1
|
Carver A, Yu TY, Yates LA, White T, Wang R, Lister K, Jasin M, Zhang X. Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin. Science 2025; 387:426-431. [PMID: 39636933 PMCID: PMC7617353 DOI: 10.1126/science.adr7920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central component of several crucial processes in repairing DNA and protecting genome integrity, forms filaments on DNA, which are tightly regulated. One of these RAD51 regulators is FIGNL1 (fidgetin-like 1), which prevents RAD51 genotoxic chromatin association in normal cells and persistent RAD51 foci upon DNA damage. The cryogenic electron microscopy-imaged structure of FIGNL1 in complex with RAD51 reveals that FIGNL1 forms a nonplanar hexamer and encloses RAD51 N terminus in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a distinct mechanism for removing RAD51 from bound substrates and provides the molecular basis for FIGNL1 in maintaining genome stability.
Collapse
Affiliation(s)
- Alexander Carver
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Tai-Yuan Yu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Luke A Yates
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Katie Lister
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Xiaodong Zhang
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
2
|
Girvan P, Jalal ASB, McCormack EA, Skehan MT, Knight CL, Wigley DB, Rueda DS. Nucleosome flipping drives kinetic proofreading and processivity by SWR1. Nature 2024; 636:251-257. [PMID: 39506114 PMCID: PMC11618073 DOI: 10.1038/s41586-024-08152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
The yeast SWR1 complex catalyses the exchange of histone H2A-H2B dimers in nucleosomes, with Htz1-H2B dimers1-3. Here we used single-molecule analysis to demonstrate two-step double exchange of the two H2A-H2B dimers in a canonical yeast nucleosome with Htz1-H2B dimers, and showed that double exchange can be processive without release of the nucleosome from the SWR1 complex. Further analysis showed that bound nucleosomes flip between two states, with each presenting a different face, and hence histone dimer, to SWR1. The bound dwell time is longer when an H2A-H2B dimer is presented for exchange than when presented with an Htz1-H2B dimer. A hexasome intermediate in the reaction is bound to the SWR1 complex in a single orientation with the 'empty' site presented for dimer insertion. Cryo-electron microscopy analysis revealed different populations of complexes showing nucleosomes caught 'flipping' between different conformations without release, each placing a different dimer into position for exchange, with the Swc2 subunit having a key role in this process. Together, the data reveal a processive mechanism for double dimer exchange that explains how SWR1 can 'proofread' the dimer identities within nucleosomes.
Collapse
Affiliation(s)
- Paul Girvan
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Biophysics Group, MRC Laboratory of Medical Sciences, London, UK
| | - Adam S B Jalal
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Elizabeth A McCormack
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Michael T Skehan
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Carol L Knight
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Dale B Wigley
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| | - David S Rueda
- Single Molecule Biophysics Group, MRC Laboratory of Medical Sciences, London, UK.
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
3
|
Liu HL, Nan H, Zhao WW, Wan XB, Fan XJ. Phase separation in DNA double-strand break response. Nucleus 2024; 15:2296243. [PMID: 38146123 PMCID: PMC10761171 DOI: 10.1080/19491034.2023.2296243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023] Open
Abstract
DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).
Collapse
Affiliation(s)
- Huan-Lei Liu
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- College of Life Sciences, Northwest AF University, Yangling, Shaanxi, China
| | - Hao Nan
- College of Life Sciences, Northwest AF University, Yangling, Shaanxi, China
| | - Wan-Wen Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
4
|
Akita M, Girvan P, Spirek M, Novacek J, Rueda D, Prokop Z, Krejci L. Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA. Nucleic Acids Res 2024; 52:11738-11752. [PMID: 39268578 PMCID: PMC11514458 DOI: 10.1093/nar/gkae770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Masaki Akita
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Paul Girvan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Mario Spirek
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Cryo-Electron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, Czech Republic
| | - David Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Hengel SR, Oppenheimer KG, Smith CM, Schaich MA, Rein HL, Martino J, Darrah KE, Witham M, Ezekwenna OC, Burton KR, Van Houten B, Spies M, Bernstein KA. The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA. Nat Commun 2024; 15:7197. [PMID: 39169038 PMCID: PMC11339404 DOI: 10.1038/s41467-024-51595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2023] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hengel
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA.
- Tufts University, Department of Biology, Medford, MA, USA.
| | - Katherine G Oppenheimer
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chelsea M Smith
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
- University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, Chapel Hill, NC, USA
| | - Matthew A Schaich
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hayley L Rein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Julieta Martino
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
- GeneDx, Gaithersburg, MD, USA
| | - Kristie E Darrah
- University of Pennsylvania School of Medicine, Penn Center for Genome Integrity, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA
| | - Maggie Witham
- Tufts University, Department of Biology, Medford, MA, USA
| | | | - Kyle R Burton
- Tufts University, Department of Biology, Medford, MA, USA
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA
| | - Maria Spies
- University of Iowa, Department of Biochemistry and Molecular Biology, Iowa City, IA, USA
| | - Kara A Bernstein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, PA, USA.
- University of Pennsylvania School of Medicine, Penn Center for Genome Integrity, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Wang X, Zhao X, Yu Z, Fan T, Guo Y, Liang J, Wang Y, Zhan J, Chen G, Zhou C, Zhang X, Li X, Chen X. Rtt105 stimulates Rad51-ssDNA assembly and orchestrates Rad51 and RPA actions to promote homologous recombination repair. Proc Natl Acad Sci U S A 2024; 121:e2402262121. [PMID: 39145931 PMCID: PMC11348298 DOI: 10.1073/pnas.2402262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.
Collapse
Affiliation(s)
- Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Xiaocong Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Zhengshi Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Tianai Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Yunjing Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Jianqiang Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Jingfei Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Guifang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Xiangpan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| |
Collapse
|
7
|
Alcón P, Kaczmarczyk AP, Ray KK, Liolios T, Guilbaud G, Sijacki T, Shen Y, McLaughlin SH, Sale JE, Knipscheer P, Rueda DS, Passmore LA. FANCD2-FANCI surveys DNA and recognizes double- to single-stranded junctions. Nature 2024; 632:1165-1173. [PMID: 39085614 PMCID: PMC11358013 DOI: 10.1038/s41586-024-07770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.
Collapse
Affiliation(s)
- Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Artur P Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Korak Kumar Ray
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Themistoklis Liolios
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Yichao Shen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
| | | |
Collapse
|
8
|
Carver A, Yu TY, Yates LA, White T, Wang R, Lister K, Jasin M, Zhang X. Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603765. [PMID: 39071279 PMCID: PMC11275795 DOI: 10.1101/2024.07.16.603765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/30/2024]
Abstract
Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing and protecting genome integrity, forms filaments on DNA. RAD51 filaments are tightly regulated. One of these regulators is FIGNL1, that prevents persistent RAD51 foci post-damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that the FIGNL1 forms a non-planar hexamer and RAD51 N-terminus is enclosed in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from DNA and provides the molecular basis for FIGNL1 in maintaining genome stability.
Collapse
Affiliation(s)
- Alexander Carver
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
- These authors contributed equally to this study
| | - Tai-Yuan Yu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
- These authors contributed equally to this study
| | - Luke A Yates
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Katie Lister
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Xiaodong Zhang
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
9
|
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
10
|
Hengel SR, Oppenheimer K, Smith C, Schaich MA, Rein HL, Martino J, Darrah K, Ezekwenna O, Burton K, Van Houten B, Spies M, Bernstein KA. The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580393. [PMID: 38405734 PMCID: PMC10888808 DOI: 10.1101/2024.02.14.580393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/27/2024]
Abstract
Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1 and SWS1. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter SWS1 complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.
Collapse
|
11
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Ramírez Montero D, Liu Z, Dekker NH. De novo fabrication of custom-sequence plasmids for the synthesis of long DNA constructs with extrahelical features. Biophys J 2024; 123:31-41. [PMID: 37968907 PMCID: PMC10808024 DOI: 10.1016/j.bpj.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
DNA constructs for single-molecule experiments often require specific sequences and/or extrahelical/noncanonical structures to study DNA-processing mechanisms. The precise introduction of such structures requires extensive control of the sequence of the initial DNA substrate. A commonly used substrate in the synthesis of DNA constructs is plasmid DNA. Nevertheless, the controlled introduction of specific sequences and extrahelical/noncanonical structures into plasmids often requires several rounds of cloning on pre-existing plasmids whose sequence one cannot fully control. Here, we describe a simple and efficient way to synthesize 10.1-kb plasmids de novo using synthetic gBlocks that provides full control of the sequence. Using these plasmids, we developed a 1.5-day protocol to assemble 10.1-kb linear DNA constructs with end and internal modifications. As a proof of principle, we synthesize two different DNA constructs with biotinylated ends and one or two internal 3' single-stranded DNA flaps, characterize them using single-molecule force and fluorescence spectroscopy, and functionally validate them by showing that the eukaryotic replicative helicase Cdc45/Mcm2-7/GINS (CMG) binds the 3' single-stranded DNA flap and translocates in the expected direction. We anticipate that our approach can be used to synthesize custom-sequence DNA constructs for a variety of force and fluorescence single-molecule spectroscopy experiments to interrogate DNA replication, DNA repair, and transcription.
Collapse
Affiliation(s)
- Daniel Ramírez Montero
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Zhaowei Liu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
13
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
14
|
De Bragança S, Dillingham MS, Moreno-Herrero F. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods. Trends Genet 2023; 39:924-940. [PMID: 37806853 DOI: 10.1016/j.tig.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
15
|
Guh CL, Lei KH, Chen YA, Jiang YZ, Chang HY, Liaw H, Li HW, Yen HY, Chi P. RAD51 paralogs synergize with RAD51 to protect reversed forks from cellular nucleases. Nucleic Acids Res 2023; 51:11717-11731. [PMID: 37843130 PMCID: PMC10681713 DOI: 10.1093/nar/gkad856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023] Open
Abstract
Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes. Here, using purified BCDX2 (RAD51BCD-XRCC2) and CX3 (RAD51C-XRCC3) complexes and in vitro reconstituted biochemical systems, we mechanistically dissect their functions in forming and protecting reversed forks. We show that both RAD51 paralog complexes lack fork reversal activities. Whereas CX3 exhibits modest fork protection activity, BCDX2 significantly synergizes with RAD51 to protect DNA against attack by the nucleases MRE11 and EXO1. DNA protection is contingent upon the ability of RAD51 to form a functional nucleoprotein filament on DNA. Collectively, our results provide evidence for a hitherto unknown function of RAD51 paralogs in synergizing with RAD51 nucleoprotein filament to prevent degradation of stressed replication forks.
Collapse
Affiliation(s)
- Chia-Lun Guh
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-An Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yung Yen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Schirripa Spagnolo C, Moscardini A, Amodeo R, Beltram F, Luin S. Quantitative determination of fluorescence labeling implemented in cell cultures. BMC Biol 2023; 21:190. [PMID: 37697318 PMCID: PMC10496409 DOI: 10.1186/s12915-023-01685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Labeling efficiency is a crucial parameter in fluorescence applications, especially when studying biomolecular interactions. Current approaches for estimating the yield of fluorescent labeling have critical drawbacks that usually lead them to be inaccurate or not quantitative. RESULTS We present a method to quantify fluorescent-labeling efficiency that addresses the critical issues marring existing approaches. The method operates in the same conditions of the target experiments by exploiting a ratiometric evaluation with two fluorophores used in sequential reactions. We show the ability of the protocol to extract reliable quantification for different fluorescent probes, reagents concentrations, and reaction timing and to optimize labeling performance. As paradigm, we consider the labeling of the membrane-receptor TrkA through 4'-phosphopantetheinyl transferase Sfp in living cells, visualizing the results by TIRF microscopy. This investigation allows us to find conditions for demanding single and multi-color single-molecule studies requiring high degrees of labeling. CONCLUSIONS The developed method allows the quantitative determination and the optimization of staining efficiency in any labeling strategy based on stable reactions.
Collapse
Affiliation(s)
| | - Aldo Moscardini
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Rosy Amodeo
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- Present address: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Fabio Beltram
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
18
|
Belan O, Greenhough L, Kuhlen L, Anand R, Kaczmarczyk A, Gruszka DT, Yardimci H, Zhang X, Rueda DS, West SC, Boulton SJ. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. Mol Cell 2023; 83:2925-2940.e8. [PMID: 37499663 PMCID: PMC7615647 DOI: 10.1016/j.molcel.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luke Greenhough
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucas Kuhlen
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
19
|
Rawal Y, Jia L, Meir A, Zhou S, Kaur H, Ruben EA, Kwon Y, Bernstein KA, Jasin M, Taylor AB, Burma S, Hromas R, Mazin AV, Zhao W, Zhou D, Wasmuth EV, Greene EC, Sung P, Olsen SK. Structural insights into BCDX2 complex function in homologous recombination. Nature 2023; 619:640-649. [PMID: 37344589 PMCID: PMC10712684 DOI: 10.1038/s41586-023-06219-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.
Collapse
Affiliation(s)
- Yashpal Rawal
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aviv Meir
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Shuo Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hardeep Kaur
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eliza A Ruben
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kara A Bernstein
- Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alexander V Mazin
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Patrick Sung
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
20
|
Greenhough LA, Liang CC, Belan O, Kunzelmann S, Maslen S, Rodrigo-Brenni MC, Anand R, Skehel M, Boulton SJ, West SC. Structure and function of the RAD51B-RAD51C-RAD51D-XRCC2 tumour suppressor. Nature 2023; 619:650-657. [PMID: 37344587 PMCID: PMC7614784 DOI: 10.1038/s41586-023-06179-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Homologous recombination is a fundamental process of life. It is required for the protection and restart of broken replication forks, the repair of chromosome breaks and the exchange of genetic material during meiosis. Individuals with mutations in key recombination genes, such as BRCA2 (also known as FANCD1), or the RAD51 paralogues RAD51B, RAD51C (also known as FANCO), RAD51D, XRCC2 (also known as FANCU) and XRCC3, are predisposed to breast, ovarian and prostate cancers1-10 and the cancer-prone syndrome Fanconi anaemia11-13. The BRCA2 tumour suppressor protein-the product of BRCA2-is well characterized, but the cellular functions of the RAD51 paralogues remain unclear. Genetic knockouts display growth defects, reduced RAD51 focus formation, spontaneous chromosome abnormalities, sensitivity to PARP inhibitors and replication fork defects14,15, but the precise molecular roles of RAD51 paralogues in fork stability, DNA repair and cancer avoidance remain unknown. Here we used cryo-electron microscopy, AlphaFold2 modelling and structural proteomics to determine the structure of the RAD51B-RAD51C-RAD51D-XRCC2 complex (BCDX2), revealing that RAD51C-RAD51D-XRCC2 mimics three RAD51 protomers aligned within a nucleoprotein filament, whereas RAD51B is highly dynamic. Biochemical and single-molecule analyses showed that BCDX2 stimulates the nucleation and extension of RAD51 filaments-which are essential for recombinational DNA repair-in reactions that depend on the coupled ATPase activities of RAD51B and RAD51C. Our studies demonstrate that BCDX2 orchestrates RAD51 assembly on single stranded DNA for replication fork protection and double strand break repair, in reactions that are critical for tumour avoidance.
Collapse
Affiliation(s)
| | | | - Ondrej Belan
- The Francis Crick Institute, London, UK
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Appleby R, Bollschweiler D, Chirgadze DY, Joudeh L, Pellegrini L. A metal ion-dependent mechanism of RAD51 nucleoprotein filament disassembly. iScience 2023; 26:106689. [PMID: 37216117 PMCID: PMC10192527 DOI: 10.1016/j.isci.2023.106689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
The RAD51 ATPase polymerizes on single-stranded DNA to form nucleoprotein filaments (NPFs) that are critical intermediates in the reaction of homologous recombination. ATP binding maintains the NPF in a competent conformation for strand pairing and exchange. Once strand exchange is completed, ATP hydrolysis licenses the filament for disassembly. Here we show that the ATP-binding site of the RAD51 NPF contains a second metal ion. In the presence of ATP, the metal ion promotes the local folding of RAD51 into the conformation required for DNA binding. The metal ion is absent in the ADP-bound RAD51 filament, that rearranges in a conformation incompatible with DNA binding. The presence of the second metal ion explains how RAD51 couples the nucleotide state of the filament to DNA binding. We propose that loss of the second metal ion upon ATP hydrolysis drives RAD51 dissociation from the DNA and weakens filament stability, contributing to NPF disassembly.
Collapse
Affiliation(s)
- Robert Appleby
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Luay Joudeh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
22
|
Maloisel L, Ma E, Phipps J, Deshayes A, Mattarocci S, Marcand S, Dubrana K, Coïc E. Rad51 filaments assembled in the absence of the complex formed by the Rad51 paralogs Rad55 and Rad57 are outcompeted by translesion DNA polymerases on UV-induced ssDNA gaps. PLoS Genet 2023; 19:e1010639. [PMID: 36749784 PMCID: PMC9937489 DOI: 10.1371/journal.pgen.1010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Revised: 02/17/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
The bypass of DNA lesions that block replicative polymerases during DNA replication relies on DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway depends on specialized DNA polymerases that incorporate nucleotides in front of base lesions, potentially inducing mutagenesis. Two error-free pathways can bypass the lesions: the template switching pathway, which uses the sister chromatid as a template, and the homologous recombination pathway (HR), which also can use the homologous chromosome as template. The balance between error-prone and error-free pathways controls the mutagenesis level. Therefore, it is crucial to precisely characterize factors that influence the pathway choice to better understand genetic stability at replication forks. In yeast, the complex formed by the Rad51 paralogs Rad55 and Rad57 promotes HR and template-switching at stalled replication forks. At DNA double-strand breaks (DSBs), this complex promotes Rad51 filament formation and stability, notably by counteracting the Srs2 anti-recombinase. To explore the role of the Rad55-Rad57 complex in error-free pathways, we monitored the genetic interactions between Rad55-Rad57, the translesion polymerases Polζ or Polη, and Srs2 following UV radiation that induces mostly single-strand DNA gaps. We found that the Rad55-Rad57 complex was involved in three ways. First, it protects Rad51 filaments from Srs2, as it does at DSBs. Second, it promotes Rad51 filament stability independently of Srs2. Finally, we observed that UV-induced HR is almost abolished in Rad55-Rad57 deficient cells, and is partially restored upon Polζ or Polη depletion. Hence, we propose that the Rad55-Rad57 complex is essential to promote Rad51 filament stability on single-strand DNA gaps, notably to counteract the error-prone TLS polymerases and mutagenesis.
Collapse
Affiliation(s)
- Laurent Maloisel
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- * E-mail: (LM); (EC)
| | - Emilie Ma
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Jamie Phipps
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Alice Deshayes
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stefano Mattarocci
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stéphane Marcand
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Karine Dubrana
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Eric Coïc
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- * E-mail: (LM); (EC)
| |
Collapse
|
23
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
24
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
25
|
Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, Neves J, Grinkevich V, Hewitt G, Segura-Bayona S, Bellelli R, Robinson HMR, Higgins GS, Smith GCM, West SC, Rueda DS, Boulton SJ. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Mol Cell 2022; 82:4664-4680.e9. [PMID: 36455556 DOI: 10.1016/j.molcel.2022.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie Sebald
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Adamowicz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksandra Vancevska
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Joana Neves
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Vera Grinkevich
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra Segura-Bayona
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen M R Robinson
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Graeme C M Smith
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK.
| |
Collapse
|
26
|
RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr Opin Pharmacol 2022; 67:102313. [PMID: 36343481 DOI: 10.1016/j.coph.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.
Collapse
|
27
|
Prakash R, Rawal Y, Sullivan MR, Grundy MK, Bret H, Mihalevic MJ, Rein HL, Baird JM, Darrah K, Zhang F, Wang R, Traina TA, Radke MR, Kaufmann SH, Swisher EM, Guérois R, Modesti M, Sung P, Jasin M, Bernstein KA. Homologous recombination-deficient mutation cluster in tumor suppressor RAD51C identified by comprehensive analysis of cancer variants. Proc Natl Acad Sci U S A 2022; 119:e2202727119. [PMID: 36099300 PMCID: PMC9499524 DOI: 10.1073/pnas.2202727119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023] Open
Abstract
Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Meghan R. Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - McKenzie K. Grundy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hélène Bret
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198 France
| | - Michael J. Mihalevic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hayley L. Rein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jared M. Baird
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kristie Darrah
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Fang Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tiffany A. Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marc R. Radke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Scott H. Kaufmann
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198 France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, 13273 France
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
28
|
Halder S, Sanchez A, Ranjha L, Reginato G, Ceppi I, Acharya A, Anand R, Cejka P. Double-stranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2. Mol Cell 2022; 82:3553-3565.e5. [PMID: 36070766 DOI: 10.1016/j.molcel.2022.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland.
| |
Collapse
|
29
|
Song Q, Hu Y, Yin A, Wang H, Yin Q. DNA Holliday Junction: History, Regulation and Bioactivity. Int J Mol Sci 2022; 23:9730. [PMID: 36077130 PMCID: PMC9456528 DOI: 10.3390/ijms23179730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
DNA Holliday junction (HJ) is a four-way stranded DNA intermediate that formed in replication fork regression, homology-dependent repair and mitosis, performing a significant role in genomic stability. Failure to remove HJ can induce an acceptable replication fork stalling and DNA damage in normal cells, leading to a serious chromosomal aberration and even cell death in HJ nuclease-deficient tumor cells. Thus, HJ is becoming an attractive target in cancer therapy. However, the development of HJ-targeting ligand faces great challenges because of flexile cavities on the center of HJs. This review introduces the discovery history of HJ, elucidates the formation and dissociation procedures of HJ in corresponding bio-events, emphasizes the importance of prompt HJ-removing in genome stability, and summarizes recent advances in HJ-based ligand discovery. Our review indicate that target HJ is a promising approach in oncotherapy.
Collapse
Affiliation(s)
- Qinqin Song
- State/Key Laboratory of Microbial Technology, Shandong University, 72 Jimo Binhai Road, Qingdao 266237, China
| | - Yuemiao Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Anqi Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qikun Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
- Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, Yantai 264005, China
| |
Collapse
|
30
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
31
|
Alekseev A, Pobegalov G, Morozova N, Vedyaykin A, Cherevatenko G, Yakimov A, Baitin D, Khodorkovskii M. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. eLife 2022; 11:78409. [PMID: 35730924 PMCID: PMC9252578 DOI: 10.7554/elife.78409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (Escherichia coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.
Collapse
Affiliation(s)
- Aleksandr Alekseev
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Natalia Morozova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexey Vedyaykin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Galina Cherevatenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexander Yakimov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Dmitry Baitin
- Kurchatov Institute, St. Petersburg, Russian Federation
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| |
Collapse
|
32
|
Selemenakis P, Sharma N, Uhrig ME, Katz J, Kwon Y, Sung P, Wiese C. RAD51AP1 and RAD54L Can Underpin Two Distinct RAD51-Dependent Routes of DNA Damage Repair via Homologous Recombination. Front Cell Dev Biol 2022; 10:866601. [PMID: 35652094 PMCID: PMC9149245 DOI: 10.3389/fcell.2022.866601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination DNA repair (HR) is a complex DNA damage repair pathway and an attractive target of inhibition in anti-cancer therapy. To help guide the development of efficient HR inhibitors, it is critical to identify compensatory HR sub-pathways. In this study, we describe a novel synthetic interaction between RAD51AP1 and RAD54L, two structurally unrelated proteins that function downstream of the RAD51 recombinase in HR. We show that concomitant deletion of RAD51AP1 and RAD54L further sensitizes human cancer cell lines to treatment with olaparib, a Poly (adenosine 5′-diphosphate-ribose) polymerase inhibitor, to the DNA inter-strand crosslinking agent mitomycin C, and to hydroxyurea, which induces DNA replication stress. We also show that the RAD54L paralog RAD54B compensates for RAD54L deficiency, although, surprisingly, less extensively than RAD51AP1. These results, for the first time, delineate RAD51AP1- and RAD54L-dependent sub-pathways and will guide the development of inhibitors that target HR stimulators of strand invasion.
Collapse
Affiliation(s)
- Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jeffrey Katz
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
33
|
Characterising biomolecular interactions and dynamics with mass photometry. Curr Opin Chem Biol 2022; 68:102132. [DOI: 10.1016/j.cbpa.2022.102132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 12/25/2022]
|
34
|
Single-molecule characterization of compressed RecA nucleoprotein filaments. Biochem Biophys Res Commun 2022; 614:29-33. [PMID: 35567941 DOI: 10.1016/j.bbrc.2022.04.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
Abstract
RecA is a central enzyme of homologous recombination in bacteria, which plays a major role in DNA repair, natural transformation and SOS-response activation. RecA forms nucleoprotein filaments on single-stranded DNA with a highly conserved architecture that is also shared by eukaryotic recombinases. One of the key features of these filaments is the ability to switch between stretched and compressed conformations in response to ATP binding and hydrolysis. However, the functional role of such conformational changes is not fully understood. Structural data revealed that in the absence of ATP RecA binds DNA with the stoichiometry of 5 nucleotides per one monomer, while in the presence of ATP the binding stoichiometry is 3:1. Such differences suggest incompatibility of the active and inactive conformations, yet dynamic single-molecule studies demonstrated that ATP and apo conformations can be directly interconvertible. In the present work we use a single-molecule approach to address the features of inactive RecA nucleoprotein filaments formed de novo in the absence of nucleotide cofactors. We show that compressed RecA-DNA filaments can exist with both 5:1 and 3:1 binding stoichiometry which is determined by conditions of the filament assembly. However, only a 3:1 stoichiometry allows direct interconvertibility with the active ATP-bound conformation.
Collapse
|
35
|
Aicart-Ramos C, Hormeno S, Wilkinson OJ, Dillingham MS, Moreno-Herrero F. Long DNA constructs to study helicases and nucleic acid translocases using optical tweezers. Methods Enzymol 2022; 673:311-358. [DOI: 10.1016/bs.mie.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
36
|
Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, Kaczmarczyk A, Takaki T, Rueda DS, Powell SN, Boulton SJ. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature 2022; 601:268-273. [PMID: 34937945 PMCID: PMC8755542 DOI: 10.1038/s41586-021-04261-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023]
Abstract
DNA double-stranded breaks (DSBs) are deleterious lesions, and their incorrect repair can drive cancer development1. HELQ is a superfamily 2 helicase with 3' to 5' polarity, and its disruption in mice confers germ cells loss, infertility and increased predisposition to ovarian and pituitary tumours2-4. At the cellular level, defects in HELQ result in hypersensitivity to cisplatin and mitomycin C, and persistence of RAD51 foci after DNA damage3,5. Notably, HELQ binds to RPA and the RAD51-paralogue BCDX2 complex, but the relevance of these interactions and how HELQ functions in DSB repair remains unclear3,5,6. Here we show that HELQ helicase activity and a previously unappreciated DNA strand annealing function are differentially regulated by RPA and RAD51. Using biochemistry analyses and single-molecule imaging, we establish that RAD51 forms a complex with and strongly stimulates HELQ as it translocates during DNA unwinding. By contrast, RPA inhibits DNA unwinding by HELQ but strongly stimulates DNA strand annealing. Mechanistically, we show that HELQ possesses an intrinsic ability to capture RPA-bound DNA strands and then displace RPA to facilitate annealing of complementary sequences. Finally, we show that HELQ deficiency in cells compromises single-strand annealing and microhomology-mediated end-joining pathways and leads to bias towards long-tract gene conversion tracts during homologous recombination. Thus, our results implicate HELQ in multiple arms of DSB repair through co-factor-dependent modulation of intrinsic translocase and DNA strand annealing activities.
Collapse
Affiliation(s)
- Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erika Buechelmaier
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Matthew Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Tohru Takaki
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
37
|
Mechanism of mitotic recombination: insights from C. elegans. Curr Opin Genet Dev 2021; 71:10-18. [PMID: 34186335 PMCID: PMC8683258 DOI: 10.1016/j.gde.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Homologous recombination (HR) plays a critical role in largely error-free repair of mitotic and meiotic DNA double-strand breaks (DSBs). DSBs are one of the most deleterious DNA lesions, which are repaired by non-homologous end joining (NHEJ), homologous recombination (HR) or, if compromised, micro-homology mediated end joining (MMEJ). If left unrepaired, DSBs can lead to cell death or if repaired incorrectly can result in chromosome rearrangements that drive cancer development. Here, we describe recent advances in the field of mitotic HR made using Caenorhabditis elegans roundworm, as a model system.
Collapse
|
38
|
Roy U, Kwon Y, Sung P, Greene EC. Single-molecule studies of yeast Rad51 paralogs. Methods Enzymol 2021; 661:343-362. [PMID: 34776219 DOI: 10.1016/bs.mie.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Homologous recombination (HR) is a conserved mechanism essential for the accurate repair of DNA double stranded breaks and the exchange of genetic information during meiosis. The key steps in HR are carried out by the RecA/Rad51 class of recombinases, which form a helical filament on single-stranded DNA (ssDNA) and catalyze homology search and strand exchange with a complementary duplex DNA target. In eukaryotes, assembly of the Rad51-ssDNA filament requires regulatory factors called mediators, including Rad51 paralogs. A mechanistic understanding of the role of Rad51 paralogs in HR has been hampered by the transient and diverse nature of intermediates formed with the Rad51-ssDNA filament, which cannot be resolved by traditional ensemble methods. The biochemical characterization of Rad51 paralogs, including the S. cerevisiae complex Rad55-Rad57 has also been limited by their propensity to aggregate. Here we describe the preparation of monodisperse GFP-tagged Rad55-Rad57 complex and the methodology for its analysis in our single-molecule DNA curtain assay.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX, United States
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
39
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
40
|
Greene EC, Rothstein R. Editorial overview: Recombination - the ends justify the means. Curr Opin Genet Dev 2021; 71:iii-vii. [PMID: 34764004 DOI: 10.1016/j.gde.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
41
|
Schaich MA, Van Houten B. Searching for DNA Damage: Insights From Single Molecule Analysis. Front Mol Biosci 2021; 8:772877. [PMID: 34805281 PMCID: PMC8602339 DOI: 10.3389/fmolb.2021.772877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/26/2023] Open
Abstract
DNA is under constant threat of damage from a variety of chemical and physical insults, such as ultraviolet rays produced by sunlight and reactive oxygen species produced during respiration or inflammation. Because damaged DNA, if not repaired, can lead to mutations or cell death, multiple DNA repair pathways have evolved to maintain genome stability. Two repair pathways, nucleotide excision repair (NER) and base excision repair (BER), must sift through large segments of nondamaged nucleotides to detect and remove rare base modifications. Many BER and NER proteins share a common base-flipping mechanism for the detection of modified bases. However, the exact mechanisms by which these repair proteins detect their damaged substrates in the context of cellular chromatin remains unclear. The latest generation of single-molecule techniques, including the DNA tightrope assay, atomic force microscopy, and real-time imaging in cells, now allows for nearly direct visualization of the damage search and detection processes. This review describes several mechanistic commonalities for damage detection that were discovered with these techniques, including a combination of 3-dimensional and linear diffusion for surveying damaged sites within long stretches of DNA. We also discuss important findings that DNA repair proteins within and between pathways cooperate to detect damage. Finally, future technical developments and single-molecule studies are described which will contribute to the growing mechanistic understanding of DNA damage detection.
Collapse
Affiliation(s)
- Matthew A. Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
42
|
Morati F, Modesti M. Insights into the control of RAD51 nucleoprotein filament dynamics from single-molecule studies. Curr Opin Genet Dev 2021; 71:182-187. [PMID: 34571340 DOI: 10.1016/j.gde.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Genomic integrity depends on the RecA/RAD51 protein family. Discovered over five decades ago with the founder bacterial RecA protein, eukaryotic RAD51 is an ATP-dependent DNA strand transferase implicated in DNA double-strand break and single-strand gap repair, and in dealing with stressed DNA replication forks. RAD51 assembles as a nucleoprotein filament around single-stranded DNA to promote homology recognition in a duplex DNA and subsequent strand exchange. While the intrinsic dynamics of the RAD51 nucleoprotein filament has been extensively studied, a plethora of accessory factors control its dynamics. Understanding how modulators control filament dynamics is at the heart of current research efforts. Here, we describe recent advances in RAD51 control mechanisms obtained specifically using fluorescence-based single-molecule techniques.
Collapse
Affiliation(s)
- Florian Morati
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France.
| |
Collapse
|
43
|
Špírek M, Taylor MRG, Belan O, Boulton SJ, Krejci L. Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nat Commun 2021; 12:5545. [PMID: 34545070 PMCID: PMC8452638 DOI: 10.1038/s41467-021-25830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2020] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that ‘nucleotide proofreading’ activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR. A RAD51 paralog complex, RFS-1/RIP-1, is shown to control ssDNA binding and dissociation by RAD-51 differentially in the presence and absence of nucleotide cofactors. These nucleotide proofreading activities drive a preferential accumulation of RAD-51-ssDNA complexes with optimal nucleotide content.
Collapse
Affiliation(s)
- Mário Špírek
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic.,Department of Biology Masaryk University, 62500, Brno, Czech Republic
| | | | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lumir Krejci
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic. .,Department of Biology Masaryk University, 62500, Brno, Czech Republic. .,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
44
|
The Role of the Rad55-Rad57 Complex in DNA Repair. Genes (Basel) 2021; 12:genes12091390. [PMID: 34573372 PMCID: PMC8472222 DOI: 10.3390/genes12091390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Homologous recombination (HR) is a mechanism conserved from bacteria to humans essential for the accurate repair of DNA double-stranded breaks, and maintenance of genome integrity. In eukaryotes, the key DNA transactions in HR are catalyzed by the Rad51 recombinase, assisted by a host of regulatory factors including mediators such as Rad52 and Rad51 paralogs. Rad51 paralogs play a crucial role in regulating proper levels of HR, and mutations in the human counterparts have been associated with diseases such as cancer and Fanconi Anemia. In this review, we focus on the Saccharomyces cerevisiae Rad51 paralog complex Rad55–Rad57, which has served as a model for understanding the conserved role of Rad51 paralogs in higher eukaryotes. Here, we discuss the results from early genetic studies, biochemical assays, and new single-molecule observations that have together contributed to our current understanding of the molecular role of Rad55–Rad57 in HR.
Collapse
|
45
|
Belan O, Moore G, Kaczmarczyk A, Newton MD, Anand R, Boulton SJ, Rueda DS. Generation of versatile ss-dsDNA hybrid substrates for single-molecule analysis. STAR Protoc 2021; 2:100588. [PMID: 34169285 PMCID: PMC8209646 DOI: 10.1016/j.xpro.2021.100588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
Here, we describe a rapid and versatile protocol to generate gapped DNA substrates for single-molecule (SM) analysis using optical tweezers via site-specific Cas9 nicking and force-induced melting. We provide examples of single-stranded (ss) DNA gaps of different length and position. We outline protocols to visualize these substrates by replication protein A-enhanced Green Fluorescent Protein (RPA-eGFP) and SYTOX Orange staining using commercially available optical tweezers (C-TRAP). Finally, we demonstrate the utility of these substrates for SM analysis of bidirectional growth of RAD-51-ssDNA filaments. For complete details on the use and execution of this protocol, please refer to Belan et al. (2021).
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - George Moore
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthew D. Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|
46
|
Rad52 Oligomeric N-Terminal Domain Stabilizes Rad51 Nucleoprotein Filaments and Contributes to Their Protection against Srs2. Cells 2021; 10:cells10061467. [PMID: 34207997 PMCID: PMC8230603 DOI: 10.3390/cells10061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination (HR) depends on the formation of a nucleoprotein filament of the recombinase Rad51 to scan the genome and invade the homologous sequence used as a template for DNA repair synthesis. Therefore, HR is highly accurate and crucial for genome stability. Rad51 filament formation is controlled by positive and negative factors. In Saccharomyces cerevisiae, the mediator protein Rad52 catalyzes Rad51 filament formation and stabilizes them, mostly by counteracting the disruptive activity of the translocase Srs2. Srs2 activity is essential to avoid the formation of toxic Rad51 filaments, as revealed by Srs2-deficient cells. We previously reported that Rad52 SUMOylation or mutations disrupting the Rad52–Rad51 interaction suppress Rad51 filament toxicity because they disengage Rad52 from Rad51 filaments and reduce their stability. Here, we found that mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells. Structural studies showed that these mutations affect the Rad52 oligomeric ring structure. Overall, in vivo and in vitro analyzes of these mutants indicate that Rad52 ring structure is important for protecting Rad51 filaments from Srs2, but can increase Rad51 filament stability and toxicity in Srs2-deficient cells. This stabilization function is distinct from Rad52 mediator and annealing activities.
Collapse
|
47
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
48
|
Elucidating Recombination Mediator Function Using Biophysical Tools. BIOLOGY 2021; 10:biology10040288. [PMID: 33916151 PMCID: PMC8066028 DOI: 10.3390/biology10040288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review recapitulates the initial knowledge acquired with genetics and biochemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to overcome the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.
Collapse
|
49
|
Abstract
In this issue of Molecular Cell, Roy et al. (2021) and Belan et al. (2021) demonstrate that the yeast and nematode RAD51 paralog complexes function as chaperones to promote the assembly of the RAD51 nucleoprotein filament on RPA-coated ssDNA.
Collapse
Affiliation(s)
- Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Switzerland.
| |
Collapse
|
50
|
Roy U, Kwon Y, Marie L, Symington L, Sung P, Lisby M, Greene EC. The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination. Mol Cell 2021; 81:1043-1057.e8. [PMID: 33421364 PMCID: PMC8262405 DOI: 10.1016/j.molcel.2020.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
Homologous recombination (HR) is essential for maintenance of genome integrity. Rad51 paralogs fulfill a conserved but undefined role in HR, and their mutations are associated with increased cancer risk in humans. Here, we use single-molecule imaging to reveal that the Saccharomyces cerevisiae Rad51 paralog complex Rad55-Rad57 promotes assembly of Rad51 recombinase filament through transient interactions, providing evidence that it acts like a classical molecular chaperone. Srs2 is an ATP-dependent anti-recombinase that downregulates HR by actively dismantling Rad51 filaments. Contrary to the current model, we find that Rad55-Rad57 does not physically block the movement of Srs2. Instead, Rad55-Rad57 promotes rapid re-assembly of Rad51 filaments after their disruption by Srs2. Our findings support a model in which Rad51 is in flux between free and single-stranded DNA (ssDNA)-bound states, the rate of which is controlled dynamically though the opposing actions of Rad55-Rad57 and Srs2.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lea Marie
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Lorraine Symington
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|