10.1038/s41421-024-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Glioblastoma is one of the most lethal malignant cancers, displaying striking intratumor heterogeneity, with glioblastoma stem cells (GSCs) contributing to tumorigenesis and therapeutic resistance. Pharmacologic modulators of ubiquitin ligases and deubiquitinases are under development for cancer and other diseases. Here, we performed parallel in vitro and in vivo CRISPR/Cas9 knockout screens targeting human ubiquitin E3 ligases and deubiquitinases, revealing the E3 ligase RBBP6 as an essential factor for GSC maintenance. Targeting RBBP6 inhibited GSC proliferation and tumor initiation. Mechanistically, RBBP6 mediated K63-linked ubiquitination of Cleavage and Polyadenylation Specific Factor 3 (CPSF3), which stabilized CPSF3 to regulate alternative polyadenylation events. RBBP6 depletion induced shortening of the 3'UTRs of MYC competing-endogenous RNAs to release miR-590-3p from shortened UTRs, thereby decreasing MYC expression. Targeting CPSF3 with a small molecular inhibitor (JTE-607) reduces GSC viability and inhibits in vivo tumor growth. Collectively, RBBP6 maintains high MYC expression in GSCs through regulation of CPSF3-dependent alternative polyadenylation, providing a potential therapeutic paradigm for glioblastoma.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wenyan Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Long
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jichuan Yu
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiayao Yang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinyu Min
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jing Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Lei Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Graber JH, Hoskinson D, Liu H, Kaczmarek Michaels K, Benson PS, Maki NJ, Wilson CL, McGrath C, Puleo F, Pearson E, Kuehner JN, Moore C. Mutations in yeast Pcf11, a conserved protein essential for mRNA 3' end processing and transcription termination, elicit the Environmental Stress Response. Genetics 2024; 226:iyad199. [PMID: 37967370 PMCID: PMC10847720 DOI: 10.1093/genetics/iyad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.
Collapse
Affiliation(s)
- Joel H Graber
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Derick Hoskinson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Huiyun Liu
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Peter S Benson
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Nathaniel J Maki
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | | | - Caleb McGrath
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Franco Puleo
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Erika Pearson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jason N Kuehner
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Claire Moore
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
7
|
Huang XD, Chen YW, Tian L, Du L, Cheng XC, Lu YX, Lin DD, Xiao FJ. NUDT21 interacts with NDUFS2 to activate the PI3K/AKT pathway and promotes pancreatic cancer pathogenesis. J Cancer Res Clin Oncol 2024; 150:8. [PMID: 38195952 PMCID: PMC10776698 DOI: 10.1007/s00432-023-05540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND NUDT21 (Nudix Hydrolase 21) has been shown to play an essential role in multiple biological processes. Pancreatic adenocarcinoma (PAAD) is one of the most fatal cancers in the world. However, the biological function of NUDT21 in PAAD remains rarely understood. The aim of this research was to identify the prediction value of NUDT21 in diagnosis, prognosis, immune infiltration, and signal pathway in PAAD. METHODS Combined with the data in online databases, we analyzed the expression, immune infiltration, function enrichment, signal pathway, diagnosis, and prognosis of NUDT21 in PAAD. Then, the biological function of NUDT21 and its interacted protein in PAAD was identified through plasmid transduction system and protein mass spectrometry. Expression of NUDT21 was further verified in clinical specimens by immunofluorescence. RESULTS We found that NUDT21 was upregulated in PAAD tissues and was significantly associated with the diagnosis and prognosis of pancreatic cancer through bioinformatic data analysis. We also found that overexpression of NUDT21 enhanced PAAD cells proliferation and migration, whereas knockdown NUDT21 restored the effects through in vitro experiment. Moreover, NDUFS2 was recognized as a potential target of NUDT21.We further verified that the expression of NDUFS2 was positively correlated with NUDT21 in PAAD clinical specimens. Mechanically, we found that NUDT21 stabilizes NDUFS2 and activates the PI3K-AKT signaling pathway. CONCLUSION Our investigation reveals that NUDT21 is a previously unrecognized oncogenic factor in the diagnosis, prognosis, and treatment target of PAAD, and we suggest that NUDT21 might be a novel therapeutic target in PAAD.
Collapse
Affiliation(s)
- Xiao-Dong Huang
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, People's Republic of China
| | - Yong-Wei Chen
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lv Tian
- School of Nursing, Jilin University, Changchun, 130015, People's Republic of China
| | - Li Du
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Dong-Dong Lin
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, People's Republic of China.
| | - Feng-Jun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
8
|
Zhang N, Liu X, Huang L, Zeng J, Ma C, Han L, Li W, Yu J, Yang M. LINC00921 reduces lung cancer radiosensitivity by destabilizing NUDT21 and driving aberrant MED23 alternative polyadenylation. Cell Rep 2023; 42:113479. [PMID: 37999979 DOI: 10.1016/j.celrep.2023.113479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Alternative polyadenylation (APA) plays a major role in controlling transcriptome diversity and therapeutic resistance of cancers. However, long non-coding RNAs (lncRNAs) involved in pathological APA remain poorly defined. Here, we functionally characterize LINC00921, a MED13L/P300-induced oncogenic lncRNA, and show that it is required for global regulation of APA in non-small cell lung cancer (NSCLC). LINC00921 shows significant potential for reducing NSCLC radiosensitivity, and high LINC00921 levels are associated with a poor prognosis for patients with NSCLC treated with radiotherapy. LINC00921 controls NUDT21 stability by facilitating binding of NUDT21 with the E3 ligase TRIP12. LINC00921-induced destabilization of NUDT21 promotes 3' UTR shortening of MED23 mRNA via APA, which, in turn, leads to elevated MED23 protein levels in cancer cells and nuclear translocation of β-catenin and thereby activates expression of multiple β-catenin/T cell factor (TCF)/lymphoid enhancer-binding factor (LEF)-regulated core oncogenes (c-Myc, CCND1, and BMP4). These findings highlight the importance of functionally annotating lncRNAs controlling APA and suggest the clinical potential of therapeutics for advanced NSCLC.
Collapse
Affiliation(s)
- Nasha Zhang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linying Huang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiajia Zeng
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chi Ma
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linyu Han
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenwen Li
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Shandong University Cancer Center, Jinan, Shandong, China.
| | - Ming Yang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Shandong University Cancer Center, Jinan, Shandong, China.
| |
Collapse
|
9
|
Samel A, Väärtnõu F, Verk L, Kurg K, Mutso M, Kurg R. How the Intrinsically Disordered N-Terminus of Cancer/Testis Antigen MAGEA10 Is Responsible for Its Expression, Nuclear Localisation and Aberrant Migration. Biomolecules 2023; 13:1704. [PMID: 38136576 PMCID: PMC10741916 DOI: 10.3390/biom13121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Melanoma-associated antigen A (MAGEA) subfamily proteins are normally expressed in testis and/or placenta. However, aberrant expression is detected in the tumour cells of multiple types of human cancer. MAGEA expression is mainly observed in cancers that have acquired malignant phenotypes, invasiveness and metastasis, and the expression of MAGEA family proteins has been linked to poor prognosis in cancer patients. All MAGE proteins share the common MAGE homology domain (MHD) which encompasses up to 70% of the protein; however, the areas flanking the MHD region vary between family members and are poorly conserved. To investigate the molecular basis of MAGEA10 expression and anomalous mobility in gel, deletion and point-mutation, analyses of the MAGEA10 protein were performed. Our data show that the intrinsically disordered N-terminal domain and, specifically, the first seven amino acids containing a unique linear motif, PRAPKR, are responsible for its expression, aberrant migration in SDS-PAGE and nuclear localisation. The aberrant migration in gel and nuclear localisation are not related to each other. Hiding the N-terminus with an epitope tag strongly affected its mobility in gel and expression in cells. Our results suggest that the intrinsically disordered domains flanking the MHD determine the unique properties of individual MAGEA proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (A.S.); (F.V.); (L.V.); (K.K.); (M.M.)
| |
Collapse
|
10
|
Huang K, Zhang Y, Shi X, Yin Z, Zhao W, Huang L, Wang F, Zhou X. Cell-type-specific alternative polyadenylation promotes oncogenic gene expression in non-small cell lung cancer progression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:816-831. [PMID: 37675185 PMCID: PMC10477688 DOI: 10.1016/j.omtn.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Disrupted alternative polyadenylation (APA) is frequently involved in tumorigenesis and cancer progression by regulating the gene expression of oncogenes and tumor suppressors. However, limited knowledge of tumor-type- and cell-type-specific APA events may lead to novel APA events and their functions being overlooked. Here, we compared APA events across different cell types in non-small cell lung cancer (NSCLC) and normal tissues and identified functionally related APA events in NSCLC. We found several cell-specific 3'-UTR alterations that regulate gene expression changes showed prognostic value in NSCLC. We further investigated the function of APA-mediated 3'-UTR shortening through loss of microRNA (miRNA)-binding sites, and we identified and experimentally validated several oncogene-miRNA-tumor suppressor axes. According to our analyses, we found SPARC as an APA-regulated oncogene in cancer-associated fibroblasts in NSCLC. Knockdown of SPARC attenuates lung cancer cell invasion and metastasis. Moreover, we found high SPARC expression associated with resistance to several drugs except cisplatin. NSCLC patients with high SPARC expression could benefit more compared to low-SPARC-expression patients with cisplatin treatment. Overall, our comprehensive analysis of cell-specific APA events shed light on the regulatory mechanism of cell-specific oncogenes and provided opportunities for combination of APA-regulated therapeutic target and cell-specific therapy development.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- West China Biomedical Big Data Centre, West China Hospital of Sichuan University, Chengdu 610041, China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xiaorui Shi
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhiqin Yin
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Fu Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xianyang, Shaanxi 712046, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Ye L, Yao X, Xu B, Chen W, Lou H, Tong X, Fang S, Zou R, Hu Y, Wang Z, Xiang D, Lin Q, Feng S, Xue X, Guo G. RNA epigenetic modifications in ovarian cancer: The changes, chances, and challenges. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1784. [PMID: 36811232 DOI: 10.1002/wrna.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is the most common female cancer worldwide. Patients with OC have high mortality because of its complex and poorly understood pathogenesis. RNA epigenetic modifications, such as m6 A, m1 A, and m5 C, are closely associated with the occurrence and development of OC. RNA modifications can affect the stability of mRNA transcripts, nuclear export of RNAs, translation efficiency, and decoding accuracy. However, there are few overviews that summarize the link between m6 A RNA modification and OC. Here, we discuss the molecular and cellular functions of different RNA modifications and how their regulation contributes to the pathogenesis of OC. By improving our understanding of the role of RNA modifications in the etiology of OC, we provide new perspectives for their use in OC diagnosis and treatment. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Yang X, Wang X, Zou Y, Zhang S, Xia M, Fu L, Vollger MR, Chen NC, Taylor DJ, Harvey WT, Logsdon GA, Meng D, Shi J, McCoy RC, Schatz MC, Li W, Eichler EE, Lu Q, Mao Y. Characterization of large-scale genomic differences in the first complete human genome. Genome Biol 2023; 24:157. [PMID: 37403156 PMCID: PMC10320979 DOI: 10.1186/s13059-023-02995-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.
Collapse
Affiliation(s)
- Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Manying Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lianting Fu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dan Meng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Shi
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Jonnakuti VS, Ji P, Gao Y, Lin A, Chu Y, Elrod N, Huang KL, Li W, Yalamanchili HK, Wagner EJ. NUDT21 alters glioma migration through differential alternative polyadenylation of LAMC1. J Neurooncol 2023; 163:623-634. [PMID: 37389756 DOI: 10.1007/s11060-023-04370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Gliomas and their surrounding microenvironment constantly interact to promote tumorigenicity, yet the underlying posttranscriptional regulatory mechanisms that govern this interplay are poorly understood. METHODS Utilizing our established PAC-seq approach and PolyAMiner bioinformatic analysis pipeline, we deciphered the NUDT21-mediated differential APA dynamics in glioma cells. RESULTS We identified LAMC1 as a critical NUDT21 alternative polyadenylation (APA) target, common in several core glioma-driving signaling pathways. qRT-PCR analysis confirmed that NUDT21-knockdown in glioma cells results in the preferred usage of the proximal polyA signal (PAS) of LAMC1. Functional studies revealed that NUDT21-knockdown-induced 3'UTR shortening of LAMC1 is sufficient to cause translational gain, as LAMC1 protein is upregulated in these cells compared to their respective controls. We demonstrate that 3'UTR shortening of LAMC1 after NUDT21 knockdown removes binding sites for miR-124/506, thereby relieving potent miRNA-based repression of LAMC1 expression. Remarkably, we report that the knockdown of NUDT21 significantly promoted glioma cell migration and that co-depletion of LAMC1 with NUDT21 abolished this effect. Lastly, we observed that LAMC1 3'UTR shortening predicts poor prognosis of low-grade glioma patients from The Cancer Genome Atlas. CONCLUSION This study identifies NUDT21 as a core alternative polyadenylation factor that regulates the tumor microenvironment through differential APA and loss of miR-124/506 inhibition of LAMC1. Knockdown of NUDT21 in GBM cells mediates 3'UTR shortening of LAMC1, contributing to an increase in LAMC1, increased glioma cell migration/invasion, and a poor prognosis.
Collapse
Affiliation(s)
- Venkata Soumith Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yipeng Gao
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ai Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuan Chu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nathan Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Wei Li
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
15
|
Ma H, Lin J, Mei F, Mao H, Li QQ. Differential alternative polyadenylation of homoeologous genes of allohexaploid wheat ABD subgenomes during drought stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:499-518. [PMID: 36786697 DOI: 10.1111/tpj.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
16
|
Mukherjee S, Graber JH, Moore CL. Macrophage differentiation is marked by increased abundance of the mRNA 3' end processing machinery, altered poly(A) site usage, and sensitivity to the level of CstF64. Front Immunol 2023; 14:1091403. [PMID: 36761770 PMCID: PMC9905730 DOI: 10.3389/fimmu.2023.1091403] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Regulation of mRNA polyadenylation is important for response to external signals and differentiation in several cell types, and results in mRNA isoforms that vary in the amount of coding sequence or 3' UTR regulatory elements. However, its role in differentiation of monocytes to macrophages has not been investigated. Macrophages are key effectors of the innate immune system that help control infection and promote tissue-repair. However, overactivity of macrophages contributes to pathogenesis of many diseases. In this study, we show that macrophage differentiation is characterized by shortening and lengthening of mRNAs in relevant cellular pathways. The cleavage/polyadenylation (C/P) proteins increase during differentiation, suggesting a possible mechanism for the observed changes in poly(A) site usage. This was surprising since higher C/P protein levels correlate with higher proliferation rates in other systems, but monocytes stop dividing after induction of differentiation. Depletion of CstF64, a C/P protein and known regulator of polyadenylation efficiency, delayed macrophage marker expression, cell cycle exit, attachment, and acquisition of structural complexity, and impeded shortening of mRNAs with functions relevant to macrophage biology. Conversely, CstF64 overexpression increased use of promoter-proximal poly(A) sites and caused the appearance of differentiated phenotypes in the absence of induction. Our findings indicate that regulation of polyadenylation plays an important role in macrophage differentiation.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Joel H. Graber
- Computational Biology and Bioinformatics Core, Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Epigenetic and transcriptional activation of the secretory kinase FAM20C as an oncogene in glioma. J Genet Genomics 2023:S1673-8527(23)00023-1. [PMID: 36708808 DOI: 10.1016/j.jgg.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Gliomas are the most prevalent and aggressive malignancies of the nervous system. Previous bioinformatic studies have revealed the crucial role of the secretory pathway kinase FAM20C in the prediction of glioma invasion and malignancy. However, little is known about the pathogenesis of FAM20C in the regulation of glioma. Here, we construct the full-length transcriptome atlas in paired gliomas and observe that 22 genes are upregulated by full-length transcriptome and differential APA analysis. Analysis of ATAC-seq data reveals that both FAM20C and NPTN are the hub genes with chromatin openness and differential expression. Further, in vitro and in vivo studies suggest that FAM20C stimulates the proliferation and metastasis of glioma cells. Meanwhile, NPTN, a novel cancer suppressor gene, counteracts the function of FAM20C by inhibiting both the proliferation and migration of glioma. The blockade of FAM20C by neutralizing antibodies results in the regression of xenograft tumors. Moreover, MAX, BRD4, MYC, and REST are found to be the potential trans-active factors for the regulation of FAM20C. Taken together, our results uncover the oncogenic role of FAM20C in glioma and shed new light on the treatment of glioma by abolishing FAM20C.
Collapse
|
18
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
19
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Pascucci FA, Escalada MC, Suberbordes M, Vidal C, Ladelfa MF, Monte M. MAGE-I proteins and cancer-pathways: A bidirectional relationship. Biochimie 2022; 208:31-37. [PMID: 36403755 DOI: 10.1016/j.biochi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Data emerged from the last 20 years of basic research on tumor antigens positioned the type I MAGE (Melanoma Antigen GEnes - I or MAGE-I) family as cancer driver factors. MAGE-I gene expression is mainly restricted to normal reproductive tissues. However, abnormal re-expression in cancer unbalances the cell status towards enhanced oncogenic activity or reduced tumor suppression. Anomalous MAGE-I gene re-expression in cancer is attributed to altered epigenetic-mediated chromatin silencing. Still, emerging data indicate that MAGE-I can be regulated at protein level. Results from different laboratories suggest that after its anomalous re-expression, specific MAGE-I proteins can be regulated by well-known signaling pathways or key cellular processes that finally potentiate the cancer cell phenotype. Thus, MAGE-I proteins both regulate and are regulated by cancer-related pathways. Here, we present an updated review highlighting the recent findings on the regulation of MAGE-I by oncogenic pathways and the potential consequences in the tumor cell behavior.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Candela Vidal
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Martín Monte
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
21
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|
22
|
Lee S, Chen YC, Gillen AE, Taliaferro JM, Deplancke B, Li H, Lai EC. Diverse cell-specific patterns of alternative polyadenylation in Drosophila. Nat Commun 2022; 13:5372. [PMID: 36100597 PMCID: PMC9470587 DOI: 10.1038/s41467-022-32305-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most genes in higher eukaryotes express isoforms with distinct 3' untranslated regions (3' UTRs), generated by alternative polyadenylation (APA). Since 3' UTRs are predominant locations of post-transcriptional regulation, APA can render such programs conditional, and can also alter protein sequences via alternative last exon (ALE) isoforms. We previously used 3'-sequencing from diverse Drosophila samples to define multiple tissue-specific APA landscapes. Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell Atlas) to elucidate cell-type expression of 3' UTRs across >250 adult Drosophila cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE programs, such as 3' UTR lengthening in differentiated neurons and 3' UTR shortening in spermatocytes and spermatids. We trace dynamic 3' UTR patterns across cell lineages, including in the male germline, and discover new APA patterns in the intestinal stem cell lineage. Finally, we correlate expression of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and polyadenylation (CPA) factors in several cell types that exhibit characteristic APA landscapes, yielding candidate regulators of transcriptome complexity. These analyses provide a comprehensive foundation for future investigations of mechanisms and biological impacts of alternative 3' isoforms across the major cell types of this widely-studied model organism.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, 10013, USA
| | | | - Austin E Gillen
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering & Global Health Institute, School of Life Sciences, EPFL, CH-1015, Lausanne, Switzerland
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
23
|
Ma X, Cheng S, Ding R, Zhao Z, Zou X, Guang S, Wang Q, Jing H, Yu C, Ni T, Li L. ipaQTL-atlas: an atlas of intronic polyadenylation quantitative trait loci across human tissues. Nucleic Acids Res 2022; 51:D1046-D1052. [PMID: 36043442 PMCID: PMC9825496 DOI: 10.1093/nar/gkac736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 01/30/2023] Open
Abstract
Functional interpretation of disease-associated non-coding variants remains a significant challenge in the post-GWAS era. Our recent study has identified 3'UTR alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) and connects APA events with QTLs as a major driver of human traits and diseases. Besides 3'UTR, APA events can also occur in intron regions, and increasing evidence has connected intronic polyadenylation with disease risk. However, systematic investigation of the roles of intronic polyadenylation in human diseases remained challenging due to the lack of a comprehensive database across a variety of human tissues. Here, we developed ipaQTL-atlas (http://bioinfo.szbl.ac.cn/ipaQTL) as the first comprehensive portal for intronic polyadenylation. The ipaQTL-atlas is based on the analysis of 15 170 RNA-seq data from 838 individuals across 49 Genotype-Tissue Expression (GTEx v8) tissues and contains ∼0.98 million SNPs associated with intronic APA events. It provides an interface for ipaQTLs search, genome browser, boxplots, and data download, as well as the visualization of GWAS and ipaQTL colocalization results. ipaQTL-atlas provides a one-stop portal to access intronic polyadenylation information and could significantly advance the discovery of APA-associated disease susceptibility genes.
Collapse
Affiliation(s)
| | | | - Ruofan Ding
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - XuDong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Qixuan Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Huan Jing
- Department of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Lei Li
- To whom correspondence should be addressed. Tel: + 0755 2684 9284;
| |
Collapse
|
24
|
Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: A review. Medicine (Baltimore) 2022; 101:e30045. [PMID: 35984196 PMCID: PMC9388041 DOI: 10.1097/md.0000000000030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most prevalent diseases worldwide, and poses a threat to human health. Noncoding RNAs (ncRNAs) constitute most transcripts, but they cannot be translated into proteins. Studies have shown that ncRNAs can act as tumor suppressors or oncogenes. This review describes the role of several ncRNAs in various cancers, including microRNAs (miRNAs) such as the miR-34 family, let-7, miR-17-92 cluster, miR-210, and long noncoding RNAs (lncRNAs) such as HOX transcript antisense intergenic RNA (HOTAIR), Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), H19, NF-κB-interacting lncRNA (NKILA), as well as circular RNAs (circRNAs) and untranslated regions (UTRs), highlighting their effects on cancer growth, invasion, metastasis, angiogenesis, and apoptosis. They function as tumor suppressors or oncogenes that interfere with different axes and pathways, including p53 and IL-6, which are involved in the progression of cancer. The characteristic expression of some ncRNAs in cancer also allows them to be used as biomarkers for early diagnosis and therapeutic candidates. There is a complex network of interactions between ncRNAs, with some lncRNAs and circRNAs acting as competitive endogenous RNAs (ceRNAs) to decoy miRNAs and repress their expression. The ceRNA network is a part of the ncRNA network and numerous ncRNAs work as nodes or hubs in the network, and disruption of their interactions can cause cancer development. Therefore, the balance and stabilization of this network are important for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiping Zhang
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Shulong Yang
- Department of Physiology, Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Qie Y, Zhou D, Wu Z, Liu S, Shen C, Hu H, Zhang C, Xu Y. Low-dose hexavalent chromium(VI) exposure promotes prostate cancer cell proliferation by activating MAGEB2-AR signal pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113724. [PMID: 35660381 DOI: 10.1016/j.ecoenv.2022.113724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with several malignancies, such as lung cancer, but little information was available about the effects of its low-dose environmental exposure in prostate cancer. Our previous study has shown that low-dose Cr(VI) exposure could promote prostate cancer(PCa) cell growth in vitro and in vivo. In the present study, we furthermore found that low-dose Cr(VI) exposure could induce DNA demethylation in PCa cells. Based on our transcriptome sequencing data and DNA methylation database, we further identified MAGEB2 as a potential effector target that contributed to tumor-promoting effect of low-dose Cr(VI) exposure in PCa. In addition, we demonstrated that MAGEB2 was upregulated in PCa and its knockdown restrained PCa cell proliferation and tumor growth in vitro and in vivo. Moreover, Co-IP and point mutation experiments confirmed that MAGEB2 could bind to the NH2-terminal NTD domain of AR through the F-box in the MAGE homology domain, and then activated AR through up-regulating its downstream targets PSA and NX3.1. Together, low-dose Cr(VI) exposure can induce DNA demethylation in prostate cancer cells, and promote cell proliferation via activating MAGEB2-AR signaling pathway. Thus, inhibition of MAGEB2-AR signaling is a novel and promising strategy to reverse low-dose Cr(VI) exposure-induced prostate tumor progression, also as effective adjuvant therapy for AR signaling-dependent PCa.
Collapse
Affiliation(s)
- Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shenglai Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
26
|
Tseng V, Collum SD, Allawzi A, Crotty K, Yeligar S, Trammell A, Ryan Smith M, Kang BY, Sutliff RL, Ingram JL, Jyothula SSSK, Thandavarayan RA, Huang HJ, Nozik ES, Wagner EJ, Michael Hart C, Karmouty-Quintana H. 3'UTR shortening of HAS2 promotes hyaluronan hyper-synthesis and bioenergetic dysfunction in pulmonary hypertension. Matrix Biol 2022; 111:53-75. [PMID: 35671866 PMCID: PMC9676077 DOI: 10.1016/j.matbio.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.
Collapse
Affiliation(s)
- Victor Tseng
- Respiratory Medicine, Ansible Health Mountain View, CA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX
| | | | - Kathryn Crotty
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - Samantha Yeligar
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - Aaron Trammell
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - M Ryan Smith
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA
| | - Bum-Yong Kang
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA; Atlanta Veteran Affairs Health Care System Decatur, GA
| | - Roy L Sutliff
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA; Atlanta Veteran Affairs Health Care System Decatur, GA
| | | | - Soma S S K Jyothula
- Divisions of Critical Care, Pulmonary & Sleep Medicine, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX; Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston TX, USA
| | | | - Howard J Huang
- Debakey Heart & Vascular Center, Houston Methodist Hospital, Houston TX, USA
| | - Eva S Nozik
- University of Colorado Anschutz Medical Campus, Department of Pediatrics Aurora, CO
| | - Eric J Wagner
- University of Rochester Medical Center, School of Medicine and Dentistry Rochester, NY
| | - C Michael Hart
- Emory University Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine Atlanta, GA; Atlanta Veteran Affairs Health Care System Decatur, GA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX; Divisions of Critical Care, Pulmonary & Sleep Medicine, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX.
| |
Collapse
|
27
|
Song J, Nabeel-Shah S, Pu S, Lee H, Braunschweig U, Ni Z, Ahmed N, Marcon E, Zhong G, Ray D, Ha KCH, Guo X, Zhang Z, Hughes TR, Blencowe BJ, Greenblatt JF. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell 2022; 82:3135-3150.e9. [PMID: 35914531 DOI: 10.1016/j.molcel.2022.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.
Collapse
Affiliation(s)
- Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Ulrich Braunschweig
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada.
| |
Collapse
|
28
|
Sing TL, Conlon K, Lu SH, Madrazo N, Morse K, Barker JC, Hollerer I, Brar GA, Sudmant PH, Ünal E. Meiotic cDNA libraries reveal gene truncations and mitochondrial proteins important for competitive fitness in Saccharomyces cerevisiae. Genetics 2022; 221:iyac066. [PMID: 35471663 PMCID: PMC9157139 DOI: 10.1093/genetics/iyac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Gametogenesis is an evolutionarily conserved developmental program whereby a diploid progenitor cell undergoes meiosis and cellular remodeling to differentiate into haploid gametes, the precursors for sexual reproduction. Even in the simple eukaryotic organism Saccharomyces cerevisiae, the meiotic transcriptome is very rich and complex, thereby necessitating new tools for functional studies. Here, we report the construction of 5 stage-specific, inducible complementary DNA libraries from meiotic cells that represent over 84% of the genes found in the budding yeast genome. We employed computational strategies to detect endogenous meiotic transcript isoforms as well as library-specific gene truncations. Furthermore, we developed a robust screening pipeline to test the effect of each complementary DNA on competitive fitness. Our multiday proof-of-principle time course revealed 877 complementary DNAs that were detrimental for competitive fitness when overexpressed. The list included mitochondrial proteins that cause dose-dependent disruption of cellular respiration as well as library-specific gene truncations that expose a dominant negative effect on competitive growth. Together, these high-quality complementary DNA libraries provide an important tool for systematically identifying meiotic genes, transcript isoforms, and protein domains that are important for a specific biological function.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Katie Conlon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie H Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicole Madrazo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kaitlin Morse
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Juliet C Barker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ina Hollerer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Chen Q, Liu Z, Tan Y, Pan S, An W, Xu H. Characterization of RNA modifications in gastric cancer to identify prognosis-relevant gene signatures. Cancer Med 2022; 12:879-897. [PMID: 35635121 PMCID: PMC9844604 DOI: 10.1002/cam4.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most human genes have diverse transcript isoforms, which mainly arise from alternative cleavage and polyadenylation (APA) at 3' ends. N7-methylguanosine (m7 G) is also an essential epigenetic modification at the 5' end. However, the contribution of these two RNA modifications to the development, prognosis, regulation mechanisms, and drug sensitivity of gastric cancer (GC) is unclear. METHODS The expression data of 2412 patients were extracted from 12 cohorts and the RNA modification patterns of 20 marker genes were systematically identified into phenotypic clusters using the unsupervised clustering approach. Following that, we developed an RNA modification model (RMscore) to quantify each GC patient's RNA modification index. Finally, we examined the correlation between RMscore and clinical features such as survival outcomes, molecular subtypes identified by the Asian Cancer Research Group (ACRG), posttranscriptional regulation, and chemotherapeutic sensitivity in GC. RESULTS The samples were categorized into two groups on the basis of their RMscore: high and low. The group with a low RMscore had a bad prognosis. Moreover, the low RMscore was associated with KRAS, Hedgehog, EMT, and TGF-β signaling, whereas a high RMscore was related to abnormal cell cycle signaling pathway activation. The findings also revealed that the RMscore contributes to the regulation of the miRNA-mRNA network. Drug sensitivity analysis revealed that RMscore is associated with the response to some anticancer drugs. CONCLUSIONS The RMscore model has the potential to be a useful tool for prognosis prediction in patients with GC. A comprehensive investigation of APA-RNA and m7 G-RNA modifications may reveal novel insights into the epigenetics of GC and aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Qingchuan Chen
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Zhouyang Liu
- Department of NeurologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuen Tan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Siwei Pan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Wen An
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Huimian Xu
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
30
|
Fleming MC, Chiou LF, Tumbale PP, Droby GN, Lim J, Norris-Drouin JL, Williams JG, Pearce KH, Williams RS, Vaziri C, Bowers AA. Discovery and Structural Basis of the Selectivity of Potent Cyclic Peptide Inhibitors of MAGE-A4. J Med Chem 2022; 65:7231-7245. [PMID: 35522528 PMCID: PMC9930912 DOI: 10.1021/acs.jmedchem.2c00185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MAGE proteins are cancer testis antigens (CTAs) that are characterized by highly conserved MAGE homology domains (MHDs) and are increasingly being found to play pivotal roles in promoting aggressive cancer types. MAGE-A4, in particular, increases DNA damage tolerance and chemoresistance in a variety of cancers by stabilizing the E3-ligase RAD18 and promoting trans-lesion synthesis (TLS). Inhibition of the MAGE-A4:RAD18 axis could sensitize cancer cells to chemotherapeutics like platinating agents. We use an mRNA display of thioether cyclized peptides to identify a series of potent and highly selective macrocyclic inhibitors of the MAGE-A4:RAD18 interaction. Co-crystal structure indicates that these inhibitors bind in a pocket that is conserved across MHDs but take advantage of A4-specific residues to achieve high isoform selectivity. Cumulatively, our data represent the first reported inhibitor of the MAGE-A4:RAD18 interaction and establish biochemical tools and structural insights for the future development of MAGE-A4-targeted cellular probes.
Collapse
Affiliation(s)
- Matthew C. Fleming
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| | - Lilly F. Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Percy P. Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jiwoong Lim
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| | - Jacqueline L. Norris-Drouin
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| | - Jason G. Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709 NC, USA
| | - Kenneth H. Pearce
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| | - R. Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| | - Cyrus Vaziri
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States,Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599, United States,Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
31
|
Spada S, Luke B, Danckwardt S. The Bidirectional Link Between RNA Cleavage and Polyadenylation and Genome Stability: Recent Insights From a Systematic Screen. Front Genet 2022; 13:854907. [PMID: 35571036 PMCID: PMC9095915 DOI: 10.3389/fgene.2022.854907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The integrity of the genome is governed by multiple processes to ensure optimal survival and to prevent the inheritance of deleterious traits. While significant progress has been made to characterize components involved in the DNA Damage Response (DDR), little is known about the interplay between RNA processing and the maintenance of genome stability. Here, we describe the emerging picture of an intricate bidirectional coupling between RNA processing and genome integrity in an integrative manner. By employing insights from a recent large-scale RNAi screening involving the depletion of more than 170 components that direct (alternative) polyadenylation, we provide evidence of bidirectional crosstalk between co-transcriptional RNA 3′end processing and the DDR in a manner that optimizes genomic integrity. We provide instructive examples illustrating the wiring between the two processes and show how perturbations at one end are either compensated by buffering mechanisms at the other end, or even propel the initial insult and thereby become disease-eliciting as evidenced by various disorders.
Collapse
Affiliation(s)
- Stefano Spada
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Mainz, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Centre for Healthy Aging (CHA) Mainz, Mainz, Germany
- *Correspondence: Sven Danckwardt,
| |
Collapse
|
32
|
Ghosh S, Ataman M, Bak M, Börsch A, Schmidt A, Buczak K, Martin G, Dimitriades B, Herrmann CJ, Kanitz A, Zavolan M. CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis. Nucleic Acids Res 2022; 50:3096-3114. [PMID: 35234914 PMCID: PMC8989530 DOI: 10.1093/nar/gkac114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3′ UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Meric Ataman
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Maciej Bak
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Christina J Herrmann
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
33
|
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin-proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered 'undruggable'. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology.
Collapse
Affiliation(s)
| | | | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
34
|
Wei L, Lai EC. Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins. Front Genet 2022; 13:848626. [PMID: 35281806 PMCID: PMC8904962 DOI: 10.3389/fgene.2022.848626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
The process of alternative polyadenylation (APA) generates multiple 3' UTR isoforms for a given locus, which can alter regulatory capacity and on occasion change coding potential. APA was initially characterized for a few genes, but in the past decade, has been found to be the rule for metazoan genes. While numerous differences in APA profiles have been catalogued across genetic conditions, perturbations, and diseases, our knowledge of APA mechanisms and biology is far from complete. In this review, we highlight recent findings regarding the role of the conserved ELAV/Hu family of RNA binding proteins (RBPs) in generating the broad landscape of lengthened 3' UTRs that is characteristic of neurons. We relate this to their established roles in alternative splicing, and summarize ongoing directions that will further elucidate the molecular strategies for neural APA, the in vivo functions of ELAV/Hu RBPs, and the phenotypic consequences of these regulatory paradigms in neurons.
Collapse
Affiliation(s)
- Lu Wei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| |
Collapse
|
35
|
Alternative polyadenylation: An untapped source for prostate cancer biomarkers and therapeutic targets? Asian J Urol 2021; 8:407-415. [PMID: 34765448 PMCID: PMC8566364 DOI: 10.1016/j.ajur.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To review alternative polyadenylation (APA) as a mechanism of gene regulation and consider potential roles for APA in prostate cancer (PCa) biology and treatment. Methods An extensive review of mRNA polyadenylation, APA, and PCa literature was performed. This review article introduces APA and its association with human disease, outlines the mechanisms and components of APA, reviews APA in cancer biology, and considers whether APA may contribute to PCa progression and/or produce novel biomarkers and therapeutic targets for PCa. Results Eukaryotic mRNA 3′-end cleavage and polyadenylation play a critical role in gene expression. Most human genes encode more than one polyadenylation signal, and produce more than one transcript isoform, through APA. Polyadenylation can occur throughout the gene body to generate transcripts with differing 3′-termini and coding sequence. Differences in 3′-untranslated regions length can modify post-transcriptional gene regulation by microRNAs and RNA binding proteins, and alter mRNA stability, translation efficiency, and subcellular localization. Distinctive APA patterns are associated with human diseases, tissue origins, and changes in cellular proliferation rate and differentiation state. APA events may therefore generate unique mRNA biomarkers or therapeutic targets in certain cancer types or phenotypic states. Conclusions The full extent of cancer-associated and tissue-specific APA events have yet to be defined, and the mechanisms and functional consequences of APA in cancer remain incompletely understood. There is evidence that APA is active in PCa, and that it may be an untapped resource for PCa biomarkers or therapeutic targets.
Collapse
|
36
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
37
|
Zhao Z, Xu Q, Wei R, Wang W, Ding D, Yang Y, Yao J, Zhang L, Hu YQ, Wei G, Ni T. Cancer-associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA-seq data. Genome Res 2021; 31:2095-2106. [PMID: 34475268 PMCID: PMC8559711 DOI: 10.1101/gr.271627.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Intronic polyadenylation (IpA) usually leads to changes in the coding region of an mRNA, and its implication in diseases has been recognized, although at its very beginning status. Conveniently and accurately identifying IpA is of great importance for further evaluating its biological significance. Here, we developed IPAFinder, a bioinformatic method for the de novo identification of intronic poly(A) sites and their dynamic changes from standard RNA-seq data. Applying IPAFinder to 256 pan-cancer tumor/normal pairs across six tumor types, we discovered 490 recurrent dynamically changed IpA events, some of which are novel and derived from cancer-associated genes such as TSC1, SPERD2, and CCND2. Furthermore, IPAFinder revealed that IpA could be regulated by factors related to splicing and m6A modification. In summary, IPAFinder enables the global discovery and characterization of biologically regulated IpA with standard RNA-seq data and should reveal the biological significance of IpA in various processes.
Collapse
Affiliation(s)
- Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Qiushi Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Ran Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Dong Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Yu Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Jun Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200438, P.R. China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
38
|
Poojary M, Jishnu PV, Kabekkodu SP. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol Diagn Ther 2021; 24:537-555. [PMID: 32548799 PMCID: PMC7497308 DOI: 10.1007/s40291-020-00476-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Members of the melanoma-associated antigen-A (MAGE-A) subfamily are overexpressed in many cancers and can drive cancer progression, metastasis, and therapeutic recurrence. Objective This study is the first comprehensive meta-analysis evaluating the prognostic utility of MAGE-A members in different cancers. Methods A systematic literature search was conducted in PubMed, Google Scholar, Science Direct, and Web of Science. The pooled hazard ratios with 95% confidence intervals were estimated to evaluate the prognostic significance of MAGE-A expression in various cancers. Results In total, 44 eligible studies consisting of 7428 patients from 11 countries were analysed. Univariate and multivariate analysis for overall survival, progression-free survival, and disease-free survival showed a significant association between high MAGE-A expression and various cancers (P < 0.00001). Additionally, subgroup analysis demonstrated that high MAGE-A expression was significantly associated with poor prognosis for lung, gastrointestinal, breast, and ovarian cancer in both univariate and multivariate analysis for overall survival. Conclusion Overexpression of MAGE-A subfamily members is linked to poor prognosis in multiple cancers. Therefore, it could serve as a potential prognostic marker of poor prognosis in cancers. Electronic supplementary material The online version of this article (10.1007/s40291-020-00476-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Poojary
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
39
|
Wu ZH, Yue JX, Zhou T, Xiao HJ. Integrated analysis of the prognostic values of RNA-binding proteins in head and neck squamous cell carcinoma. Biofactors 2021; 47:478-488. [PMID: 33651487 DOI: 10.1002/biof.1722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma is a malignant tumor of the upper aerodigestive tract. These RNA-binding proteins (RBPs) influence post-transcriptional in cells and regulate cell physiology, participate in regulating RNA stability, alternative splicing, translation, modification, localization, and apoptosis. We used RNA sequencing data from The Cancer Genome Atlas to display dysfunctional RBPs microenvironments and provide potential useful biomarkers for head and neck squamous cell carcinoma (HNSCC) diagnosis and prognosis. Six RBPs (DNMT1, PCF11, EIF5A2, RNASE10, PSMA6, and IGF2BP2) were selected as independent prognosis factors of HNSCC patients. The Kyoto Encyclopedia of Genes and Genomes were mainly enriched in RNA transport, Spliceosome, RNA degradation, mRNA surveillance pathway, and Epstein-Barr virus infection. cBioPortal results demonstrated that these six genes were altered in 150 samples out of 504 HNSCC patients (30%) and the amplification of IGF2BP2 was the largest frequent copy-number alteration. Based on the online database, we identified novel RBPs markers for the prognosis of HNSCC.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Xin Yue
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Jun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Bond MJ, Crews CM. Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chem Biol 2021; 2:725-742. [PMID: 34212149 PMCID: PMC8190915 DOI: 10.1039/d1cb00011j] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the discovery of PROteolysis TArgeting Chimeras (PROTACs) twenty years ago, targeted protein degradation (TPD) has changed the landscape of drug development. PROTACs have evolved from cell-impermeable peptide-small molecule chimeras to orally bioavailable clinical candidate drugs that degrade oncogenic proteins in humans. As we move into the third decade of TPD, the pace of discovery will only accelerate. Improved technologies are enabling the development of ligands for "undruggable" proteins and the recruitment of new E3 ligases. Moreover, enhanced computing power will expedite identification of active degraders. Here we discuss the strides made in these areas and what advances we can look forward to as the next decade in this exciting field begins.
Collapse
Affiliation(s)
- Michael J Bond
- Department of Pharmacology, Yale University New Haven CT 06511 USA
| | - Craig M Crews
- Department of Pharmacology, Yale University New Haven CT 06511 USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University New Haven CT 06511 USA
- Department of Chemistry, Yale University New Haven CT 06511 USA
| |
Collapse
|
41
|
Chia M, Li C, Marques S, Pelechano V, Luscombe NM, van Werven FJ. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts. Genome Biol 2021; 22:34. [PMID: 33446241 PMCID: PMC7807719 DOI: 10.1186/s13059-020-02245-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The start and end sites of messenger RNAs (TSSs and TESs) are highly regulated, often in a cell-type-specific manner. Yet the contribution of transcript diversity in regulating gene expression remains largely elusive. We perform an integrative analysis of multiple highly synchronized cell-fate transitions and quantitative genomic techniques in Saccharomyces cerevisiae to identify regulatory functions associated with transcribing alternative isoforms. RESULTS Cell-fate transitions feature widespread elevated expression of alternative TSS and, to a lesser degree, TES usage. These dynamically regulated alternative TSSs are located mostly upstream of canonical TSSs, but also within gene bodies possibly encoding for protein isoforms. Increased upstream alternative TSS usage is linked to various effects on canonical TSS levels, which range from co-activation to repression. We identified two key features linked to these outcomes: an interplay between alternative and canonical promoter strengths, and distance between alternative and canonical TSSs. These two regulatory properties give a plausible explanation of how locally transcribed alternative TSSs control gene transcription. Additionally, we find that specific chromatin modifiers Set2, Set3, and FACT play an important role in mediating gene repression via alternative TSSs, further supporting that the act of upstream transcription drives the local changes in gene transcription. CONCLUSIONS The integrative analysis of multiple cell-fate transitions suggests the presence of a regulatory control system of alternative TSSs that is important for dynamic tuning of gene expression. Our work provides a framework for understanding how TSS heterogeneity governs eukaryotic gene expression, particularly during cell-fate changes.
Collapse
Affiliation(s)
- Minghao Chia
- The Francis Crick Institute, London, UK
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Cai Li
- The Francis Crick Institute, London, UK
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sueli Marques
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Vicente Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
42
|
Population-scale genetic control of alternative polyadenylation and its association with human diseases. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
44
|
Wei L, Lee S, Majumdar S, Zhang B, Sanfilippo P, Joseph B, Miura P, Soller M, Lai EC. Overlapping Activities of ELAV/Hu Family RNA Binding Proteins Specify the Extended Neuronal 3' UTR Landscape in Drosophila. Mol Cell 2020; 80:140-155.e6. [PMID: 33007254 DOI: 10.1016/j.molcel.2020.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
The tissue-specific deployment of highly extended neural 3' UTR isoforms, generated by alternative polyadenylation (APA), is a broad and conserved feature of metazoan genomes. However, the factors and mechanisms that control neural APA isoforms are not well understood. Here, we show that three ELAV/Hu RNA binding proteins (Elav, Rbp9, and Fne) have similar capacities to induce a lengthened 3' UTR landscape in an ectopic setting. These factors promote accumulation of chromatin-associated, 3' UTR-extended, nascent transcripts, through inhibition of proximal polyadenylation site (PAS) usage. Notably, Elav represses an unannotated splice isoform of fne, switching the normally cytoplasmic Fne toward the nucleus in elav mutants. We use genomic profiling to reveal strong and broad loss of neural APA in elav/fne double mutant CNS, the first genetic background to largely abrogate this distinct APA signature. Overall, we demonstrate how regulatory interplay and functionally overlapping activities of neural ELAV/Hu RBPs drives the neural APA landscape.
Collapse
Affiliation(s)
- Lu Wei
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Seungjae Lee
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Sonali Majumdar
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Binglong Zhang
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Piero Sanfilippo
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian Joseph
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pedro Miura
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
45
|
Yang SW, Huang X, Lin W, Min J, Miller DJ, Mayasundari A, Rodrigues P, Griffith EC, Gee CT, Li L, Li W, Lee RE, Rankovic Z, Chen T, Potts PR. Structural basis for substrate recognition and chemical inhibition of oncogenic MAGE ubiquitin ligases. Nat Commun 2020; 11:4931. [PMID: 33004795 PMCID: PMC7529893 DOI: 10.1038/s41467-020-18708-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Testis-restricted melanoma antigen (MAGE) proteins are frequently hijacked in cancer and play a critical role in tumorigenesis. MAGEs assemble with E3 ubiquitin ligases and function as substrate adaptors that direct the ubiquitination of novel targets, including key tumor suppressors. However, how MAGEs recognize their targets is unknown and has impeded the development of MAGE-directed therapeutics. Here, we report the structural basis for substrate recognition by MAGE ubiquitin ligases. Biochemical analysis of the degron motif recognized by MAGE-A11 and the crystal structure of MAGE-A11 bound to the PCF11 substrate uncovered a conserved substrate binding cleft (SBC) in MAGEs. Mutation of the SBC disrupted substrate recognition by MAGEs and blocked MAGE-A11 oncogenic activity. A chemical screen for inhibitors of MAGE-A11:substrate interaction identified 4-Aminoquinolines as potent inhibitors of MAGE-A11 that show selective cytotoxicity. These findings provide important insights into the large family of MAGE ubiquitin ligases and identify approaches for developing cancer-specific therapeutics.
Collapse
Affiliation(s)
- Seung Wook Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Xin Huang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Patrick Rodrigues
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Elizabeth C Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Clifford T Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Lei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California Irvine, 5270 California Ave, Irvine, CA, 92617, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California Irvine, 5270 California Ave, Irvine, CA, 92617, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
46
|
Colemon A, Harris TM, Ramanathan S. DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells. Genes Environ 2020; 42:24. [PMID: 32760472 PMCID: PMC7392716 DOI: 10.1186/s41021-020-00162-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Melanoma Antigen Genes (MAGEs) are a family of genes that have piqued the interest of scientists for their unique expression pattern. A subset of MAGEs (Type I) are expressed in spermatogonial cells and in no other somatic tissue, and then re-expressed in many cancers. Type I MAGEs are often referred to as cancer-testis antigens due to this expression pattern, while Type II MAGEs are more ubiquitous in expression. This study determines the cause and consequence of the aberrant expression of the MAGE-A subfamily of cancer-testis antigens. We have discovered that MAGE-A genes are regulated by DNA methylation, as revealed by treatment with 5-azacytidine, an inhibitor of DNA methyltransferases. Furthermore, bioinformatics analysis of existing methylome sequencing data also corroborates our findings. The consequence of expressing certain MAGE-A genes is an increase in cell proliferation and colony formation and resistance to chemo-therapeutic agent 5-fluorouracil and DNA damaging agent sodium arsenite. Taken together, these data indicate that DNA methylation plays a crucial role in regulating the expression of MAGE-A genes which then act as drivers of cell proliferation, anchorage-independent growth and chemo-resistance that is critical for cancer-cell survival.
Collapse
Affiliation(s)
- Ashley Colemon
- Fisk-Vanderbilt Masters-to-PhD Bridge Program, Fisk University, Nashville, TN USA
| | - Taylor M Harris
- Department of Life and Physical Sciences, Fisk University, Nashville, TN USA
| | - Saumya Ramanathan
- Department of Life and Physical Sciences, Fisk University, Nashville, TN USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
47
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
48
|
Sanderson MR, Badior KE, Fahlman RP, Wevrick R. The necdin interactome: evaluating the effects of amino acid substitutions and cell stress using proximity-dependent biotinylation (BioID) and mass spectrometry. Hum Genet 2020; 139:1513-1529. [PMID: 32529326 DOI: 10.1007/s00439-020-02193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.
Collapse
Affiliation(s)
| | - Katherine E Badior
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
49
|
Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription 2020; 11:83-96. [PMID: 32522085 DOI: 10.1080/21541264.2020.1777047] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The majority of eukaryotic messenger RNA precursors (pre-mRNAs) undergo cleavage and polyadenylation at their 3' end. This canonical 3'-end processing depends on sequence elements in the pre-mRNA as well as a mega-dalton protein machinery. The cleavage site in mammalian pre-mRNAs is located between an upstream poly(A) signal, most frequently an AAUAAA hexamer, and a GU-rich downstream sequence element. This review will summarize recent advances from the studies on this canonical 3'-end processing machinery. They have revealed the molecular mechanism for the recognition of the poly(A) signal and provided the first glimpse into the overall architecture of the machinery. The studies also show that the machinery is highly dynamic conformationally, and extensive re-arrangements are necessary for its activation. Inhibitors targeting the active site of the CPSF73 nuclease of this machinery have anti-cancer, anti-inflammatory and anti-protozoal effects, indicating that CPSF73 and pre-mRNA 3'-end processing in general are attractive targets for drug discovery. ABBREVIATIONS APA: alternative polyadenylation; β-CASP: metallo-β-lactamase-associated CPSF Artemis SNM1/PSO2; CTD: C-terminal domain; CF: cleavage factor; CPF: cleavage and polyadenylation factor; CPSF: cleavage and polyadenylation specificity factor; CstF: cleavage stimulation factor; DSE: downstream element; HAT: half a TPR; HCC: histone pre-mRNA cleavage complex; mCF: mammalian cleavage factor; mPSF: mammalian polyadenylation specificity factor; mRNA: messenger RNA; nt: nucleotide; NTD: N-terminal domain; PAP: polyadenylate polymerase; PAS: polyadenylation signal; PIM: mPSF interaction motif; Poly(A): polyadenylation, polyadenylate; Pol II: RNA polymerase II; pre-mRNA: messenger RNA precursor; RRM: RNA recognition module, RNA recognition motif; snRNP: small nuclear ribonucleoprotein; TPR: tetratricopeptide repeat; UTR: untranslated region; ZF: zinc finger.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University , New York, NY, USA
| |
Collapse
|