1
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. Dev Cell 2025:S1534-5807(24)00777-9. [PMID: 39818206 DOI: 10.1016/j.devcel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, Danio Optimus 5-Prime (DaniO5P), identified a combined role for 5' UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Morse K, Bishop AL, Swerdlow S, Leslie JM, Ünal E. Swi/Snf chromatin remodeling regulates transcriptional interference and gene repression. Mol Cell 2024; 84:3080-3097.e9. [PMID: 39043178 PMCID: PMC11419397 DOI: 10.1016/j.molcel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Alternative transcription start sites can affect transcript isoform diversity and translation levels. In a recently described form of gene regulation, coordinated transcriptional and translational interference results in transcript isoform-dependent changes in protein expression. Specifically, a long undecoded transcript isoform (LUTI) is transcribed from a gene-distal promoter, interfering with expression of the gene-proximal promoter. Although transcriptional and chromatin features associated with LUTI expression have been described, the mechanism underlying LUTI-based transcriptional interference is not well understood. Using an unbiased genetic approach followed by functional genomics, we uncovered that the Swi/Snf chromatin remodeling complex is required for co-transcriptional nucleosome remodeling that leads to LUTI-based repression. We identified genes with tandem promoters that rely on Swi/Snf function for transcriptional interference during protein folding stress, including LUTI-regulated genes. This study provides clear evidence for Swi/Snf playing a direct role in gene repression via a cis transcriptional interference mechanism.
Collapse
Affiliation(s)
- Kaitlin Morse
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Alena L Bishop
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Sarah Swerdlow
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Jessica M Leslie
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Dang TTV, Maufrais C, Colin J, Moyrand F, Mouyna I, Coppée JY, Onyishi CU, Lipecka J, Guerrera IC, May RC, Janbon G. Alternative TSS use is widespread in Cryptococcus fungi in response to environmental cues and regulated genome-wide by the transcription factor Tur1. PLoS Biol 2024; 22:e3002724. [PMID: 39052688 PMCID: PMC11302930 DOI: 10.1371/journal.pbio.3002724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Corinne Maufrais
- Université Paris Cité, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Jessie Colin
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Frédérique Moyrand
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Isabelle Mouyna
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Jean-Yves Coppée
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Chinaemerem U. Onyishi
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna Lipecka
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Ida Chiara Guerrera
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guilhem Janbon
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| |
Collapse
|
4
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. eLife 2024; 12:RP90425. [PMID: 38411169 PMCID: PMC10939502 DOI: 10.7554/elife.90425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a functional homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
Affiliation(s)
- Amanda J Su
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Siri C Yendluri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
5
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533246. [PMID: 36993411 PMCID: PMC10055192 DOI: 10.1101/2023.03.17.533246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
|
6
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Harris A, Ünal E. The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 2023; 225:iyad123. [PMID: 37431893 PMCID: PMC10550318 DOI: 10.1093/genetics/iyad123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The process of gametogenesis is orchestrated by a dynamic gene expression program, where a vital subset constitutes the early meiotic genes. In budding yeast, the transcription factor Ume6 represses early meiotic gene expression during mitotic growth. However, during the transition from mitotic to meiotic cell fate, early meiotic genes are activated in response to the transcriptional regulator Ime1 through its interaction with Ume6. While it is known that binding of Ime1 to Ume6 promotes early meiotic gene expression, the mechanism of early meiotic gene activation remains elusive. Two competing models have been proposed whereby Ime1 either forms an activator complex with Ume6 or promotes Ume6 degradation. Here, we resolve this controversy. First, we identify the set of genes that are directly regulated by Ume6, including UME6 itself. While Ume6 protein levels increase in response to Ime1, Ume6 degradation occurs much later in meiosis. Importantly, we found that depletion of Ume6 shortly before meiotic entry is detrimental to early meiotic gene activation and gamete formation, whereas tethering of Ume6 to a heterologous activation domain is sufficient to trigger early meiotic gene expression and produce viable gametes in the absence of Ime1. We conclude that Ime1 and Ume6 form an activator complex. While Ume6 is indispensable for early meiotic gene expression, Ime1 primarily serves as a transactivator for Ume6.
Collapse
Affiliation(s)
- Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Morse K, Swerdlow S, Ünal E. Swi/Snf Chromatin Remodeling Regulates Transcriptional Interference and Gene Repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538572. [PMID: 37162931 PMCID: PMC10168381 DOI: 10.1101/2023.04.27.538572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alternative transcription start sites can affect transcript isoform diversity and translation levels. In a recently described form of gene regulation, coordinated transcriptional and translational interference results in transcript isoform-dependent changes in protein expression. Specifically, a long undecoded transcript isoform (LUTI) is transcribed from a gene-distal promoter, interfering with expression of the gene-proximal promoter. While transcriptional and chromatin features associated with LUTI expression have been described, the mechanism underlying LUTI-based transcriptional interference is not well understood. Using an unbiased genetic approach followed by integrated genomic analysis, we uncovered that the Swi/Snf chromatin remodeling complex is required for co-transcriptional nucleosome remodeling that leads to LUTI-based repression. We identified genes with tandem promoters that rely on Swi/Snf function for transcriptional interference during protein folding stress, including LUTI-regulated genes. To our knowledge, this study is the first to observe Swi/Snf's direct involvement in gene repression via a cis transcriptional interference mechanism.
Collapse
Affiliation(s)
- Kaitlin Morse
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA, 94720
| | - Sarah Swerdlow
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA, 94720
| | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA, 94720
| |
Collapse
|
9
|
Weber R, Ghoshdastider U, Spies D, Duré C, Valdivia-Francia F, Forny M, Ormiston M, Renz PF, Taborsky D, Yigit M, Bernasconi M, Yamahachi H, Sendoel A. Monitoring the 5'UTR landscape reveals isoform switches to drive translational efficiencies in cancer. Oncogene 2023; 42:638-650. [PMID: 36550360 PMCID: PMC9957725 DOI: 10.1038/s41388-022-02578-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Transcriptional and translational control are key determinants of gene expression, however, to what extent these two processes can be collectively coordinated is still poorly understood. Here, we use Nanopore long-read sequencing and cap analysis of gene expression (CAGE-seq) to document the landscape of 5' and 3' untranslated region (UTR) isoforms and transcription start sites of epidermal stem cells, wild-type keratinocytes and squamous cell carcinomas. Focusing on squamous cell carcinomas, we show that a small cohort of genes with alternative 5'UTR isoforms exhibit overall increased translational efficiencies and are enriched in ribosomal proteins and splicing factors. By combining polysome fractionations and CAGE-seq, we further characterize two of these UTR isoform genes with identical coding sequences and demonstrate that the underlying transcription start site heterogeneity frequently results in 5' terminal oligopyrimidine (TOP) and pyrimidine-rich translational element (PRTE) motif switches to drive mTORC1-dependent translation of the mRNA. Genome-wide, we show that highly translated squamous cell carcinoma transcripts switch towards increased use of 5'TOP and PRTE motifs, have generally shorter 5'UTRs and expose decreased RNA secondary structures. Notably, we found that the two 5'TOP motif-containing, but not the TOP-less, RPL21 transcript isoforms strongly correlated with overall survival in human head and neck squamous cell carcinoma patients. Our findings warrant isoform-specific analyses in human cancer datasets and suggest that switching between 5'UTR isoforms is an elegant and simple way to alter protein synthesis rates, set their sensitivity to the mTORC1-dependent nutrient-sensing pathway and direct the translational potential of an mRNA by the precise 5'UTR sequence.
Collapse
Affiliation(s)
- Ramona Weber
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Daniel Spies
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Clara Duré
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Merima Forny
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Mark Ormiston
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - David Taborsky
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Merve Yigit
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Martino Bernasconi
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Homare Yamahachi
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland.
| |
Collapse
|
10
|
Vander Wende HM, Gopi M, Onyundo M, Medrano C, Adanlawo T, Brar GA. Meiotic resetting of the cellular Sod1 pool is driven by protein aggregation, degradation, and transient LUTI-mediated repression. J Biophys Biochem Cytol 2023; 222:213795. [PMID: 36622328 PMCID: PMC9836244 DOI: 10.1083/jcb.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Gametogenesis requires packaging of the cellular components needed for the next generation. In budding yeast, this process includes degradation of many mitotically stable proteins, followed by their resynthesis. Here, we show that one such case-Superoxide dismutase 1 (Sod1), a protein that commonly aggregates in human ALS patients-is regulated by an integrated set of events, beginning with the formation of pre-meiotic Sod1 aggregates. This is followed by degradation of a subset of the prior Sod1 pool and clearance of Sod1 aggregates. As degradation progresses, Sod1 protein production is transiently blocked during mid-meiotic stages by transcription of an extended and poorly translated SOD1 mRNA isoform, SOD1LUTI. Expression of SOD1LUTI is induced by the Unfolded Protein Response, and it acts to repress canonical SOD1 mRNA expression. SOD1LUTI is no longer expressed following the meiotic divisions, enabling a resurgence of canonical mRNA and synthesis of new Sod1 protein such that gametes inherit a full complement of Sod1 protein. Failure to aggregate and degrade Sod1 results in reduced gamete fitness in the presence of oxidants, highlighting the importance of this regulation. Investigation of Sod1 during yeast gametogenesis, an unusual cellular context in which Sod1 levels are tightly regulated, could shed light on conserved aspects of its aggregation and degradation, with relevance to understanding Sod1's role in human disease.
Collapse
Affiliation(s)
- Helen M. Vander Wende
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mounika Gopi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Megan Onyundo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,Correspondence to Gloria A. Brar:
| |
Collapse
|
11
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
12
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
13
|
Duffy EE, Finander B, Choi G, Carter AC, Pritisanac I, Alam A, Luria V, Karger A, Phu W, Sherman MA, Assad EG, Pajarillo N, Khitun A, Crouch EE, Ganesh S, Chen J, Berger B, Sestan N, O'Donnell-Luria A, Huang EJ, Griffith EC, Forman-Kay JD, Moses AM, Kalish BT, Greenberg ME. Developmental dynamics of RNA translation in the human brain. Nat Neurosci 2022; 25:1353-1365. [PMID: 36171426 PMCID: PMC10198132 DOI: 10.1038/s41593-022-01164-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/12/2022] [Indexed: 01/27/2023]
Abstract
The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | | | - GiHun Choi
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ava C Carter
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Iva Pritisanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Aqsa Alam
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, USA
| | - William Phu
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena G Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naomi Pajarillo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Khitun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Sanika Ganesh
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Anne O'Donnell-Luria
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Paediatrics, Division of Neonatology, Hospital for Sick Children, Toronto, ON, Canada.
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| | | |
Collapse
|
14
|
Sing TL, Conlon K, Lu SH, Madrazo N, Morse K, Barker JC, Hollerer I, Brar GA, Sudmant PH, Ünal E. Meiotic cDNA libraries reveal gene truncations and mitochondrial proteins important for competitive fitness in Saccharomyces cerevisiae. Genetics 2022; 221:iyac066. [PMID: 35471663 PMCID: PMC9157139 DOI: 10.1093/genetics/iyac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Gametogenesis is an evolutionarily conserved developmental program whereby a diploid progenitor cell undergoes meiosis and cellular remodeling to differentiate into haploid gametes, the precursors for sexual reproduction. Even in the simple eukaryotic organism Saccharomyces cerevisiae, the meiotic transcriptome is very rich and complex, thereby necessitating new tools for functional studies. Here, we report the construction of 5 stage-specific, inducible complementary DNA libraries from meiotic cells that represent over 84% of the genes found in the budding yeast genome. We employed computational strategies to detect endogenous meiotic transcript isoforms as well as library-specific gene truncations. Furthermore, we developed a robust screening pipeline to test the effect of each complementary DNA on competitive fitness. Our multiday proof-of-principle time course revealed 877 complementary DNAs that were detrimental for competitive fitness when overexpressed. The list included mitochondrial proteins that cause dose-dependent disruption of cellular respiration as well as library-specific gene truncations that expose a dominant negative effect on competitive growth. Together, these high-quality complementary DNA libraries provide an important tool for systematically identifying meiotic genes, transcript isoforms, and protein domains that are important for a specific biological function.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Katie Conlon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie H Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicole Madrazo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kaitlin Morse
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Juliet C Barker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ina Hollerer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Multi-omics approach reveals posttranscriptionally regulated genes are essential for human pluripotent stem cells. iScience 2022; 25:104289. [PMID: 35573189 PMCID: PMC9097716 DOI: 10.1016/j.isci.2022.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The effects of transcription factors on the maintenance and differentiation of human-induced or embryonic pluripotent stem cells (iPSCs/ESCs) have been well studied. However, the importance of posttranscriptional regulatory mechanisms, which cause the quantitative dissociation of mRNA and protein expression, has not been explored in detail. Here, by combining transcriptome and proteome profiling, we identified 228 posttranscriptionally regulated genes with strict upregulation of the protein level in iPSCs/ESCs. Among them, we found 84 genes were vital for the survival of iPSCs and HDFs, including 20 genes that were specifically necessary for iPSC survival. These 20 proteins were upregulated only in iPSCs/ESCs and not in differentiated cells derived from the three germ layers. Although there are still unknown mechanisms that downregulate protein levels in HDFs, these results reveal that posttranscriptionally regulated genes have a crucial role in iPSC survival. The posttranscriptionally regulated 20 genes are necessary for iPSC survival The proteins of HSPA8, EIF3D, and NCBP2 are quickly degraded in HDFs mRNA localization affects the protein amounts in most of the 20 genes Translation is repressed in HDFs despite mRNA binding to ribosomes
Collapse
|
16
|
Tresenrider A, Chia M, van Werven FJ, Ünal E. Long undecoded transcript isoform (LUTI) detection in meiotic budding yeast by direct RNA and transcript leader sequencing. STAR Protoc 2022; 3:101145. [PMID: 35169715 PMCID: PMC8829799 DOI: 10.1016/j.xpro.2022.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
LUTIs (Long Undecoded Transcript Isoforms) are 5'-extended and poorly translated mRNAs that can downregulate transcription from promoters more proximal to a gene's coding sequence (CDS). In this protocol, polyA RNA is extracted from budding yeast cells undergoing highly synchronized meiosis. Using a combination of long-read direct RNA sequencing and transcript leader sequencing (TL-seq), meiosis-specific LUTIs are systematically identified. Following identification, TL-seq is used to quantify the abundance of both LUTI and the more canonical gene-proximal (PROX) transcripts. For complete details on the use and execution of this protocol, please refer to Tresenrider et al. (2021).
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, USA
| | - Minghao Chia
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|