1
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Lu S, Zheng Z, Zhu C. Histone methyltransferase WHSC1 cooperate with YBX1 promote glioblastoma progression via regulating PLK1 expression. Cell Signal 2024; 124:111471. [PMID: 39406278 DOI: 10.1016/j.cellsig.2024.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Wolf-Hirschhorn syndrome candidate gene 1 (WHSC1), a histone methyltransferase, has been implicated in various tumor development processes by regulating target gene expression. However, the role of WHSC1 in glioblastoma remains unexplored. This study investigates the impact of WHSC1 in glioblastoma and its association with prognosis. Our findings reveal that WHSC1 is overexpressed in glioblastoma and correlates with poor patient outcomes. Functional assays demonstrate that the reduction of WHSC1 significantly impairs cell proliferation and tumorigenicity. Mechanistically, WHSC1 modulates PLK1 expression by binding to its promoter region, leading to the activation of the PLK1-AKT pathway, and regulating H3K36 dimethylation levels. Furthermore, YBX1 can cooperate with WHSC1 to activate PLK1 transcription. These results shed light on the potential significance of WHSC1 in glioblastoma and offer a promising avenue for future therapeutic approaches targeting this molecule in glioblastoma treatment.
Collapse
Affiliation(s)
- Shuaijun Lu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Zhibo Zheng
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Changling Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
3
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Genome Biol 2024; 25:263. [PMID: 39390582 PMCID: PMC11465688 DOI: 10.1186/s13059-024-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development and disease, how the molecular agents collectively shape the H3K36me landscape is unclear. RESULTS We use mouse mesenchymal stem cells to perturb the H3K36me methyltransferases (K36MTs) and infer the activities of the five most prominent enzymes: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it may also deposit H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other (K36MTs) prime gene bodies with lower methylation states ahead of transcription. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. CONCLUSIONS Within genes, SETD2 primarily deposits H3K36me3, while the other K36MTs deposit H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1 > NSD2 > NSD3 > ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
Affiliation(s)
- Gerry A Shipman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Reinnier Padilla
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Francisca N Vitorino
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joanna M Gongora
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A Garcia
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
4
|
Zhou Y, Peng X, Fang C, Peng X, Tang J, Wang Z, Long Y, Chen J, Peng Y, Zhang Z, Zhou Y, Tang J, Liao J, Xiao D, Tao Y, Shi Y, Liu S. Histones Methyltransferase NSD3 Inhibits Lung Adenocarcinoma Glycolysis Through Interacting with PPP1CB to Decrease STAT3 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400381. [PMID: 39119928 PMCID: PMC11481231 DOI: 10.1002/advs.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Histones methyltransferase NSD3 targeting H3K36 is frequently disordered and mutant in various cancers, while the function of NSD3 during cancer initiation and progression remains unclear. In this study, it is proved that downregulated level of NSD3 is linked to clinical features and poor survival in lung adenocarcinoma. In vivo, NSD3 inhibited the proliferation, immigration, and invasion ability of lung adenocarcinoma. Meanwhile, NSD3 suppressed glycolysis by inhibiting HK2 translation, transcription, glucose uptake, and lactate production in lung adenocarcinoma. Mechanistically, as an intermediary, NSD3 binds to PPP1CB and p-STAT3 in protein levels, thus forming a trimer to dephosphorylate the level of p-STAT3 by PPP1CB, leading to the suppression of HK2 transcription. Interestingly, the phosphorylation function of PPP1CB is related to the concentration of carbon dioxide and pH value in the culture environment. Together, this study revealed the critical non-epigenetic role of NSD3 in the regulation of STAT3-dependent glycolysis, providing a piece of compelling evidence for targeting the NSD3/PPP1CB/p-STAT3 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yanling Zhou
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersInstitue of Medical SciencesXiangya Hospital, Central South UniversityChangshaHunan410008China
- Department of HematologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Xintong Peng
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Cheng Fang
- Department of Cardiac SurgeryXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Xin Peng
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Jianing Tang
- Department of Liver SurgeryXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Zuli Wang
- Center for Tissue Engineering and Stem Cell ResearchGuizhou Medical UniversityGuiyangGuizhou561113China
| | - Yao Long
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Jielin Chen
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Yuanhao Peng
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Zewen Zhang
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Yanmin Zhou
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersInstitue of Medical SciencesXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Jun Tang
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Jingzhong Liao
- Department of Laboratory MedicineXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Desheng Xiao
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunan410028China
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersInstitue of Medical SciencesXiangya Hospital, Central South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunan410008China
| |
Collapse
|
5
|
Wu D, Zhou J, Song L, Zheng Q, Wang T, Ren Z, Huang Y, Liu S, Liu L. A multi-level investigation of the genetic relationship between gastroesophageal reflux disease and lung cancer. Transl Lung Cancer Res 2024; 13:2373-2387. [PMID: 39430334 PMCID: PMC11484728 DOI: 10.21037/tlcr-24-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Background Observational studies have revealed a potential association between gastroesophageal reflux disease (GERD) and lung cancer (LC), but the genetic role in their comorbidity have not been fully elucidated. This study aimed to comprehensively dissect the genetic link underlying GERD and LC. Methods Using large-scale genome-wide association study (GWAS) data, we investigated shared genetic architecture between GERD and LC. Our analyses encompassed genetic correlation, cross-trait meta-analysis, transcriptome-wide association studies (TWASs), and the evaluation of the causality though a bidirectional Mendelian randomization (MR) analysis with sufficient sensitivities. Results We identified a significant genome-wide genetic correlation between GERD and overall LC (rg =0.33, P=1.58×10-14), as well as across other subtype-specific LC (rg ranging from 0.19 to 0.39). After separating the whole genome into approximately 2,353 independent regions, 5 specific regions demonstrated significant local genetic correlation, with most significant region located at 9q33.3. Cross-trait meta-analysis revealed 22 pleiotropic loci between GERD and LC, including 3 novel loci (rs537160, rs10156445, and rs17391694). TWASs discovered a total of 49 genes shared in multiple tissues, such as lung tissues, esophagus muscularis, esophagus mucosa, and esophagus gastroesophageal junction. MR analysis suggested a significantly causal relationship between GERD and overall LC [odds ratio (OR) =1.34, 95% confidence interval (CI): 1.19-1.51], as well as other subtype-specific LC (OR ranging from 1.25 to 1.76). No evidence supports a significant causal effect of LC on GERD. Conclusions Our findings suggest intrinsic genetic correlation underlying GERD and LC, which provides valuable insights for screening and management of LC in individuals with GERD.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quan Zheng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengyong Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhizhen Ren
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchen Huang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Shuqiao Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Hausmann H, Cai Q, Zeng N. Quantification of biomass availability for wood harvesting and storage in the continental United States with a carbon cycle model. CARBON BALANCE AND MANAGEMENT 2024; 19:34. [PMID: 39342000 PMCID: PMC11439228 DOI: 10.1186/s13021-024-00270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/28/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Wood Harvesting and Storage (WHS) is a form of Biomass Carbon Removal and Storage (BiCRS) that utilizes a combined natural and engineered process to harvest woody biomass and put it into long term storage, most frequently in the form of subterranean burial. This paper aims to quantify the availability of woody biomass for the purposes of WHS in the continental United States using a carbon cycle modeling approach. Using a regional version of the VEGAS terrestrial carbon cycle model at 10 km resolution, this paper calculates the annual woody net primary production in the continental United States. It then applies a series of constraints to exclude woody biomass that is unavailable for WHS. These constraints include fine woody biomass, current land use, current wood utilization, land conservation, and topographical limitations. These results were then split into state by state and regional totals. RESULTS In total, the model projects the continental United States could produce 1,274 MtCO2e (CO2 equivalent) worth of coarse woody biomass annually in a scenario with no anthropogenic land use or constraints. In a scenario with anthropogenic land use and constraints on wood availability, the model projects that 415 MtCO2e of coarse woody biomass is available for WHS annually. This is enough to offset 8.5% of the United States' 2020 greenhouse gas emissions. Of this potential, 20 MtCO2e is from the Pacific region, 77 MtCO2e is from the Western Interior, 91 MtCO2e is from the Northeast region, and 228 MtCO2e is from the Southeast region. CONCLUSION There is enough coarse woody biomass available in the continental United States to make WHS a viable form of carbon removal and storage in the country. There is coarse woody biomass available across the continental United States. All four primary regions analyzed have enough coarse woody biomass available to justify investment in WHS projects.
Collapse
Affiliation(s)
- Henry Hausmann
- Department of Atmospheric and Oceanic Science and Earth Systems Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Qixiang Cai
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Ning Zeng
- Department of Atmospheric and Oceanic Science and Earth Systems Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
7
|
Zhang Y, Qiao Y, Li Z, Liu D, Jin Q, Guo J, Li X, Chen L, Liu L, Peng L. Intestinal NSD2 Aggravates Nonalcoholic Steatohepatitis Through Histone Modifications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402551. [PMID: 38923875 PMCID: PMC11434126 DOI: 10.1002/advs.202402551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Mounting clinical evidence suggests that a comprised intestinal barrier contributes to the progression of nonalcoholic steatohepatitis (NASH); nevertheless, the precise mechanism remains elusive. This study unveils a significant upregulation of nuclear receptor-binding SET domain protein 2 (NSD2) in the intestines of obese humans and mice subjected to a high-fat cholesterol diet (HFCD). Intestine-specific NSD2 knockout attenuated the progression of intestinal barrier impairment and NASH, whereas NSD2 overexpression exacerbated this progression. Mechanistically, NSD2 directly regulates the transcriptional activation of Ern1 by demethylating histone H3 at lysine 36 (H3K36me2), thus activating the ERN1-JNK axis to intensify intestinal barrier impairment and subsequently foster NASH progression. These findings elucidate the crucial role of NSD2-mediated H3K36me2 in intestinal barrier impairment, suggesting that targeting intestinal NSD2 can represent a novel therapeutic approach for NASH.
Collapse
Affiliation(s)
- Yijia Zhang
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Zecheng Li
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Donghai Liu
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Qi Jin
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Jing Guo
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Xin Li
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Long Chen
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lihong Liu
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Liang Peng
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| |
Collapse
|
8
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
9
|
Feng W, Niu N, Lu P, Chen Z, Rao H, Zhang W, Ma C, Liu C, Xu Y, Gao W, Xue J, Li L. Multilevel Regulation of NF-κB Signaling by NSD2 Suppresses Kras-Driven Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309387. [PMID: 38889281 PMCID: PMC11321637 DOI: 10.1002/advs.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer with a dismal overall prognosis. NSD2 is an H3K36-specific di-methyltransferase that has been reported to play a crucial role in promoting tumorigenesis. Here, the study demonstrates that NSD2 acts as a putative tumor suppressor in Kras-driven pancreatic tumorigenesis. NSD2 restrains the mice from inflammation and Kras-induced ductal metaplasia, while NSD2 loss facilitates pancreatic tumorigenesis. Mechanistically, NSD2-mediated H3K36me2 promotes the expression of IκBα, which inhibits the phosphorylation of p65 and NF-κB nuclear translocation. More importantly, NSD2 interacts with the DNA binding domain of p65, attenuating NF-κB transcriptional activity. Furthermore, inhibition of NF-κB signaling relieves the symptoms of Nsd2-deficient mice and sensitizes Nsd2-null PDAC to gemcitabine. Clinically, NSD2 expression decreased in PDAC patients and negatively correlated to nuclear p65 expression. Together, the study reveals the important tumor suppressor role of NSD2 and multiple mechanisms by which NSD2 suppresses both p65 phosphorylation and downstream transcriptional activity during pancreatic tumorigenesis. This study opens therapeutic opportunities for PDAC patients with NSD2 low/loss by combined treatment with gemcitabine and NF-κBi.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Zhuo Chen
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
10
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
11
|
Nie DY, Tabor JR, Li J, Kutera M, St-Germain J, Hanley RP, Wolf E, Paulakonis E, Kenney TMG, Duan S, Shrestha S, Owens DDG, Maitland MER, Pon A, Szewczyk M, Lamberto AJ, Menes M, Li F, Penn LZ, Barsyte-Lovejoy D, Brown NG, Barsotti AM, Stamford AW, Collins JL, Wilson DJ, Raught B, Licht JD, James LI, Arrowsmith CH. Recruitment of FBXO22 for targeted degradation of NSD2. Nat Chem Biol 2024:10.1038/s41589-024-01660-y. [PMID: 38965384 DOI: 10.1038/s41589-024-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.
Collapse
Affiliation(s)
- David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John R Tabor
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianping Li
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Kutera
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- C4 Therapeutics, Watertown, MA, USA
| | - Esther Wolf
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Ethan Paulakonis
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Tristan M G Kenney
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shili Duan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suman Shrestha
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Amphista Therapeutics, Cambridge, UK
| | | | - Ailing Pon
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Menes
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony M Barsotti
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Andrew W Stamford
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Jon L Collins
- Office of the Vice Chancellor for Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Weirich S, Kusevic D, Schnee P, Reiter J, Pleiss J, Jeltsch A. Discovery of NSD2 non-histone substrates and design of a super-substrate. Commun Biol 2024; 7:707. [PMID: 38851815 PMCID: PMC11162472 DOI: 10.1038/s42003-024-06395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
The human protein lysine methyltransferase NSD2 catalyzes dimethylation at H3K36. It has very important roles in development and disease but many mechanistic features and its full spectrum of substrate proteins are unclear. Using peptide SPOT array methylation assays, we investigate the substrate sequence specificity of NSD2 and discover strong readout of residues between G33 (-3) and P38 (+2) on H3K36. Unexpectedly, we observe that amino acid residues different from natural ones in H3K36 are preferred at some positions. Combining four preferred residues led to the development of a super-substrate which is methylated much faster by NSD2 at peptide and protein level. Molecular dynamics simulations demonstrate that this activity increase is caused by distinct hyperactive conformations of the enzyme-peptide complex. To investigate the substrate spectrum of NSD2, we conducted a proteome wide search for nuclear proteins matching the specificity profile and discovered 22 peptide substrates of NSD2. In protein methylation studies, we identify K1033 of ATRX and K819 of FANCM as NSD2 methylation sites and also demonstrate their methylation in human cells. Both these proteins have important roles in DNA repair strengthening the connection of NSD2 and H3K36 methylation to DNA repair.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jessica Reiter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
13
|
Wirth M, Schneider G. A Hypoxia-Epigenetics Axis Drives EMT in Pancreatic Cancer. Cancer Res 2024; 84:1739-1741. [PMID: 38831749 DOI: 10.1158/0008-5472.can-23-3578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 06/05/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a classical cellular plasticity process induced by various cell-intrinsic and -extrinsic triggers. Although prominent factors, such as TGFβ, mediate EMT via well-characterized pathways, alternative avenues are less well understood. Transcriptomic subtyping of pancreatic ductal adenocarcinoma (PDAC) has demonstrated that basal-like PDACs enrich a mesenchymal-like expression program, emphasizing the relevance of EMT in the disease. In this issue of Cancer Research, Brown and colleagues demonstrate the tight connection of EMT to hypoxia. Through a detailed mechanistic analysis, the authors deciphered that hypoxia-induced signals are integrated by the histone H3 lysine 36 di-methylation (H3K36me2) mark. On the one hand, hypoxia decreased activity of the H3K36me2 eraser KDM2A, while on the other hand promoting stabilization of the H3K36me2 writer NSD2. Hypoxia diminished the expression of a set of serine-threonine phosphatases, subsequently resulting in SRC kinase family-dependent activation of canonical MEK, ERK, and JNK signaling to impinge on NSD2 expression. In addition, reduced expression of the protein phosphatase PP2Cδ was linked to increased NSD2 protein expression. These discoveries illuminate the close relationship of hypoxia signaling to the epigenetic machinery and cellular plasticity processes. See related article by Brown et al., p. 1764.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Max Delbrück Center, Berlin, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Chen R, Zhao MJ, Li YM, Liu AH, Wang RX, Mei YC, Chen X, Du HN. Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1089-1105. [PMID: 38842635 DOI: 10.1007/s11427-024-2543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 06/07/2024]
Abstract
Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
Collapse
Affiliation(s)
- Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ao-Hui Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ru-Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Chao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Liu L, Parolia A, Liu Y, Hou C, He T, Qiao Y, Eyunni S, Luo J, Li C, Wang Y, Zhou F, Huang W, Ren X, Wang Z, Chinnaiyan AM, Ding K. Discovery of LLC0424 as a Potent and Selective in Vivo NSD2 PROTAC Degrader. J Med Chem 2024; 67:6938-6951. [PMID: 38687638 PMCID: PMC11094793 DOI: 10.1021/acs.jmedchem.3c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.
Collapse
Affiliation(s)
- Lianchao Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Abhijit Parolia
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yihan Liu
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Cancer
Biology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caiyun Hou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Tongchen He
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanyuan Qiao
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sanjana Eyunni
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Molecular
and Cellular Pathology Program, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jie Luo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chungen Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Yongxing Wang
- Livzon
Research Institute, Livzon Pharmaceutical
Group Inc., no. 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Fengtao Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Xiaomei Ren
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Zhen Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Hangzhou Institute
of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
16
|
Chen D, Zeng S, Qiu H, Yang M, Lin X, Lv X, Li P, Weng S, Kou S, Luo K, Liu Z, Yi Y, Liu H. Circ-FOXO3 inhibits triple-negative breast cancer growth and metastasis via regulating WHSC1-H3K36me2-Zeb2 axis. Cell Signal 2024; 117:111079. [PMID: 38341124 DOI: 10.1016/j.cellsig.2024.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Circular RNAs (circRNAs), a subclass of non-coding RNAs characterized by covalently closed continuous loops, play a key role in tumorigenesis and aggressiveness. However, the potential molecular mechanism of circRNAs in triple-negative breast cancer (TNBC) remains largely unknown. Exploring their roles and mechanisms in TNBC progression may help identify new diagnostic markers and therapeutic targets. In this study, we found that circ-FOXO3 was dramatically downregulated in TNBC tissues and blood samples from patients with TNBC. Notably, low circ-FOXO3 expression in TNBC tissues and bloods was associated with lymph node metastasis and unfavorable outcomes in patients with TNBC. Overexpression of circ-FOXO3 significantly inhibited the growth, invasion, and metastasis of TNBC cells both in vitro and in vivo. Moreover, we demonstrated that circ-FOXO3 was predominantly expressed in the cytoplasm and directly interacted with Wolf-Hirschhorn syndrome candidate 1 (WHSC1), thereby inhibiting WHSC1 nuclear localization and activity, resulting in the inhibition of H3K36me2 modifications at the Zeb2 promoter, ultimately inhibiting Zeb2 expression and halting TNBC growth and metastasis. Taken together, these results reveal the tumor-suppressive functions of circ-FOXO3 in inhibiting WHSC1-mediated H3K36me2 modification of Zeb2, suggesting that circ-FOXO3 could serve as a potential novel predictive prognostic biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Danyang Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Shanshan Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Huisi Qiu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Mingqiang Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Xin Lin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Xinwu Lv
- School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pan Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Shaojuan Weng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Siyue Kou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Kai Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Zongcai Liu
- Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yanmei Yi
- School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
He L, Cao Y, Sun L. NSD family proteins: Rising stars as therapeutic targets. CELL INSIGHT 2024; 3:100151. [PMID: 38371593 PMCID: PMC10869250 DOI: 10.1016/j.cellin.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Epigenetic modifications, including DNA methylation and histone post-translational modifications, intricately regulate gene expression patterns by influencing DNA accessibility and chromatin structure in higher organisms. These modifications are heritable, are independent of primary DNA sequences, undergo dynamic changes during development and differentiation, and are frequently disrupted in human diseases. The reversibility of epigenetic modifications makes them promising targets for therapeutic intervention and drugs targeting epigenetic regulators (e.g., tazemetostat, targeting the H3K27 methyltransferase EZH2) have been applied in clinical therapy for multiple cancers. The NSD family of H3K36 methyltransferase enzymes-including NSD1 (KMT3B), NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1)-are now receiving drug development attention, with the exciting advent of an NSD2 inhibitor (KTX-1001) advancing to Phase I clinical trials for relapsed or refractory multiple myeloma. NSD proteins recognize and catalyze methylation of histone lysine marks, thereby regulating chromatin integrity and gene expression. Multiple studies have implicated NSD proteins in human disease, noting impacts from translocations, aberrant expression, and various dysfunctional somatic mutations. Here, we review the biological functions of NSD proteins, epigenetic cooperation related to NSD proteins, and the accumulating evidence linking these proteins to developmental disorders and tumorigenesis, while additionally considering prospects for the development of innovative epigenetic therapies.
Collapse
Affiliation(s)
- Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Yiping Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
18
|
Piao L, Gao Y, Xu X, Su Y, Wang YD, Zhou J, Gao Y, Fang J, Li Q, Chang S, Kong R. Discovery of potent small molecule inhibitors of histone lysine methyltransferase NSDs. Eur J Med Chem 2024; 268:116264. [PMID: 38412693 DOI: 10.1016/j.ejmech.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Nuclear receptor binding SET domain (NSD) proteins are a class of histone lysine methyltransferases and implicated in multiple cancer types with aberrant expression and involvement of cancer related signaling pathways. In this study, a series of small-molecule compounds including compound 2 and 3 are identified against the SET domain of NSDs through structure-based virtual screening. Our lead compound 3 exhibits potent inhibitory activities in vitro towards the NSD2-SET and NSD3-SET with an IC50 of 0.81 μM and 0.84 μM, respectively, and efficiently inhibits histone H3 lysine 36 dimethylation and decreases the expression of NSDs-targeted genes in non-small cell lung cancer cells at 100 nM. Compound 3 suppresses cell proliferation and reduces the clonogenicity in H460 and H1299 non-small cell lung cancer cells, and induces s-phase cell cycle arrest and apoptosis. These data establish our compounds as a valuable tool-kit for the study of the biological roles of NSDs in cancer.
Collapse
Affiliation(s)
- Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | - Ying Gao
- Primary Biotechnology Co., Ltd., Changzhou, 213125, China
| | - Xiaoshuang Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | - Yangyang Su
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | | | - Jie Zhou
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Yang Gao
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Jin Fang
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Qihui Li
- Primary Biotechnology Co., Ltd., Changzhou, 213125, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China.
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China.
| |
Collapse
|
19
|
Li M, Chen H, Yang X, Zhang W, Ma C, Wang Q, Wang X, Gao R. Conditional knockout of the NSD2 gene in mouse intestinal epithelial cells inhibits colorectal cancer progression. Animal Model Exp Med 2024. [PMID: 38400589 DOI: 10.1002/ame2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Nuclear receptor-binding SET domain 2 (NSD2) is a histone methyltransferase, that catalyzes dimethylation of lysine 36 of histone 3 (H3K36me2) and is associated with active transcription of a series of genes. NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prognosis in several types of tumors. METHODS We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells. We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer. The development of colorectal tumors were investigated using post-necropsy quantification, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with wild-type (WT) control mice, NSD2fl/fl -Vil1-Cre mice exhibited significantly decreased tumor numbers, histopathological changes, and cytokine expression in colorectal tumors. CONCLUSIONS Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Hanxue Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chengyan Ma
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Qinghong Wang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xinpei Wang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
20
|
Caeiro LD, Nakata Y, Borges RL, Zha M, Garcia-Martinez L, Bañuelos CP, Stransky S, Liu T, Chan HL, Brabson J, Domínguez D, Zhang Y, Lewis PW, Aznar Benitah S, Cimmino L, Bilbao D, Sidoli S, Wang Z, Verdun RE, Morey L. Methylation of histone H3 lysine 36 is a barrier for therapeutic interventions of head and neck squamous cell carcinoma. Genes Dev 2024; 38:46-69. [PMID: 38286657 PMCID: PMC10903949 DOI: 10.1101/gad.351408.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.
Collapse
Affiliation(s)
- Lucas D Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Mengsheng Zha
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Carolina P Bañuelos
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Tong Liu
- Department of Computer Science, University of Miami, Coral Gables, Florida 33124, USA
| | - Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - John Brabson
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, Florida 33124, USA
| | - Ramiro E Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA;
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Healthcare System, Miami, Florida 33125, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA;
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
21
|
Zhang J, Xie W, Ni B, Li Z, Feng D, Zhang Y, Han Q, Zhou H, Gu M, Tan R. NSD2 modulates Drp1-mediated mitochondrial fission in chronic renal allograft interstitial fibrosis by methylating STAT1. Pharmacol Res 2024; 200:107051. [PMID: 38190956 DOI: 10.1016/j.phrs.2023.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Ni
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dengyuan Feng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yao Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Qianguang Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
22
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
23
|
Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol 2024; 14:1260276. [PMID: 38264526 PMCID: PMC10803549 DOI: 10.3389/fphar.2023.1260276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
Collapse
Affiliation(s)
| | | | | | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
24
|
Jiao W, Hao J, Liu JM, Gao WN, Zhao JJ, Li YJ. Mesenchymal stem cells-derived extracellular vesicle-incorporated H19 attenuates cardiac remodeling in rats with heart failure. Kaohsiung J Med Sci 2024; 40:46-62. [PMID: 37885317 DOI: 10.1002/kjm2.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac remodeling is manifested by hypertrophy and apoptosis of cardiomyocytes, resulting in the progression of cardiovascular diseases. Long noncoding RNAs (lncRNAs) serve as modifiers of cardiac remodeling. In this study, we aimed to explore the molecular mechanism of H19 shuttled by mesenchymal stem cells (MSC)-derived extracellular vesicles (EV) in cardiac remodeling upon heart failure (HF). Using the GEO database, H19, microRNA (miR)-29b-3p, and CDC42 were screened out as differentially expressed biomolecules in HF. H19 and CDC42 were elevated, and miR-29b-3p was decreased after MSC-EV treatment in rats subjected to ligation of the coronary artery. MSC-EV alleviated myocardial injury in rats with HF. H19 downregulation exacerbated myocardial injury, while miR-29b-3p inhibitor alleviated myocardial injury. By contrast, CDC42 downregulation aggravated the myocardial injury again. PI3K/AKT pathway was activated by MSC-EV. These findings provide insights into how H19 shuttled by EV mitigates cardiac remodeling through a competitive endogenous RNA network regarding miR-29b-3p and CDC42.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jie Hao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jin-Ming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Wei-Nian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jia-Jia Zhao
- Graduate Academy of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yong-Jun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
25
|
Nie DY, Tabor JR, Li J, Kutera M, St-Germain J, Hanley RP, Wolf E, Paulakonis E, Kenney TMG, Duan S, Shrestha S, Owens DDG, Pon A, Szewczyk M, Lamberto AJ, Menes M, Li F, Barsyte-Lovejoy D, Brown NG, Barsotti AM, Stamford AW, Collins JL, Wilson DJ, Raught B, Licht JD, James LI, Arrowsmith CH. Recruitment of FBXO22 for Targeted Degradation of NSD2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564830. [PMID: 37961297 PMCID: PMC10635037 DOI: 10.1101/2023.11.01.564830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.
Collapse
|
26
|
Caeiro LD, Nakata Y, Borges RL, Garcia-Martinez L, Bañuelos CP, Stransky S, Chan HL, Brabson J, Domínguez D, Zhang Y, Lewis PW, Aznar-Benitah S, Cimmino L, Bilbao D, Sidoli S, Verdun RE, Morey L. Methylation of histone H3 lysine 36 is a barrier for therapeutic interventions of head and neck squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565847. [PMID: 38076924 PMCID: PMC10705544 DOI: 10.1101/2023.11.06.565847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rodrigo L. Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carolina P. Bañuelos
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John Brabson
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Salvador Aznar-Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
27
|
Feng K, Liu C, Wang W, Kong P, Tao Z, Liu W. Emerging proteins involved in castration‑resistant prostate cancer via the AR‑dependent and AR‑independent pathways (Review). Int J Oncol 2023; 63:127. [PMID: 37732538 PMCID: PMC10609492 DOI: 10.3892/ijo.2023.5575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Despite achieving optimal initial responses to androgen deprivation therapy, most patients with prostate cancer eventually progress to a poor prognosis state known as castration‑resistant prostate cancer (CRPC). Currently, there is a notable absence of reliable early warning biomarkers and effective treatment strategies for these patients. Although androgen receptor (AR)‑independent pathways have been discovered and acknowledged in recent years, the AR signaling pathway continues to play a pivotal role in the progression of CRPC. The present review focuses on newly identified proteins within human CRPC tissues. These proteins encompass both those involved in AR‑dependent and AR‑independent pathways. Specifically, the present review provides an in‑depth summary and analysis of the emerging proteins within AR bypass pathways. Furthermore, the significance of these proteins as potential biomarkers and therapeutic targets for treating CRPC is discussed. Therefore, the present review offers valuable theoretical insights and clinical perspectives to comprehensively enhance the understanding of CRPC.
Collapse
Affiliation(s)
- Kangle Feng
- Department of Blood Transfusion, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, P.R. China
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunhua Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weixi Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Piaoping Kong
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
28
|
Li X, Song D, Chen Y, Huang C, Liu A, Wu Q, She X, Li K, Wan K, Yu C, Qiu C, Liu L, Wang G, Xu F, Wang J, Hu J. NSD2 methylates AROS to promote SIRT1 activation and regulates fatty acid metabolism-mediated cancer radiotherapy. Cell Rep 2023; 42:113126. [PMID: 37756162 DOI: 10.1016/j.celrep.2023.113126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/05/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fatty acid metabolism plays a critical role in both tumorigenesis and cancer radiotherapy. However, the regulatory mechanism of fatty acid metabolism has not been fully elucidated. NSD2, a histone methyltransferase that catalyzes di-methylation of histone H3 at lysine 36, has been shown to play an essential role in tumorigenesis and cancer progression. Here, we show that NSD2 promotes fatty acid oxidation (FAO) by methylating AROS (active regulator of SIRT1) at lysine 27, facilitating the physical interaction between AROS and SIRT1. The mutation of lysine 27 to arginine weakens the interaction between AROS and SIRT1 and impairs AROS-SIRT1-mediated FAO. Additionally, we examine the effect of NSD2 inhibition on radiotherapy efficacy and find an enhanced effectiveness of radiotherapy. Together, our findings identify a NSD2-dependent methylation regulation pattern of the AROS-SIRT1 axis, suggesting that NSD2 inhibition may be a potential adjunct for tumor radiotherapy.
Collapse
Affiliation(s)
- Xun Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kairui Wan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.
| |
Collapse
|
29
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3 and ASH1L reveals their distinct contributions to H3K36 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559313. [PMID: 37905045 PMCID: PMC10614729 DOI: 10.1101/2023.09.27.559313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development, disease, and cancer, how the molecular agents collectively shape the H3K36me landscape is unclear. Results We use a mouse mesenchymal stem cell model to perturb the H3K36me deposition machinery and infer the activities of the five most prominent players: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it also deposits H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other H3K36 methyltransferases (K36MTs) prime gene bodies with lower methylation states ahead of transcription. Through a reductive approach, we uncover the distribution patterns of NSD3- and ASH1L-catalyzed H3K36me2. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. Conclusions Within genes, SETD2 deposits both H3K36me2/3, while the other K36MTs are capable of depositing H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1>NSD2>NSD3>ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
|
30
|
Al-Harthi S, Li H, Winkler A, Szczepski K, Deng J, Grembecka J, Cierpicki T, Jaremko Ł. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes. Structure 2023; 31:1200-1207.e5. [PMID: 37527654 DOI: 10.1016/j.str.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.
Collapse
Affiliation(s)
- Samah Al-Harthi
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hao Li
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jing Deng
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| | - Łukasz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
31
|
Dan J, Du Z, Zhang J, Chen T. The interplay between H3K36 methylation and DNA methylation in cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0234. [PMID: 37602556 PMCID: PMC10476472 DOI: 10.20892/j.issn.2095-3941.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zeling Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jinghong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston 77030, USA
| |
Collapse
|
32
|
Chen C, Shin JH, Fang Z, Brennan K, Horowitz NB, Pfaff KL, Welsh EL, Rodig SJ, Gevaert O, Gozani O, Uppaluri R, Sunwoo JB. Targeting KDM2A Enhances T-cell Infiltration in NSD1-Deficient Head and Neck Squamous Cell Carcinoma. Cancer Res 2023; 83:2645-2655. [PMID: 37311054 PMCID: PMC10526980 DOI: 10.1158/0008-5472.can-22-3114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
In head and neck squamous cell carcinoma (HNSCC), a significant proportion of tumors have inactivating mutations in the histone methyltransferase NSD1. In these tumors, NSD1 inactivation is a driver of T-cell exclusion from the tumor microenvironment (TME). A better understanding of the NSD1-mediated mechanism regulating infiltration of T cells into the TME could help identify approaches to overcome immunosuppression. Here, we demonstrated that NSD1 inactivation results in lower levels of H3K36 dimethylation and higher levels of H3K27 trimethylation, the latter being a known repressive histone mark enriched on the promoters of key T-cell chemokines CXCL9 and CXCL10. HNSCC with NSD1 mutations had lower levels of these chemokines and lacked responses to PD-1 immune checkpoint blockade. Inhibition of KDM2A, the primary lysine demethylase that is selective for H3K36, reversed the altered histone marks induced by NSD1 loss and restored T-cell infiltration into the TME. Importantly, KDM2A suppression decreased growth of NSD1-deficient tumors in immunocompetent, but not in immunodeficient, mice. Together, these data indicate that KDM2A is an immunotherapeutic target for overcoming immune exclusion in HNSCC. SIGNIFICANCE The altered epigenetic landscape of NSD1-deficient tumors confers sensitivity to inhibition of the histone-modifying enzyme KDM2A as an immunotherapeutic strategy to stimulate T-cell infiltration and suppress tumor growth.
Collapse
Affiliation(s)
- Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - June Ho Shin
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kevin Brennan
- Department of Medicine (Biomedical Informatics) and Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Nina B. Horowitz
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Emma L. Welsh
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Olivier Gevaert
- Department of Medicine (Biomedical Informatics) and Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Uppaluri
- Division of Otolaryngology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - John B. Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
33
|
Sun Z, Lin Y, Islam MT, Koche R, Hedehus L, Liu D, Huang C, Vierbuchen T, Sawyers CL, Helin K. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol Cell 2023; 83:2398-2416.e12. [PMID: 37402365 PMCID: PMC10529604 DOI: 10.1016/j.molcel.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.
Collapse
Affiliation(s)
- Zhen Sun
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Yuan Lin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohammed T Islam
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Hedehus
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark
| | - Dingyu Liu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chang Huang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kristian Helin
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
34
|
Li JJ, Vasciaveo A, Karagiannis D, Sun Z, Chen X, Socciarelli F, Frankenstein Z, Zou M, Pannellini T, Chen Y, Gardner K, Robinson BD, de Bono J, Abate-Shen C, Rubin MA, Loda M, Sawyers CL, Califano A, Lu C, Shen MM. NSD2 maintains lineage plasticity and castration-resistance in neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549585. [PMID: 37502956 PMCID: PMC10370123 DOI: 10.1101/2023.07.18.549585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.
Collapse
|
35
|
Khella MS, Schnee P, Weirich S, Bui T, Bröhm A, Bashtrykov P, Pleiss J, Jeltsch A. The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. J Biol Chem 2023:104796. [PMID: 37150325 DOI: 10.1016/j.jbc.2023.104796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to thee methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In molecular dynamics simulations, we determine key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Collapse
Affiliation(s)
- Mina S Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Tan Bui
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
36
|
Hanley RP, Nie DY, Tabor JR, Li F, Sobh A, Xu C, Barker NK, Dilworth D, Hajian T, Gibson E, Szewczyk MM, Brown PJ, Barsyte-Lovejoy D, Herring LE, Wang GG, Licht JD, Vedadi M, Arrowsmith CH, James LI. Discovery of a Potent and Selective Targeted NSD2 Degrader for the Reduction of H3K36me2. J Am Chem Soc 2023; 145:8176-8188. [PMID: 36976643 PMCID: PMC10116495 DOI: 10.1021/jacs.3c01421] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark. UNC8153 contains a simple warhead that confers proteasome-dependent degradation of NSD2 through a novel mechanism. Importantly, UNC8153-mediated reduction of H3K36me2 through the degradation of NSD2 results in the downregulation of pathological phenotypes in multiple myeloma cells including mild antiproliferative effects in MM1.S cells containing an activating point mutation and antiadhesive effects in KMS11 cells harboring the t(4;14) translocation that upregulates NSD2 expression.
Collapse
Affiliation(s)
- Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R Tabor
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Amin Sobh
- University of Florida Health Cancer Center, The University of Florida Cancer and Genetics Research Complex, Gainesville, Florida 32610, United States
| | - Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Natalie K Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Elisa Gibson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Jonathan D Licht
- University of Florida Health Cancer Center, The University of Florida Cancer and Genetics Research Complex, Gainesville, Florida 32610, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
38
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
39
|
Peng Z, Wang J, Guo J, Li X, Wang S, Xie Y, Jiang H, Wang Y, Wang M, Hu M, Li Q, Wang Y, Mi JQ, Liu Z. All-trans retinoic acid improves NSD2-mediated RARα phase separation and efficacy of anti-CD38 CAR T-cell therapy in multiple myeloma. J Immunother Cancer 2023; 11:jitc-2022-006325. [PMID: 36918219 PMCID: PMC10016253 DOI: 10.1136/jitc-2022-006325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immunotherapies targeting CD38 have demonstrated salient efficacy in relapsed/refractory multiple myeloma (MM). However, loss of CD38 antigen and outgrowth of CD38 negative plasma cells have emerged as a major obstacle in clinics. All-trans retinoic acid (ATRA) has been reported to upregulate CD38 expression, but the mechanism and adaptive genetic background remain unexplored. METHODS The efficacy of ATRA in upregulating CD38 expression in MM cells is evaluated by flow cytometry. The interaction between NSD2 and the RARα is analyzed by immunoprecipitation, and the nuclear condensation of RARα is evaluated under laser confocal microscope. A graft model of MM is established in NOD.Cg-PrkdcscidIl2rgtm1Wjl /SzJ mice, and the tumor burden is assessed by in vivo fluorescence imaging. RESULTS We report that ATRA upregulates MM cells CD38 in a non-linear manner, which is t(4;14) translocation dependent, and t(4;14) translocation-induced NSD2 shows positive correlation with ATRA-induced level of, but not with basal level of CD38 expression. Mechanistically, NSD2 interacts with the ATRA receptor, RARα, and protects it from degradation. Meanwhile, NSD2 enhances the nuclear condensation of RARα and modifies the histone H3 dimethylation at lysine 36 on CD38 promoter. Knockdown of NSD2 attenuates the sensitization of MM against ATRA induced CD38 upregulation. Translationally, ATRA is prone to augment the efficacy of anti-CD38 CAR T cells in NSD2high MM cells in vitro and in vivo. CONCLUSION This study elucidates a mechanism of ATRA in regulating CD38 expression and expands the clinical potential of ATRA in improving immunotherapies against CD38 in patients with MM.Cite Now.
Collapse
Affiliation(s)
- Ziyi Peng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Guo
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Sheng Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ying Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Mengqi Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qian Li
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yafei Wang
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jian-Qing Mi
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China .,Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Tang H, Yu A, Xing L, Chen X, Ding H, Yang H, Song Z, Shi Q, Geng M, Huang X, Zhang A. Structural Modification and Pharmacological Evaluation of Substituted Quinoline-5,8-diones as Potent NSD2 Inhibitors. J Med Chem 2023; 66:1634-1651. [PMID: 36642961 DOI: 10.1021/acs.jmedchem.2c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The histone lysine methyltransferase NSD2 is overexpressed, translocated, or mutated in multiple types of cancers and has emerged as an attractive therapeutic target. However, the development of small-molecule NSD2 inhibitors is still in its infancy, and selective and efficacious NSD2 inhibitors are highly desirable. Here, in view of the structural novelty of the reported NSD2 inhibitor DA3003-1, we conducted a comprehensive structural optimization based on the quinoline-5,8-dione scaffold. Compound 15a was identified possessing both high NSD2 inhibitory activity and potent anti-proliferative effects in the cell. Meanwhile, compound 15a has an excellent pharmacokinetic profile with high oral bioavailability. Further, this compound was found to display significant antitumor efficacy with desirable safety profile in the multiple myeloma xenograft mice models, thus warranting it as a promising candidate for further investigation.
Collapse
Affiliation(s)
- Hairong Tang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aisong Yu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xing
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyu Chen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaqian Ding
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Lingang Laboratory, Shanghai 200210,China
| | - Zilan Song
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Lingang Laboratory, Shanghai 200210,China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Lingang Laboratory, Shanghai 200210,China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Lingang Laboratory, Shanghai 200210,China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Zhao YY, Deng H, Rahman A, Xu XL, Qian P, Guo H. Computational Study of Methionine Methylation Process Catalyzed by SETD3. Interdiscip Sci 2022; 14:929-936. [PMID: 35419695 DOI: 10.1007/s12539-022-00516-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The SETD3 enzyme has been identified as the methyltransferase for the His73 methylation in β-actin, and such methylation plays an important role in regulating the actin's biochemical properties and fine-tuning the protein's cellular roles. Further studies have demonstrated that SETD3 may be able to methylase some other residues, including lysine and methionine, that substitute His73 in the β-actin peptide. The activity of SETD3 on the Met73 peptide is low without turnover. Interestingly, it has been shown that the N255V and N255A mutations of SETD3 can increase the activity by about 3-fold for the methionine methylation, while such mutations lead to a significant reduction of kcat for the His73 methylation. The detailed mechanism that leads to such increase of the activity for the Met73 methylation as a result of the mutations has not been understood. In this work, QM/MM molecular dynamics (MD) and potential of mean force (PMF) free energy simulations are undertaken for investigating structural, dynamic, and energetic properties involving the complex of SETD3 and Met73 peptide and to study the SETD3-catalyzed methionine methylation and the effects of the N255V mutation. It is demonstrated that the free energy barrier in the case of the methionine methylation in SETD3 is about 10 kcal/mol higher than that for the histidine methylation. Moreover, the free energy barrier for the methionine methylation in the N255V mutant is about 1 kcal/mol lower than that in the wild-type enzyme. These results agree with previous experimental observation. The origin of the free-energy barrier changes as a result of the H to M substitution on the β-actin peptide and the N255V mutation of SETD3 is discussed based on the data obtained from the simulations.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Hao Deng
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Adua Rahman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xiao-Long Xu
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian, 271018, People's Republic of China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, 271018, People's Republic of China.
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
42
|
Zhu LY, Yuan JB, Zhang L, He CX, Lin X, Xu B, Jin GH. Loss of MLL Induces Epigenetic Dysregulation of Rasgrf1 to Attenuate Kras-Driven Lung Tumorigenesis. Cancer Res 2022; 82:4153-4163. [PMID: 36098964 DOI: 10.1158/0008-5472.can-22-1475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Menin is necessary for the formation of the menin/mixed lineage leukemia (MLL) complex and is recruited directly to chromatin. Menin is an important tumor suppressor in several cancer types, including lung cancer. Here, we investigated the role of MLL in menin-regulated lung tumorigenesis. Ablation of MLL suppressed KrasG12D-induced lung tumorigenesis in a genetically engineered mouse model. MLL deficiency decreased histone H3 lysine 4 trimethylation (H3K4me3) and subsequently suppressed expression of the Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1) gene. Rasgrf1 was essential for the GTP-bound active state of Kras and the activation of Kras downstream pathways as well as their cancer-promoting activities. MI-3, a small-molecule inhibitor targeting MLL, specifically inhibited the growth of Kras-mutated lung cancer cells in vitro and in vivo with minimal effect on wild-type Kras lung cancer growth. Together, these results demonstrate a novel tumor promoter function of MLL in mutant Kras-induced lung tumorigenesis and further indicate that specific blockade of the MLL-Rasgrf1 pathway may be a potential therapeutic strategy for the treatment of tumors containing Kras mutations. SIGNIFICANCE Activation of mutant Kras is dependent on MLL-mediated epigenetic regulation of Rasgrf1, conferring sensitivity to small-molecule inhibition of MLL in Kras-driven lung cancer.
Collapse
Affiliation(s)
- Ling-Yu Zhu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jun-Bo Yuan
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Li Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Chun-Xiao He
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Xiao Lin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Bin Xu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Guang-Hui Jin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
43
|
Tumor-augmenting Effect of Histone Methyltransferase WHSC1 on Colorectal Cancer Via Epigenetic Upregulation of TACC3 and PI3K/Akt Activation. Arch Med Res 2022; 53:658-665. [DOI: 10.1016/j.arcmed.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
44
|
Rovers E, Liu L, Schapira M. ProxyBind: a Compendium of Binding Sites for Proximity-Induced Pharmacology. Comput Struct Biotechnol J 2022; 20:6163-6171. [PMID: 36420167 PMCID: PMC9674861 DOI: 10.1016/j.csbj.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Proximity-induced pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 236 kinases, 45 phosphatases, 37 deubiquitinases, 14 methyltransferases, 11 acetyltransferases, 13 glycosyltransferases, 4 deacetylases, 7 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential and reveals novel opportunities to pharmacologically rewire molecular circuitries. All data is available from the ProxyBind database at https://polymorph.sgc.utoronto.ca/proxybind/index.php.
Collapse
|
45
|
Azagra A, Cobaleda C. NSD2 as a Promising Target in Hematological Disorders. Int J Mol Sci 2022; 23:11075. [PMID: 36232375 PMCID: PMC9569587 DOI: 10.3390/ijms231911075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.
Collapse
Affiliation(s)
| | - César Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CSIC–Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
46
|
Li N, Yang H, Liu K, Zhou L, Huang Y, Cao D, Li Y, Sun Y, Yu A, Du Z, Yu F, Zhang Y, Wang B, Geng M, Li J, Xiong B, Xu S, Huang X, Liu T. Structure-Based Discovery of a Series of NSD2-PWWP1 Inhibitors. J Med Chem 2022; 65:9459-9477. [PMID: 35704853 DOI: 10.1021/acs.jmedchem.2c00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression, point mutations, or translocations of protein lysine methyltransferase NSD2 occur in many types of cancer cells. Therefore, it was recognized as onco-protein and considered as a promising anticancer drug target. NSD2 consists of multiple domains including a SET catalytic domain and two PWWP domains binding to methylated histone proteins. Here, we reported our efforts to develop a series of NSD2-PWWP1 inhibitors, and further structure-based optimization resulted in a potent inhibitor 38, which has high selectivity toward the NSD2-PWWP1 domain. The detailed biological evaluation revealed that compound 38 can bind to NSD2-PWWP1 and then affect the expression of genes regulated by NSD2. The current discovery will provide a useful chemical probe to the future research in understanding the specific regulation mode of NSD2 by PWWP1 recognition and pave the way to develop potential drugs targeting NSD2 protein.
Collapse
Affiliation(s)
- Na Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Hong Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ke Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201210, P. R. China
| | - Liwei Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuting Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Aisong Yu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201210, P. R. China
| | - Ying Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Bingyang Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Shilin Xu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Xun Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| |
Collapse
|
47
|
Wang Y, Han Y, Jin Y, He Q, Wang Z. The Advances in Epigenetics for Cancer Radiotherapy. Int J Mol Sci 2022; 23:ijms23105654. [PMID: 35628460 PMCID: PMC9145982 DOI: 10.3390/ijms23105654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is an important factor threatening human life and health; in recent years, its morbidity and mortality remain high and demosntrate an upward trend. It is of great significance to study its pathogenesis and targeted therapy. As the complex mechanisms of epigenetic modification has been increasingly discovered, they are more closely related to the occurrence and development of cancer. As a reversible response, epigenetic modification is of great significance for the improvement of classical therapeutic measures and the discovery of new therapeutic targets. It has become a research focusto explore the multi-level mechanisms of RNA, DNA, chromatin and proteins. As an important means of cancer treatment, radiotherapy has made great progress in technology, methods, means and targeted sensitization after years of rapid development, and even research on radiotherapy based on epigenetic modification is rampant. A series of epigenetic effects of radiation on DNA methylation, histone modification, chromosome remodeling, RNA modification and non-coding RNA during radiotherapy affects the therapeutic effects and prognosis. Starting from the epigenetic mechanism of tumorigenesis, this paper reviews the latest progress in the mechanism of interaction between epigenetic modification and cancer radiotherapy and briefly introduces the main types, mechanisms and applications of epigenetic modifiers used for radiotherapy sensitization in order to explore a more individual and dynamic approach of cancer treatment based on epigenetic mechanism. This study strives to make a modest contribution to the progress of human disease research.
Collapse
Affiliation(s)
| | | | | | - Qiang He
- Correspondence: (Q.H.); (Z.W.); Tel.: +86-431-85619443 (Z.W.)
| | - Zhicheng Wang
- Correspondence: (Q.H.); (Z.W.); Tel.: +86-431-85619443 (Z.W.)
| |
Collapse
|
48
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
49
|
The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors. Cell Mol Life Sci 2022; 79:285. [PMID: 35532818 PMCID: PMC9520630 DOI: 10.1007/s00018-022-04321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.
Collapse
|