1
|
de Lima Conceição MR, Teixeira-Fonseca JL, Orts DJB, Nascimento DS, Dantas CO, de Vasconcelos CML, Souza DS, Roman-Campos D. Exploring the interplay between extracellular pH and Dronedarone's pharmacological effects on cardiac function. Eur J Pharmacol 2024; 983:176980. [PMID: 39241944 DOI: 10.1016/j.ejphar.2024.176980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Dronedarone (DRN) is a clinically used drug to mitigate arrhythmias with multichannel block properties, including the sodium channel Nav1.5. Extracellular acidification is known to change the pharmacological properties of several antiarrhythmic drugs. Here, we explore how modification in extracellular pH (pHe) shapes the pharmacological profile of DRN upon Nav1.5 sodium current (INa) and in the ex vivo heart preparation. Embryonic human kidney cells (HEK293T/17) were used to transiently express the human isoform of Nav1.5 α-subunit. Patch-Clamp technique was employed to study INa. Neurotoxin-II (ATX-II) was used to induce the late sodium current (INaLate). Additionally, ex vivo Wistar male rat preparations in the Langendorff system were utilized to study electrocardiogram (ECG) waves. DRN preferentially binds to the closed state inactivation mode of Nav1.5 at pHe 7.0. The recovery from INa inactivation was delayed in the presence of DRN in both pHe 7.0 and 7.4, and the use-dependent properties were distinct at pHe 7.0 and 7.4. However, the potency of DRN upon the peak INa, the voltage dependence for activation, and the steady-state inactivation curves were not altered in both pHe tested. Also, the pHe did not change the ability of DRN to block INaLate. Lastly, DRN in a concentration and pH dependent manner modulated the QRS complex, QT and RR interval in clinically relevant concentration. Thus, the pharmacological properties of DRN upon Nav1.5 and ex vivo heart preparation partially depend on the pHe. The pHe changed the biological effect of DRN in the heart electrical function in relevant clinical concentration.
Collapse
Affiliation(s)
- Michael Ramon de Lima Conceição
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Jorge Lucas Teixeira-Fonseca
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Diego Jose Belato Orts
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Daniella Santos Nascimento
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Cácia Oliveira Dantas
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Diego Santos Souza
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Danilo Roman-Campos
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
2
|
Sharma S, Rana P, Chadha VD, Dhingra N, Kaur T. Exploring characteristic features for effective HCN1 channel inhibition using integrated analytical approaches: 3D QSAR, molecular docking, homology modelling, ADME and molecular dynamics. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:447-464. [PMID: 39488633 DOI: 10.1007/s00249-024-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Neuropathic pain (NP) is characterized by hyperalgesia, allodynia, and spontaneous pain. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel involved in neuronal hyperexcitability, has emerged as an important target for the drug development of NP. HCN channels exist in four different isoforms, where HCN1 is majorly expressed in dorsal root ganglion having an imperative role in NP pathophysiology. A specific HCN1 channel inhibitor will hold the better potential to treat NP without disturbing the physiological roles of other HCN isoforms. The main objective is to identify and analyze the chemical properties of scaffolds with higher HCN1 channel specificity. The 3D-QSAR studies highlight the hydrophobic & hydrogen bond donor groups enhance specificity towards the HCN1 channel. Further, the molecular interaction of the scaffolds with the HCN1 pore was studied by generating an open-pore model of the HCN1 channel using homology modelling and then docking the molecules with it. In addition, the important residues involved in the interaction between HCN1 pore and scaffolds were also identified. Moreover, ADME predictions revealed that compounds had good oral bioavailability and solubility characteristics. Subsequently, molecular dynamics simulation studies revealed the better stability of the lead molecules A7 and A9 during interactions and ascertained them as potential drug candidates. Cumulative studies provided the important structural features for enhancing HCN1 channel-specific inhibition, paving the way to design and develop novel specific HCN1 channel inhibitors.
Collapse
Affiliation(s)
- Shiwani Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Priyanka Rana
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | | | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Che T, Zhang W, Cheng X, Lv S, Zhang M, Zhang Y, Yang T, Nan W, Wan S, Zeng B, Li J, Xiong B, Zhang J. Structural mechanism of human HCN1 hyperpolarization-activated channel inhibition by ivabradine. J Biol Chem 2024; 300:107798. [PMID: 39307309 PMCID: PMC11530593 DOI: 10.1016/j.jbc.2024.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a crucial role in regulating neuronal excitability. Despite growing evidence supporting the therapeutic potential of HCN1 inhibition in treating neurological disorders, the structural basis of channel inhibition by inhibitor has remained elusive. Here, we present the cryo-electron microscopy structure of human HCN1 channel in complex with inhibitor ivabradine, the drug on the market that acts on HCN channels. Combining electrophysiology, mutagenesis, and molecular dynamics simulations, our findings reveal that ivabradine binds to a previously unidentified pocket formed between the S4, S1, and HCN domain. Furthermore, through structure-based virtual screening, we identify two Food and Drug Administration-approved drugs that can inhibit the HCN1 channel by interacting with the ivabradine-binding site. Our results not only provide insights into the structural intricacies of ivabradine-mediated inhibition, but also offer a potential pharmacological framework for developing novel drugs targeting the HCN1 channel. The elucidation of these molecular interactions serves as a foundational step in advancing therapeutic strategies for modulating HCN1 activity, contributing to the broader landscape of drug discovery and development in this area.
Collapse
Affiliation(s)
- Tong Che
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Minqing Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Weiwei Nan
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Shuangyan Wan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Sichuan Province and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China; Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
5
|
Kim ED, Wu X, Lee S, Tibbs GR, Cunningham KP, Di Zanni E, Perez ME, Goldstein PA, Accardi A, Larsson HP, Nimigean CM. Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants. Nature 2024; 632:451-459. [PMID: 39085604 DOI: 10.1038/s41586-024-07743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.
Collapse
Affiliation(s)
- Elizabeth D Kim
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Xiaoan Wu
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Gareth R Tibbs
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Kevin P Cunningham
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- School of Life Sciences, University of Westminster, London, UK
| | - Eleonora Di Zanni
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Marta E Perez
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - H Peter Larsson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Saponaro A, Krumbach JH, Chaves-Sanjuan A, Sharifzadeh AS, Porro A, Castelli R, Hamacher K, Bolognesi M, DiFrancesco D, Clarke OB, Thiel G, Moroni A. Structural determinants of ivabradine block of the open pore of HCN4. Proc Natl Acad Sci U S A 2024; 121:e2402259121. [PMID: 38917012 PMCID: PMC11228525 DOI: 10.1073/pnas.2402259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
HCN1-4 channels are the molecular determinants of the If/Ih current that crucially regulates cardiac and neuronal cell excitability. HCN dysfunctions lead to sinoatrial block (HCN4), epilepsy (HCN1), and chronic pain (HCN2), widespread medical conditions awaiting subtype-specific treatments. Here, we address the problem by solving the cryo-EM structure of HCN4 in complex with ivabradine, to date the only HCN-specific drug on the market. Our data show ivabradine bound inside the open pore at 3 Å resolution. The structure unambiguously proves that Y507 and I511 on S6 are the molecular determinants of ivabradine binding to the inner cavity, while F510, pointing outside the pore, indirectly contributes to the block by controlling Y507. Cysteine 479, unique to the HCN selectivity filter (SF), accelerates the kinetics of block. Molecular dynamics simulations further reveal that ivabradine blocks the permeating ion inside the SF by electrostatic repulsion, a mechanism previously proposed for quaternary ammonium ions.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Jan H Krumbach
- Department of Physics, Technische Universität Darmstadt, Darmstadt 64289, Germany
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | | | | | - Alessandro Porro
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Roberta Castelli
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Kay Hamacher
- Department of Physics, Technische Universität Darmstadt, Darmstadt 64289, Germany
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | | | - Dario DiFrancesco
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics-Milan, Consiglio Nazionale delle Ricerche, Milan 20133, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032
| | - Gerhard Thiel
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics-Milan, Consiglio Nazionale delle Ricerche, Milan 20133, Italy
| |
Collapse
|
7
|
Kunzmann P, Krumbach JH, Saponaro A, Moroni A, Thiel G, Hamacher K. Anisotropic Network Analysis of Open/Closed HCN4 Channel Advocates Asymmetric Subunit Cooperativity in cAMP Modulation of Gating. J Chem Inf Model 2024; 64:4727-4738. [PMID: 38830626 PMCID: PMC11203669 DOI: 10.1021/acs.jcim.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are opened in an allosteric manner by membrane hyperpolarization and cyclic nucleotides such as cAMP. Because of conflicting reports from experimental studies on whether cAMP binding to the four available binding sites in the channel tetramer operates cooperatively in gating, we employ here a computational approach as a promising route to examine ligand-induced conformational changes after binding to individual sites. By combining an elastic network model (ENM) with linear response theory (LRT) for modeling the apo-holo transition of the cyclic nucleotide-binding domain (CNBD) in HCN channels, we observe a distinct pattern of cooperativity matching the "positive-negative-positive" cooperativity reported from functional studies. This cooperativity pattern is highly conserved among HCN subtypes (HCN4, HCN1), but only to a lesser extent visible in structurally related channels, which are only gated by voltage (KAT1) or cyclic nucleotides (TAX4). This suggests an inherent cooperativity between subunits in HCN channels as part of a ligand-triggered gating mechanism in these channels.
Collapse
Affiliation(s)
- Patrick Kunzmann
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Jan H. Krumbach
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Andrea Saponaro
- Department
of Pharmacology and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Anna Moroni
- Department
of Biosciences, Ion Channel Biophysics, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Gerhard Thiel
- Department
of Biology, Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Burtscher V, Mount J, Huang J, Cowgill J, Chang Y, Bickel K, Chen J, Yuan P, Chanda B. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat Commun 2024; 15:5216. [PMID: 38890331 PMCID: PMC11189445 DOI: 10.1038/s41467-024-49599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Mount
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Page DA, Ruben PC. Cannabidiol potentiates hyperpolarization-activated cyclic nucleotide-gated (HCN4) channels. J Gen Physiol 2024; 156:e202313505. [PMID: 38652080 PMCID: PMC11040500 DOI: 10.1085/jgp.202313505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to β-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.
Collapse
Affiliation(s)
- Dana A. Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
10
|
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, Zhang J. Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem 2024; 300:107288. [PMID: 38636662 PMCID: PMC11126801 DOI: 10.1016/j.jbc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.
Collapse
Affiliation(s)
- Bo Yu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiuyuan Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han Hu
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Yuanshuo Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tong Che
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaoguang Hua
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Cuiling Xian
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanyan Li
- Department of Chemical Biology, School of Life Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Peters CH, Singh RK, Langley AA, Nichols WG, Ferris HR, Jeffrey DA, Proenza C, Bankston JR. LRMP inhibits cAMP potentiation of HCN4 channels by disrupting intramolecular signal transduction. eLife 2024; 12:RP92411. [PMID: 38652113 PMCID: PMC11037915 DOI: 10.7554/elife.92411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Rohit K Singh
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Skaggs School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Avery A Langley
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - William G Nichols
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hannah R Ferris
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Danielle A Jeffrey
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
12
|
Wu X, Cunningham KP, Bruening-Wright A, Pandey S, Larsson HP. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. Int J Mol Sci 2024; 25:4309. [PMID: 38673895 PMCID: PMC11050684 DOI: 10.3390/ijms25084309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Voltage-gated potassium (Kv) channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels share similar structures but have opposite gating polarity. Kv channels have a strong coupling (>109) between the voltage sensor (S4) and the activation gate: when S4s are activated, the gate is open to >80% but, when S4s are deactivated, the gate is open <10-9 of the time. Using noise analysis, we show that the coupling between S4 and the gate is <200 in HCN channels. In addition, using voltage clamp fluorometry, locking the gate open in a Kv channel drastically altered the energetics of S4 movement. In contrast, locking the gate open or decreasing the coupling between S4 and the gate in HCN channels had only minor effects on the energetics of S4 movement, consistent with a weak coupling between S4 and the gate. We propose that this loose coupling is a prerequisite for the reversed voltage gating in HCN channels.
Collapse
Affiliation(s)
- Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
| | - Kevin P. Cunningham
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | | | - Shilpi Pandey
- Oregan National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA;
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
13
|
Houdayer C, Phillips AM, Chabbert M, Bourreau J, Maroofian R, Houlden H, Richards K, Saadi NW, Dad'ová E, Van Bogaert P, Rupin M, Keren B, Charles P, Smol T, Riquet A, Pais L, O'Donnell-Luria A, VanNoy GE, Bayat A, Møller RS, Olofsson K, Abou Jamra R, Syrbe S, Dasouki M, Seaver LH, Sullivan JA, Shashi V, Alkuraya FS, Poss AF, Spence JE, Schnur RE, Forster IC, Mckenzie CE, Simons C, Wang M, Snell P, Kothur K, Buckley M, Roscioli T, Elserafy N, Dauriat B, Procaccio V, Henrion D, Lenaers G, Colin E, Verbeek NE, Van Gassen KL, Legendre C, Bonneau D, Reid CA, Howell KB, Ziegler A, Legros C. Mono and biallelic variants in HCN2 cause severe neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24303984. [PMID: 38562733 PMCID: PMC10984036 DOI: 10.1101/2024.03.19.24303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.
Collapse
|
14
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
15
|
Porro A, Saponaro A, Castelli R, Introini B, Hafez Alkotob A, Ranjbari G, Enke U, Kusch J, Benndorf K, Santoro B, DiFrancesco D, Thiel G, Moroni A. A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 2024; 15:843. [PMID: 38287019 PMCID: PMC10825183 DOI: 10.1038/s41467-024-45136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | | | - Bianca Introini
- Department of Biosciences, University of Milan, Milano, Italy
| | | | - Golnaz Ranjbari
- Department of Biosciences, University of Milan, Milano, Italy
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | | | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano, Italy.
- Institute of Biophysics Milan, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
16
|
Peters CH, Singh RK, Langley AA, Nichols WG, Ferris HR, Jeffrey DA, Proenza C, Bankston JR. LRMP inhibits cAMP potentiation of HCN4 channels by disrupting intramolecular signal transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555242. [PMID: 37693562 PMCID: PMC10491135 DOI: 10.1101/2023.08.29.555242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4 but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here we identify the domains of LRMP essential for regulation. We show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating. And we demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we showed that the initial 227 residues of LRMP and the N-terminus of HCN4 are necessary for LRMP to interact with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. And we demonstrate that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of 5 residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Rohit K Singh
- Skaggs School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Boulevard, Aurora, CO 80045
| | - Avery A Langley
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - William G Nichols
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Hannah R Ferris
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Danielle A Jeffrey
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, 12631 E. 17 Avenue, Aurora, CO 80045
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19 Avenue, Aurora, CO 80045
| |
Collapse
|
17
|
Hu Z, Yang J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 2023; 17:2273165. [PMID: 37905307 PMCID: PMC10761061 DOI: 10.1080/19336950.2023.2273165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Kalienkova V, Peter MF, Rheinberger J, Paulino C. Structures of a sperm-specific solute carrier gated by voltage and cAMP. Nature 2023; 623:202-209. [PMID: 37880361 PMCID: PMC10620091 DOI: 10.1038/s41586-023-06629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martin F Peter
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Jan Rheinberger
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
19
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
20
|
Chowdhury S, Pal K. Architecture and rearrangements of a sperm-specific Na +/H + exchanger. RESEARCH SQUARE 2023:rs.3.rs-3396005. [PMID: 37886505 PMCID: PMC10602139 DOI: 10.21203/rs.3.rs-3396005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The sperm-specific sodium hydrogen exchanger, SLC9C1, underlies hyperpolarization and cyclic nucleotide stimulated proton fluxes across sperm membranes and regulates their hyperactivated motility. SLC9C1 is the first known instance of an ion transporter that uses a canonical voltage-sensing domain (VSD) and an evolutionarily conserved cyclic nucleotide binding domain (CNBD) to influence the dynamics of its ion-exchange domain (ED). The structural organization of this 'tripartite transporter' and the mechanisms whereby it integrates physical (membrane voltage) and chemical (cyclic nucleotide) cues are unknown. In this study, we use single particle cryo-electron microscopy to determine structures of a metazoan SLC9C1 in different conformational states. We find that the three structural domains are uniquely organized around a distinct ring-shaped scaffold that we call the 'allosteric ring domain' or ARD. The ARD undergoes coupled proton-dependent rearrangements with the ED and acts as a 'signaling hub' enabling allosteric communication between the key functional modules of sp9C1. We demonstrate that binding of cAMP causes large conformational changes in the cytoplasmic domains and disrupts key ARD-linked interfaces. We propose that these structural changes rescue the transmembrane domains from an auto-inhibited state and facilitate their functional dynamics. Our study provides a structural framework to understand and further probe electrochemical linkage in SLC9C1.
Collapse
|
21
|
Krumbach JH, Bauer D, Sharifzadeh AS, Saponaro A, Lautenschläger R, Lange K, Rauh O, DiFrancesco D, Moroni A, Thiel G, Hamacher K. Alkali metal cations modulate the geometry of different binding sites in HCN4 selectivity filter for permeation or block. J Gen Physiol 2023; 155:e202313364. [PMID: 37523352 PMCID: PMC10386491 DOI: 10.1085/jgp.202313364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/03/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide gated (HCN) channels are important for timing biological processes like heartbeat and neuronal firing. Their weak cation selectivity is determined by a filter domain with only two binding sites for K+ and one for Na+. The latter acts as a weak blocker, which is released in combination with a dynamic widening of the filter by K+ ions, giving rise to a mixed K+/Na+ current. Here, we apply molecular dynamics simulations to systematically investigate the interactions of five alkali metal cations with the filter of the open HCN4 pore. Simulations recapitulate experimental data like a low Li+ permeability, considerable Rb+ conductance, a block by Cs+ as well as a punch through of Cs+ ions at high negative voltages. Differential binding of the cation species in specific filter sites is associated with structural adaptations of filter residues. This gives rise to ion coordination by a cation-characteristic number of oxygen atoms from the filter backbone and solvent. This ion/protein interplay prevents Li+, but not Na+, from entry into and further passage through the filter. The site equivalent to S3 in K+ channels emerges as a preferential binding and presumably blocking site for Cs+. Collectively, the data suggest that the weak cation selectivity of HCN channels and their block by Cs+ are determined by restrained cation-generated rearrangements of flexible filter residues.
Collapse
Affiliation(s)
- Jan H Krumbach
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Daniel Bauer
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Rene Lautenschläger
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Kristina Lange
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Gerhard Thiel
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Kay Hamacher
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
22
|
Wu Y, Wang Q, Granger J, Gaido OR, Aguilar EN, Ludwig A, Moroni A, Bianchet MA, Anderson ME. HCN channels sense temperature and determine heart rate responses to heat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556046. [PMID: 37693513 PMCID: PMC10491304 DOI: 10.1101/2023.09.02.556046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Heart rate increases with heat, [1-3] constituting a fundamental physiological relationship in vertebrates. Each normal heartbeat is initiated by an action potential generated in a sinoatrial nodal pacemaker cell. Pacemaker cells are enriched with hyperpolarization activated cyclic nucleotide-gated ion channels (HCN) that deliver cell membrane depolarizing inward current that triggers action potentials. HCN channel current increases due to cAMP binding, a mechanism coupling adrenergic tone to physiological 'fight or flight' heart rate acceleration. However, the mechanism(s) for heart rate response to thermal energy is unknown. We used thermodynamical and homology computational modeling, site-directed mutagenesis and mouse models to identify a concise motif on the S4-S5 linker of the cardiac pacemaker HCN4 channels (M407/Y409) that determines HCN4 current (If) and cardiac pacemaker cell responses to heat. This motif is required for heat sensing in cardiac pacemaker cells and in isolated hearts. In contrast, the cyclic nucleotide binding domain is not required for heat induced HCN4 current increases. However, a loss of function M407/Y409 motif mutation prevented normal heat and cAMP responses, suggesting that heat sensing machinery is essential for operating the cAMP allosteric pathway and is central to HCN4 modulation. The M407/Y409 motif is conserved across all HCN family members suggesting that HCN channels participate broadly in coupling heat to changes in cell membrane excitability.
Collapse
Affiliation(s)
- Yuejin Wu
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qinchuan Wang
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan Granger
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Oscar Reyes Gaido
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Eric Nunez Aguilar
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Mario A Bianchet
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark E Anderson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Medicine and Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Burtscher V, Mount J, Cowgill J, Chang Y, Bickel K, Yuan P, Chanda B. Structural Basis for Hyperpolarization-dependent Opening of the Human HCN1 Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553623. [PMID: 37645882 PMCID: PMC10462129 DOI: 10.1101/2023.08.17.553623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hyperpolarization and cyclic-nucleotide (HCN) activated ion channels play a critical role in generating self-propagating action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN channels activate upon membrane hyperpolarization, but the structural mechanisms underlying this gating behavior remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 in Closed, Intermediate, and Open states. Our structures reveal that the inward motion of two gating charges past the charge transfer center (CTC) and concomitant tilting of the S5 helix drives the opening of the central pore. In the intermediate state structure, a single gating charge is positioned below the CTC and the pore appears closed, whereas in the open state structure, both charges move past CTC and the pore is fully open. Remarkably, the downward motion of the voltage sensor is accompanied by progressive unwinding of the inner end of S4 and S5 helices disrupting the tight gating interface that stabilizes the Closed state structure. This "melting" transition at the intracellular gating interface leads to a concerted iris-like displacement of S5 and S6 helices, resulting in pore opening. These findings reveal key structural features that are likely to underlie reversed voltage-dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Mount
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
24
|
Wojciechowski MN, Schreiber S, Jose J. A Novel Flow Cytometry-Based Assay for the Identification of HCN4 CNBD Ligands. Pharmaceuticals (Basel) 2023; 16:ph16050710. [PMID: 37242492 DOI: 10.3390/ph16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP's binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD.
Collapse
Affiliation(s)
- Magdalena N Wojciechowski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Sebastian Schreiber
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| |
Collapse
|
25
|
Wu X, Cunningham KP, Ramentol R, Perez ME, Larsson HP. Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation. J Gen Physiol 2023; 155:e202213170. [PMID: 36752823 PMCID: PMC9948645 DOI: 10.1085/jgp.202213170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to the rhythmic firing of pacemaker neurons and cardiomyocytes. Mutations in HCN channels are associated with cardiac arrhythmia and epilepsy. HCN channels belong to the superfamily of voltage-gated K+ channels, most of which are activated by depolarization. HCN channels, however, are activated by hyperpolarization. The mechanism behind this reversed gating polarity of HCN channels is not clear. We here show that sea urchin HCN (spHCN) channels with mutations in the C-terminal part of the voltage sensor use the same voltage-sensor movement to either close or open in response to hyperpolarizations depending on the absence or presence of cAMP. Our results support that non-covalent interactions at the C-terminal end of the voltage sensor are critical for HCN gating polarity. These interactions are also critical for the proper closing of the channels because these mutations exhibit large constitutive currents. Since a similar voltage-sensor movement can cause both depolarization- and hyperpolarization-activation in the same channel, this suggests that the coupling between the voltage sensor and the pore is changed to create channels opened by different polarities. We also show an identical voltage-sensor movement in activated and inactivated spHCN channels and suggest a model for spHCN activation and inactivation. Our results suggest the possibility that channels open by opposite voltage dependence, such as HCN and the related EAG channels, use the same voltage-sensor movement but different coupling mechanisms between the voltage sensor and the gate.
Collapse
Affiliation(s)
- Xiaoan Wu
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin P. Cunningham
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rosamary Ramentol
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marta E. Perez
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H. Peter Larsson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Congreve SD, Main A, Butler AS, Gao X, Brown E, Du C, Choisy SC, Cheng H, Hancox JC, Fuller W. Palmitoylation regulates the magnitude of HCN4-mediated currents in mammalian cells. Front Physiol 2023; 14:1163339. [PMID: 37123274 PMCID: PMC10133559 DOI: 10.3389/fphys.2023.1163339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
The sinoatrial node (SAN) and subsidiary pacemakers in the cardiac conduction system generate spontaneous electrical activity which is indispensable for electrical and therefore contractile function of the heart. The hyperpolarisation-activated cyclic nucleotide-gated channel HCN4 is responsible for genesis of the pacemaker "funny" current during diastolic depolarisation. S-palmitoylation, the reversible conjugation of the fatty acid palmitate to protein cysteine sulfhydryls, regulates the activity of key cardiac Na+ and Ca2+ handling proteins, influencing their membrane microdomain localisation and function. We investigated HCN4 palmitoylation and its functional consequences in engineered human embryonic kidney 293T cells as well as endogenous HCN4 in neonatal rat ventricular myocytes. HCN4 was palmitoylated in all experimental systems investigated. We mapped the HCN4 palmitoylation sites to a pair of cysteines in the HCN4 intracellular amino terminus. A double cysteine-to-alanine mutation CC93A/179AA of full length HCN4 caused a ∼67% reduction in palmitoylation in comparison to wild type HCN4. We used whole-cell patch clamp to evaluate HCN4 current (IHCN4) in stably transfected 293T cells. Removal of the two N-terminal palmitoylation sites did not significantly alter half maximal activation voltage of IHCN4 or the activation slope factor. IHCN4 was significantly larger in cells expressing wild type compared to non-palmitoylated HCN4 across a range of voltages. Phylogenetic analysis revealed that although cysteine 93 is widely conserved across all classes of HCN4 vertebrate orthologs, conservation of cysteine 179 is restricted to placental mammals. Collectively, we provide evidence for functional regulation of HCN4 via palmitoylation of its amino terminus in vertebrates. We suggest that by recruiting the amino terminus to the bilayer, palmitoylation enhances the magnitude of HCN4-mediated currents, but does not significantly affect the kinetics.
Collapse
Affiliation(s)
- Samitha Dilini Congreve
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alice Main
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Andrew S. Butler
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Xing Gao
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Elaine Brown
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Stephanié C. Choisy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hongwei Cheng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - William Fuller
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Pan Y, Pohjolainen E, Schmidpeter PAM, Vaiana AC, Nimigean CM, Grubmüller H, Scheuring S. Discrimination between cyclic nucleotides in a cyclic nucleotide-gated ion channel. Nat Struct Mol Biol 2023; 30:512-520. [PMID: 36973509 DOI: 10.1038/s41594-023-00955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Cyclic nucleotide-gated ion channels are crucial in many physiological processes such as vision and pacemaking in the heart. SthK is a prokaryotic homolog with high sequence and structure similarities to hyperpolarization-activated and cyclic nucleotide-modulated and cyclic nucleotide-gated channels, especially at the level of the cyclic nucleotide binding domains (CNBDs). Functional measurements showed that cyclic adenosine monophosphate (cAMP) is a channel activator while cyclic guanosine monophosphate (cGMP) barely leads to pore opening. Here, using atomic force microscopy single-molecule force spectroscopy and force probe molecular dynamics simulations, we unravel quantitatively and at the atomic level how CNBDs discriminate between cyclic nucleotides. We find that cAMP binds to the SthK CNBD slightly stronger than cGMP and accesses a deep-bound state that a cGMP-bound CNBD cannot reach. We propose that the deep binding of cAMP is the discriminatory state that is essential for cAMP-dependent channel activation.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Emmi Pohjolainen
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
| | | | - Andrea C Vaiana
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Helmut Grubmüller
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel. Nat Commun 2022; 13:6919. [PMID: 36376326 PMCID: PMC9663499 DOI: 10.1038/s41467-022-34673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding how ion channels gate is important for elucidating their physiological roles and targeting them in pathophysiological states. Here, we used SthK, a cyclic nucleotide-modulated channel from Spirochaeta thermophila, to define a ligand-gating trajectory that includes multiple on-pathway intermediates. cAMP is a poor partial agonist for SthK and depolarization increases SthK activity. Tuning the energy landscape by gain-of-function mutations in the voltage sensor domain (VSD) allowed us to capture multiple intermediates along the ligand-activation pathway, highlighting the allosteric linkage between VSD, cyclic nucleotide-binding (CNBD) and pore domains. Small, lateral displacements of the VSD S4 segment were necessary to open the intracellular gate, pointing to an inhibitory VSD at rest. We propose that in wild-type SthK, depolarization leads to such VSD displacements resulting in release of inhibition. In summary, we report conformational transitions along the activation pathway that reveal allosteric couplings between key sites integrating to open the intracellular gate.
Collapse
|
29
|
Schmidpeter PAM, Wu D, Rheinberger J, Riegelhaupt PM, Tang H, Robinson CV, Nimigean CM. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat Struct Mol Biol 2022; 29:1092-1100. [PMID: 36352139 PMCID: PMC10022520 DOI: 10.1038/s41594-022-00851-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Lipids play important roles in regulating membrane protein function, but the molecular mechanisms used are elusive. Here we investigated how anionic lipids modulate SthK, a bacterial pacemaker channel homolog, and HCN2, whose activity contributes to pacemaking in the heart and brain. Using SthK allowed the reconstitution of purified channels in controlled lipid compositions for functional and structural assays that are not available for the eukaryotic channels. We identified anionic lipids bound tightly to SthK and their exact binding locations and determined that they potentiate channel activity. Cryo-EM structures in the most potentiating lipids revealed an open state and identified a nonannular lipid bound with its headgroup near an intersubunit salt bridge that clamps the intracellular channel gate shut. Breaking this conserved salt bridge abolished lipid modulation in SthK and eukaryotic HCN2 channels, indicating that anionic membrane lipids facilitate channel opening by destabilizing these interactions. Our findings underline the importance of state-dependent protein-lipid interactions.
Collapse
Affiliation(s)
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Accili E. When Is a Potassium Channel Not a Potassium Channel? FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac052. [PMID: 36325512 PMCID: PMC9614928 DOI: 10.1093/function/zqac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ever since they were first observed in Purkinje fibers of the heart, funny channels have had close connections to potassium channels. Indeed, funny channels were initially thought to produce a potassium current in the heart called I K2. However, funny channels are completely unlike potassium channels in ways that make their contributions to the physiology of cells unique. An important difference is the greater ability for sodium to permeate funny channels. Although it does not flow through the funny channel as easily as does potassium, sodium does permeate well enough to allow for depolarization of cells following a strong hyperpolarization. This is critical for the function of funny channels in places like the heart and brain. Computational analyses using recent structures of the funny channels have provided a possible mechanism for their unusual permeation properties.
Collapse
|
31
|
Saponaro A, Vallese F, Porro A, Clarke OB. Validation of the binding stoichiometry between HCN channels and their neuronal regulator TRIP8b by single molecule measurements. Front Physiol 2022; 13:998176. [PMID: 36225302 PMCID: PMC9549148 DOI: 10.3389/fphys.2022.998176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tetratricopeptide repeat-containing Rab8b-interacting (TRIP8b) protein is a brain-specific subunit of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels, a class of voltage-gated channels modulated by cyclic nucleotides. While the interaction between TRIP8b and the cytosolic C terminus of the channel has been structurally described, the HCN:TRIP8b stoichiometry is less characterized. We employed single molecule mass photometry (MP) to image HCN4 particles purified in complex with TRIP8b. Our data show that four TRIP8b subunits are bound to the tetrameric HCN4 particle, confirming a 1:1 stoichiometry.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milano, Italy
| | - Francesca Vallese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, United States
| | | | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, United States
| |
Collapse
|
32
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
33
|
Li S. Detergents and alternatives in cryo-EM studies of membrane proteins. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1049-1056. [PMID: 35866608 PMCID: PMC9828306 DOI: 10.3724/abbs.2022088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/28/2022] [Indexed: 11/25/2022] Open
Abstract
Structure determination of membrane proteins has been a long-standing challenge to understand the molecular basis of life processes. Detergents are widely used to study the structure and function of membrane proteins by various experimental methods, and the application of membrane mimetics is also a prevalent trend in the field of cryo-EM analysis. This review focuses on the widely-used detergents and corresponding properties and structures, and also discusses the growing interests in membrane mimetic systems used in cryo-EM studies, providing insights into the role of detergent alternatives in structure determination.
Collapse
Affiliation(s)
- Shuo Li
- />Department of Life ScienceNational Natural Science Foundation of ChinaBeijing100085China
| |
Collapse
|
34
|
Wu SN, Wu CL, Cho HY, Chiang CW. Effective Perturbations by Small-Molecule Modulators on Voltage-Dependent Hysteresis of Transmembrane Ionic Currents. Int J Mol Sci 2022; 23:ijms23169453. [PMID: 36012718 PMCID: PMC9408818 DOI: 10.3390/ijms23169453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih's Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih's Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih's Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih's Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Post-Baccalaureate Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5334); Fax: +886-6-2362780
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
35
|
Merseburg A, Kasemir J, Buss EW, Leroy F, Bock T, Porro A, Barnett A, Tröder SE, Engeland B, Stockebrand M, Moroni A, Siegelbaum S, Isbrandt D, Santoro B. Seizures, behavioral deficits and adverse drug responses in two new genetic mouse models of HCN1 epileptic encephalopathy. eLife 2022; 11:70826. [PMID: 35972069 PMCID: PMC9481245 DOI: 10.7554/elife.70826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
De novo mutations in voltage- and ligand-gated channels have been associated with an increasing number of cases of developmental and epileptic encephalopathies, which often fail to respond to classic antiseizure medications. Here, we examine two knock-in mouse models replicating de novo sequence variations in the HCN1 voltage-gated channel gene, p.G391D and p.M153I (Hcn1G380D/+ and Hcn1M142I/+ in mouse), associated with severe drug-resistant neonatal- and childhood-onset epilepsy, respectively. Heterozygous mice from both lines displayed spontaneous generalized tonic-clonic seizures. Animals replicating the p.G391D variant had an overall more severe phenotype, with pronounced alterations in the levels and distribution of HCN1 protein, including disrupted targeting to the axon terminals of basket cell interneurons. In line with clinical reports from patients with pathogenic HCN1 sequence variations, administration of the antiepileptic Na+ channel antagonists lamotrigine and phenytoin resulted in the paradoxical induction of seizures in both mouse lines, consistent with an effect to further impair inhibitory neuron function. We also show that these variants can render HCN1 channels unresponsive to classic antagonists, indicating the need to screen mutated channels to identify novel compounds with diverse mechanism of action. Our results underscore the necessity of tailoring effective therapies for specific channel gene variants, and how strongly validated animal models may provide an invaluable tool towards reaching this objective.
Collapse
Affiliation(s)
- Andrea Merseburg
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Jacquelin Kasemir
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eric W Buss
- Department of Neuroscience, Columbia University, New York, United States
| | - Felix Leroy
- Department of Neuroscience, Columbia University, New York, United States
| | - Tobias Bock
- Department of Neuroscience, Columbia University, New York, United States
| | | | - Anastasia Barnett
- Department of Neuroscience, Columbia University, New York, United States
| | - Simon E Tröder
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Birgit Engeland
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Malte Stockebrand
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Steve Siegelbaum
- Department of Neuroscience, Columbia University, New York, United States
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Cologne, Germany
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, United States
| |
Collapse
|
36
|
Liu J, Kasuya G, Zempo B, Nakajo K. Two HCN4 Channels Play Functional Roles in the Zebrafish Heart. Front Physiol 2022; 13:901571. [PMID: 35846012 PMCID: PMC9281569 DOI: 10.3389/fphys.2022.901571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The HCN4 channel is essential for heart rate regulation in vertebrates by generating pacemaker potentials in the sinoatrial node. HCN4 channel abnormality may cause bradycardia and sick sinus syndrome, making it an important target for clinical research and drug discovery. The zebrafish is a popular animal model for cardiovascular research. They are potentially suitable for studying inherited heart diseases, including cardiac arrhythmia. However, it has not been determined how similar the ion channels that underlie cardiac automaticity are in zebrafish and humans. In the case of HCN4, humans have one gene, whereas zebrafish have two ortholog genes (DrHCN4 and DrHCN4L; ‘Dr’ referring to Danio rerio). However, it is not known whether the two HCN4 channels have different physiological functions and roles in heart rate regulation. In this study, we characterized the biophysical properties of the two zebrafish HCN4 channels in Xenopus oocytes and compared them to those of the human HCN4 channel. We found that they showed different gating properties: DrHCN4L currents showed faster activation kinetics and a more positively shifted G-V curve than did DrHCN4 and human HCN4 currents. We made chimeric channels of DrHCN4 and DrHCN4L and found that cytoplasmic domains were determinants for the faster activation and the positively shifted G-V relationship in DrHCN4L. The use of a dominant-negative HCN4 mutant confirmed that DrHCN4 and DrHCN4L can form a heteromultimeric channel in Xenopus oocytes. Next, we confirmed that both are sensitive to common HCN channel inhibitors/blockers including Cs+, ivabradine, and ZD7288. These HCN inhibitors successfully lowered zebrafish heart rate during early embryonic stages. Finally, we knocked down the HCN4 genes using antisense morpholino and found that knocking down either or both of the HCN4 channels caused a temporal decrease in heart rate and tended to cause pericardial edema. These findings suggest that both DrHCN4 and DrHCN4L play a significant role in zebrafish heart rate regulation.
Collapse
|
37
|
Paradigm shift: new concepts for HCN4 function in cardiac pacemaking. Pflugers Arch 2022; 474:649-663. [PMID: 35556164 PMCID: PMC9192375 DOI: 10.1007/s00424-022-02698-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are the molecular correlate of the If current and are critically involved in controlling neuronal excitability and the autonomous rhythm of the heart. The HCN4 isoform is the main HCN channel subtype expressed in the sinoatrial node (SAN), a tissue composed of specialized pacemaker cells responsible for generating the intrinsic heartbeat. More than 40 years ago, the If current was first discovered in rabbit SAN tissue. Along with this discovery, a theory was proposed that cyclic adenosine monophosphate–dependent modulation of If mediates heart rate regulation by the autonomic nervous system—a process called chronotropic effect. However, up to the present day, this classical theory could not be reliably validated. Recently, new concepts emerged confirming that HCN4 channels indeed play an important role in heart rate regulation. However, the cellular mechanism by which HCN4 controls heart rate turned out to be completely different than originally postulated. Here, we review the latest findings regarding the physiological role of HCN4 in the SAN. We describe a newly discovered mechanism underlying heart rate regulation by HCN4 at the tissue and single cell levels, and we discuss these observations in the context of results from previously studied HCN4 mouse models.
Collapse
|
38
|
Ahrari S, Ozturk TN, D'Avanzo N. ION BEHAVIOUR IN THE SELECTIVITY FILTER OF HCN1 CHANNELS. Biophys J 2022; 121:2206-2218. [PMID: 35474263 DOI: 10.1016/j.bpj.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/20/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) are responsible for the generation of pacemaker currents (If or Ih) in cardiac and neuronal cells. Despite the overall structural similarity to voltage-gated potassium (Kv) channels, HCNs show much lower selectivity for K+ over Na+ ions. This increased permeability to Na+ is critical to their role in membrane depolarization. HCNs can also select between Na+ and Li+ ions. Here we investigate the unique ion selectivity properties of HCNs using molecular dynamics simulations. Our simulations suggest that the HCN1 pore is flexible and dilated compared to Kv channels with only one stable ion binding site within the selectivity filter. We also observe that ion coordination and hydration differ within the HCN1 selectivity filter compared to those in Kv and CNG channels. Additionally, the C358T mutation further stabilizes the symmetry of the binding site and provides a more fit space for ion coordination, particularly for Li+. STATEMENT OF SIGNIFICANCE: Hyperpolarization-activated cyclic-nucleotide gated (HCN) channels represent the molecular correlate of the currents If or Ih in cardiomyocytes and neurons. Here we study the unique low conductance and semi-selective properties of HCNs. The conductance and selectivity mechanisms of ion channels are tightly associated with their physiological role and contribute to the specific properties of the excitable cells in which they are expressed.
Collapse
Affiliation(s)
- Sajjad Ahrari
- Département de pharmacologie et physiologie, Université de Montréal, 2960 Chemin de la Tour, Montréal, Canada, H3T 1J4
| | - Tugba N Ozturk
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 223 McDonnell Sciences Building, St. Louis, US, 63110; Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20814
| | - Nazzareno D'Avanzo
- Département de pharmacologie et physiologie, Université de Montréal, 2960 Chemin de la Tour, Montréal, Canada, H3T 1J4.
| |
Collapse
|
39
|
Bauer D, Wissmann J, Moroni A, Thiel G, Hamacher K. Weak Cation Selectivity in HCN Channels Results From K +-Mediated Release of Na + From Selectivity Filter Binding Sites. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac019. [PMID: 36156894 PMCID: PMC9492253 DOI: 10.1093/function/zqac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate the pacemaker current which plays an important role in the timing of various biological processes like the heart beat. We used umbrella sampling to explore the potential of mean force for the conduction of potassium and sodium through the open HCN4 pore. Our data explain distinct functional features like low unitary conductance and weak selectivity as a result of high energetic barriers inside the selectivity filter of this channel. They exceed the 3-5 kJ/mol threshold which is presumed as maximal barrier for diffusion-limited conductance. Furthermore, simulations provide a thermodynamic explanation for the weak cation selectivity of HCN channels that contain only two ion binding sites in the selectivity filter (SF). We find that sodium ions bind more strongly to the SF than potassium and are easier released by binding of potassium than of another sodium. Hence ion transport and selectivity in HCN channels is not determined by the same mechanism as in potassium-selective channels; it rather relies on sodium as a weak blocker that can only be released by potassium.
Collapse
Affiliation(s)
- Daniel Bauer
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Jan Wissmann
- Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Kay Hamacher
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany,Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| |
Collapse
|
40
|
Claveras Cabezudo A, Feriel Khoualdi A, D’Avanzo N. Computational Prediction of Phosphoinositide Binding to Hyperpolarization-Activated Cyclic-Nucleotide Gated Channels. Front Physiol 2022; 13:859087. [PMID: 35399260 PMCID: PMC8990809 DOI: 10.3389/fphys.2022.859087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Protein-lipid interactions are key regulators of ion channel function. Numerous ion channels, including hyperpolarization-activated cyclic-nucleotide gated (HCN) channels have been shown to be regulated by phosphoinositides (PIPs), with important implications in cardiac and neuronal function. Specifically, PIPs have been shown to enhance HCN activation. Using computational approaches, we aim to identify potential binding sites for HCN1-PIP interactions. Computational docking and coarse-grained simulations indicate that PIP binding to HCN1 channels is not well coordinated, but rather occurs over a broad surface of charged residues primarily in the HCN-domain, S2 and S3 helices that can be loosely organized in 2 or 3 overlapping clusters. Thus, PIP-HCN1 interactions are more resembling of electrostatic interactions that occur in myristoylated alanine-rich C kinase substrate (MARCKS) proteins, than the specifically coordinated interactions that occur in pleckstrin homology domains (PH domains) or ion channels such as inward rectifier potassium (Kir) channels. Our results also indicate that phosphatidylinositol (PI) interactions with HCN1 are even lower affinity, explaining why unphosphorylated PI have no effect on HCN1 activation unlike phosphorylated PIPs.
Collapse
Affiliation(s)
- Ainara Claveras Cabezudo
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Asma Feriel Khoualdi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Nazzareno D’Avanzo
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
Ng LCT, Li YX, Van Petegem F, Accili EA. Altered cyclic nucleotide-binding and pore opening in a diseased human HCN4 channel. Biophys J 2022; 121:1166-1183. [PMID: 35219649 PMCID: PMC9034293 DOI: 10.1016/j.bpj.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 μM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
42
|
Hendriks K, Öster C, Lange A. Structural Plasticity of the Selectivity Filter in Cation Channels. Front Physiol 2021; 12:792958. [PMID: 34950061 PMCID: PMC8689586 DOI: 10.3389/fphys.2021.792958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.
Collapse
Affiliation(s)
- Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
43
|
Structural and functional approaches to studying cAMP regulation of HCN channels. Biochem Soc Trans 2021; 49:2573-2579. [PMID: 34812892 DOI: 10.1042/bst20210290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are primarily activated by voltage and further modulated by cAMP. While cAMP binding alone does not open the channel, its presence facilitates the action of voltage, increasing channel open probability. Functional results indicate that the membrane-based voltage sensor domain (VSD) communicates with the cytosolic cyclic nucleotide-binding domain (CNBD), and vice-versa. Yet, a mechanistic explanation on how this could occur in structural terms is still lacking. In this review, we will discuss the recent advancement in understanding the molecular mechanisms connecting the VSD with the CNBD in the tetrameric organization of HCN channels unveiled by the 3D structures of HCN1 and HCN4. Data show that the HCN domain transmits cAMP signal to the VSD by bridging the cytosolic to the membrane domains. Furthermore, a metal ion coordination site connects the C-linker to the S4-S5 linker in HCN4, further facilitating cAMP signal transmission to the VSD in this isoform.
Collapse
|
44
|
Yip D, Accili E. Kinetic modelling of voltage-dependent gating in funny channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:182-188. [PMID: 34310984 DOI: 10.1016/j.pbiomolbio.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Delbert Yip
- Department of Cellular and Physiological Sciences, University of British Columbia, Health Sciences Mall, V6T 1Z3, 2350, Canada
| | - Eric Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Health Sciences Mall, V6T 1Z3, 2350, Canada.
| |
Collapse
|