1
|
Rezaei R, Boulton S, Ahmadi M, Petryk J, Da Silva M, Kooshki Zamani N, Singaravelu R, St-Laurent G, Daniel L, Sadeghipour A, Pelin A, Poutou J, Munoz Zuniga AI, Choy C, Gilchrist VH, Khalid Z, Austin B, Onsu KA, Marius R, Ameli Z, Mohammadi F, Mancinelli V, Wang E, Nik-Akhtar A, Alwithenani A, Panahi Arasi F, Ferguson SSG, Hobman TC, Alain T, Tai LH, Ilkow CS, Diallo JS, Bell JC, Azad T. Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses. Nat Biomed Eng 2024:10.1038/s41551-024-01259-7. [PMID: 39609558 DOI: 10.1038/s41551-024-01259-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/05/2024] [Indexed: 11/30/2024]
Abstract
Optimization of oncolytic viruses for therapeutic applications requires the strategic removal or mutagenesis of virulence genes alongside the insertion of transgenes that enhance viral replication, spread and immunogenicity. However, the complexity of many viral genomes and the labour-intensive nature of methods for the generation and isolation of recombinant viruses have hindered the development of therapeutic oncolytic viruses. Here we report an iterative strategy that exploits the preferential susceptibility of viruses to certain antibiotics to accelerate the engineering of the genomes of oncolytic viruses for the insertion of immunomodulatory cytokine transgenes, and the identification of dispensable genes with regard to replication of the recombinant oncolytic viruses in tumour cells. We applied the strategy by leveraging insertional mutagenesis via the Sleeping Beauty transposon system, combined with long-read nanopore sequencing, to generate libraries of herpes simplex virus type 1 and vaccinia virus, identifying stable transgene insertion sites and gene deletions that enhance the safety and efficacy of the viruses.
Collapse
Affiliation(s)
- Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Mahsa Ahmadi
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Miles Da Silva
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nika Kooshki Zamani
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabriel St-Laurent
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Adrian Pelin
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Abril Ixchel Munoz Zuniga
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Clarence Choy
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria H Gilchrist
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Zumama Khalid
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Zahra Ameli
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Fazel Mohammadi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Valeria Mancinelli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Wang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abolfazl Nik-Akhtar
- Ottawa Institute of Systems Biology and Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Akram Alwithenani
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fatemeh Panahi Arasi
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Faculty of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Taha Azad
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada.
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
2
|
Li L, Li X, Zhong H, Li M, Wan B, He W, Zhang Y, Du Y, Chen D, Zhang W, Ji P, Jiang D, Han S. VP3 protein of Senecavirus A promotes viral IRES-driven translation and attenuates innate immunity by specifically relocalizing hnRNPA2B1. J Virol 2024; 98:e0122724. [PMID: 39207136 PMCID: PMC11406996 DOI: 10.1128/jvi.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses deploy sophisticated strategies to hijack the host's translation machinery to favor viral protein synthesis and counteract innate cellular defenses. However, little is known about the mechanisms by which Senecavirus A (SVA) controls the host's translation. Using a series of sophisticated molecular cell manipulation techniques, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as an essential host factor involved in translation control in SVA-infected cells. It was also determined that the SVA structural protein, VP3, binds to and relocalizes hnRNPA2B1, which interferes with the host's protein synthesis machinery to establish a cellular environment that facilitates viral propagation via a two-pronged strategy: first, hnRNPA2B1 serves as a potent internal ribosome entry site (IRES) trans-acting factor, which is selectively co-opted to promote viral IRES-driven translation by supporting the assembly of translation initiation complexes. Second, a strong repression of host cell translation occurs in the context of the VP3-hnRNPA2B1 interaction, resulting in attenuation of the interferons response. This is the first study to demonstrate the interaction between SVA VP3 and hnRNPA2B1, and to characterize their key roles in manipulating translation. This novel dual mechanism, which regulates selective mRNA translation and immune evasion of virus-infected cells, highlights the VP3-hnRNPA2B1 complex as a potential target for the development of modified antiviral or oncolytic reagents. IMPORTANCE Viral reproduction is contingent on viral protein synthesis, which relies entirely on the host's translation machinery. As such, viruses often need to control the cellular translational apparatus to favor viral protein production and avoid host innate defenses. Senecavirus A (SVA) is an important virus, both as an emerging pathogen in the pork industry and as a potential oncolytic virus for neuroendocrine cancers. Here, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as a critical regulator of the translational landscape during SVA infection. This study supports a model whereby the VP3 protein of SVA efficiently subverts the host's protein synthesis machinery through its ability to bind to and relocalize hnRNPA2B1, not only selectively promoting viral internal ribosome entry site-driven translation but also resulting in global translation shutdown and immune evasion. Together, these data provide new insights into how the complex interactions between translation machinery, SVA, and innate immunity contribute to the pathogenicity of the SVA.
Collapse
Affiliation(s)
- Lu Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinwei Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhong
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mingyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Wenrui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengchao Ji
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Bialas K, Diaz-Griffero F. HIV-1-induced translocation of CPSF6 to biomolecular condensates. Trends Microbiol 2024; 32:781-790. [PMID: 38267295 PMCID: PMC11263504 DOI: 10.1016/j.tim.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cleavage and polyadenylation specificity factor subunit 6 (CPSF6, also known as CFIm68) is a 68 kDa component of the mammalian cleavage factor I (CFIm) complex that modulates mRNA alternative polyadenylation (APA) and determines 3' untranslated region (UTR) length, an important gene expression control mechanism. CPSF6 directly interacts with the HIV-1 core during infection, suggesting involvement in HIV-1 replication. Here, we review the contributions of CPSF6 to every stage of the HIV-1 replication cycle. Recently, several groups described the ability of HIV-1 infection to induce CPSF6 translocation to nuclear speckles, which are biomolecular condensates. We discuss the implications for CPSF6 localization in condensates and the potential role of condensate-localized CPSF6 in the ability of HIV-1 to control the protein expression pattern of the cell.
Collapse
Affiliation(s)
- Katarzyna Bialas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Jäger N, Pöhlmann S, Rodnina MV, Ayyub SA. Interferon-Stimulated Genes that Target Retrovirus Translation. Viruses 2024; 16:933. [PMID: 38932225 PMCID: PMC11209297 DOI: 10.3390/v16060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| |
Collapse
|
6
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Shang Z, Zhang S, Wang J, Zhou L, Zhang X, Billadeau DD, Yang P, Zhang L, Zhou F, Bai P, Jia D. TRIM25 predominately associates with anti-viral stress granules. Nat Commun 2024; 15:4127. [PMID: 38750080 PMCID: PMC11096359 DOI: 10.1038/s41467-024-48596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.
Collapse
Affiliation(s)
- Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215000, China
| | - Xinyue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou, 310024, 310030, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215000, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Gulyas L, Glaunsinger BA. The general transcription factor TFIIB is a target for transcriptome control during cellular stress and viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575933. [PMID: 38746429 PMCID: PMC11092454 DOI: 10.1101/2024.01.16.575933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Many stressors, including viral infection, induce a widespread suppression of cellular RNA polymerase II (RNAPII) transcription, yet the mechanisms underlying transcriptional repression are not well understood. Here we find that a crucial component of the RNA polymerase II holoenzyme, general transcription factor IIB (TFIIB), is targeted for post-translational turnover by two pathways, each of which contribute to its depletion during stress. Upon DNA damage, translational stress, apoptosis, or replication of the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), TFIIB is cleaved by activated caspase-3, leading to preferential downregulation of pro-survival genes. TFIIB is further targeted for rapid proteasome-mediated turnover by the E3 ubiquitin ligase TRIM28. KSHV counteracts proteasome-mediated turnover of TFIIB, thereby preserving a sufficient pool of TFIIB for transcription of viral genes. Thus, TFIIB may be a lynchpin for transcriptional outcomes during stress and a key target for nuclear replicating DNA viruses that rely on host transcriptional machinery. Significance Statement Transcription by RNA polymerase II (RNAPII) synthesizes all cellular protein-coding mRNA. Many cellular stressors and viral infections dampen RNAPII activity, though the processes underlying this are not fully understood. Here we describe a two-pronged degradation strategy by which cells respond to stress by depleting the abundance of the key RNAPII general transcription factor, TFIIB. We further demonstrate that an oncogenic human gammaherpesvirus antagonizes this process, retaining enough TFIIB to support its own robust viral transcription. Thus, modulation of RNAPII machinery plays a crucial role in dictating the outcome of cellular perturbation.
Collapse
|
9
|
Harioudh MK, Perez J, Chong Z, Nair S, So L, McCormick KD, Ghosh A, Shao L, Srivastava R, Soveg F, Ebert TS, Atianand MK, Hornung V, Savan R, Diamond MS, Sarkar SN. Oligoadenylate synthetase 1 displays dual antiviral mechanisms in driving translational shutdown and protecting interferon production. Immunity 2024; 57:446-461.e7. [PMID: 38423012 PMCID: PMC10939734 DOI: 10.1016/j.immuni.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNβ. This binding leads to the sequestration of IFNβ mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.
Collapse
Affiliation(s)
- Munesh K Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Zhenlu Chong
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharmila Nair
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA; Division of Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevin D McCormick
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Rashmi Srivastava
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Frank Soveg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas S Ebert
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Maninjay K Atianand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veit Hornung
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Karousis ED. The art of hijacking: how Nsp1 impacts host gene expression during coronaviral infections. Biochem Soc Trans 2024; 52:481-490. [PMID: 38385526 PMCID: PMC10903449 DOI: 10.1042/bst20231119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Non-structural protein 1 (Nsp1) is one of the first proteins produced during coronaviral infections. It plays a pivotal role in hijacking and rendering the host gene expression under the service of the virus. With a focus on SARS-CoV-2, this review presents how Nsp1 selectively inhibits host protein synthesis and induces mRNA degradation of host but not viral mRNAs and blocks nuclear mRNA export. The clinical implications of this protein are highlighted by showcasing the pathogenic role of Nsp1 through the repression of interferon expression pathways and the features of viral variants with mutations in the Nsp1 coding sequence. The ability of SARS-CoV-2 Nsp1 to hinder host immune responses at an early step, the absence of homology to any human proteins, and the availability of structural information render this viral protein an ideal drug target with therapeutic potential.
Collapse
Affiliation(s)
- Evangelos D. Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Zafirov D, Giovinazzo N, Lecampion C, Field B, Ducassou JN, Couté Y, Browning KS, Robaglia C, Gallois JL. Arabidopsis eIF4E1 protects the translational machinery during TuMV infection and restricts virus accumulation. PLoS Pathog 2023; 19:e1011417. [PMID: 37983287 PMCID: PMC10721207 DOI: 10.1371/journal.ppat.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/14/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.
Collapse
Affiliation(s)
- Delyan Zafirov
- GAFL, INRAE, Montfavet, France
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Cécile Lecampion
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Karen S. Browning
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | | | | |
Collapse
|
13
|
Aviner R, Lidsky PV, Xiao Y, Tasseto M, Zhang L, McAlpine PL, Elias J, Frydman J, Andino R. SARS-CoV-2 Nsp1 regulates translation start site fidelity to promote infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547902. [PMID: 37461541 PMCID: PMC10350044 DOI: 10.1101/2023.07.05.547902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A better mechanistic understanding of virus-host interactions can help reveal vulnerabilities and identify opportunities for therapeutic interventions. Of particular interest are essential interactions that enable production of viral proteins, as those could target an early step in the virus lifecycle. Here, we use subcellular proteomics, ribosome profiling analyses and reporter assays to detect changes in polysome composition and protein synthesis during SARS-CoV-2 (CoV2) infection. We identify specific translation factors and molecular chaperones whose inhibition impairs infectious particle production without major toxicity to the host. We find that CoV2 non-structural protein Nsp1 selectively enhances virus translation through functional interactions with initiation factor EIF1A. When EIF1A is depleted, more ribosomes initiate translation from an upstream CUG start codon, inhibiting translation of non-structural genes and reducing viral titers. Together, our work describes multiple dependencies of CoV2 on host biosynthetic networks and identifies druggable targets for potential antiviral development.
Collapse
Affiliation(s)
- Ranen Aviner
- These authors contributed equally
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Peter V Lidsky
- These authors contributed equally
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michel Tasseto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lichao Zhang
- Chan Zuckerberg Biohub - San Francisco, Stanford, CA 94305, USA
| | | | - Joshua Elias
- Chan Zuckerberg Biohub - San Francisco, Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Raul Andino
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|