1
|
De Rosa M, Barnes RP, Detwiler AC, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts. Nat Commun 2025; 16:893. [PMID: 39837827 DOI: 10.1038/s41467-024-55638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.
Collapse
Affiliation(s)
| | - Ryan P Barnes
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ariana C Detwiler
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Jiao C, Xie X, Hao C, Chen L, Xie Y, Garg V, Zhao L, Wang Z, Zhang Y, Li T, Fu J, Chitikineni A, Hou J, Liu H, Dwivedi G, Liu X, Jia J, Mao L, Wang X, Appels R, Varshney RK, Guo W, Zhang X. Pan-genome bridges wheat structural variations with habitat and breeding. Nature 2025; 637:384-393. [PMID: 39604736 DOI: 10.1038/s41586-024-08277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts1,2. Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.
Collapse
Affiliation(s)
- Chengzhi Jiao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Yuxin Xie
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vanika Garg
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Li Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yuqi Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Annapurna Chitikineni
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research, the University of Western Australia, Murdoch, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rudi Appels
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, La Trobe University, Bundoora, Victoria, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Maruta G, Maeoka H, Tsunoda T, Akiyoshi K, Takagi S, Shirasawa S, Ishikura S. RAD52-mediated repair of DNA double-stranded breaks at inactive centromeres leads to subsequent apoptotic cell death. Nucleic Acids Res 2024; 52:12961-12975. [PMID: 39360606 PMCID: PMC11602138 DOI: 10.1093/nar/gkae852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Centromeres, where the kinetochore complex binds, are susceptible to damages including DNA double-stranded breaks (DSBs). Here, we report the functional significance and the temporally and spatially distinct regulation of centromeric DSB repair via the three pathways of non-homologous end joining (NHEJ), homologous recombination (HR) and single-strand annealing (SSA). The SSA factor RAD52 is most frequently recruited to centromeric DSB sites compared with the HR factor RAD51 and the NHEJ factor DNA ligase IV (LIG4), indicating that SSA plays predominant roles in centromeric DSB repair. Upon centromeric DSB induction, LIG4 is recruited to both active centromeres, where kinetochore complex binds, and inactive centromeres. In contrast, RAD51 and RAD52 are recruited only to inactive centromeres. These results indicate that DSBs at active centromeres are repaired through NHEJ, whereas the three pathways of NHEJ, HR and SSA are involved in DSB repair at inactive centromeres. Furthermore, siRNA-mediated depletion of either LIG4 or RAD51 promotes cell death after centromeric DSB induction, whereas RAD52 depletion inhibits it, suggesting that HR and NHEJ are required for appropriate centromeric DSB repair, whereas SSA-mediated centromeric DSB repair leads to subsequent cell death. Thus, SSA-mediated DSB repair at inactive centromeres may cause centromere dysfunction through error-prone repair.
Collapse
Affiliation(s)
- Gen Maruta
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Department of Anesthesiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hisanori Maeoka
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Center for Advanced Molecular Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kozaburo Akiyoshi
- Department of Anesthesiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Satoshi Takagi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Center for Advanced Molecular Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Center for Advanced Molecular Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Leung CWB, Wall J, Esashi F. From rest to repair: Safeguarding genomic integrity in quiescent cells. DNA Repair (Amst) 2024; 142:103752. [PMID: 39167890 DOI: 10.1016/j.dnarep.2024.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Quiescence is an important non-pathological state in which cells pause cell cycle progression temporarily, sometimes for decades, until they receive appropriate proliferative stimuli. Quiescent cells make up a significant proportion of the body, and maintaining genomic integrity during quiescence is crucial for tissue structure and function. While cells in quiescence are spared from DNA damage associated with DNA replication or mitosis, they are still exposed to various sources of endogenous DNA damage, including those induced by normal transcription and metabolism. As such, it is vital that cells retain their capacity to effectively repair lesions that may occur and return to the cell cycle without losing their cellular properties. Notably, while DNA repair pathways are often found to be downregulated in quiescent cells, emerging evidence suggests the presence of active or differentially regulated repair mechanisms. This review aims to provide a current understanding of DNA repair processes during quiescence in mammalian systems and sheds light on the potential pathological consequences of inefficient or inaccurate repair in quiescent cells.
Collapse
Affiliation(s)
| | - Jacob Wall
- Sir William Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, South Parks Road, Oxford, UK.
| |
Collapse
|
5
|
Petiot V, White CI, Da Ines O. DNA-binding site II is required for RAD51 recombinogenic activity in Arabidopsis thaliana. Life Sci Alliance 2024; 7:e202402701. [PMID: 38803223 PMCID: PMC11106524 DOI: 10.26508/lsa.202402701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Homologous recombination is a major pathway for the repair of DNA double strand breaks, essential both to maintain genomic integrity and to generate genetic diversity. Mechanistically, homologous recombination involves the use of a homologous DNA molecule as a template to repair the break. In eukaryotes, the search for and invasion of the homologous DNA molecule is carried out by two recombinases, RAD51 in somatic cells and RAD51 and DMC1 in meiotic cells. During recombination, the recombinases bind overhanging single-stranded DNA ends to form a nucleoprotein filament, which is the active species in promoting DNA invasion and strand exchange. RAD51 and DMC1 carry two major DNA-binding sites-essential for nucleofilament formation and DNA strand exchange, respectively. Here, we show that the function of RAD51 DNA-binding site II is conserved in the plant, Arabidopsis. Mutation of three key amino acids in site II does not affect RAD51 nucleofilament formation but inhibits its recombinogenic activity, analogous to results from studies of the yeast and human proteins. We further confirm that recombinogenic function of RAD51 DNA-binding site II is not required for meiotic double-strand break repair when DMC1 is present. The Arabidopsis AtRAD51-II3A separation of function mutant shows a dominant negative phenotype, pointing to distinct biochemical properties of eukaryotic RAD51 proteins.
Collapse
Affiliation(s)
- Valentine Petiot
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Salinas-Luypaert C, Fachinetti D. Canonical and noncanonical regulators of centromere assembly and maintenance. Curr Opin Cell Biol 2024; 89:102396. [PMID: 38981198 DOI: 10.1016/j.ceb.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024]
Abstract
Centromeres are specialized chromosomal domains where the kinetochores assemble during cell division to ensure accurate transmission of the genetic information to the two daughter cells. The centromeric function is evolutionary conserved and, in most organisms, centromeres are epigenetically defined by a unique chromatin containing the histone H3 variant CENP-A. The canonical regulators of CENP-A assembly and maintenance are well-known, yet some of the molecular mechanisms regulating this complex process have only recently been unveiled. We review the most recent advances on the topic, including the emergence of new and unexpected factors that favor and regulate CENP-A assembly and/or maintenance.
Collapse
Affiliation(s)
- Catalina Salinas-Luypaert
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
7
|
Showman S, Talbert PB, Xu Y, Adeyemi RO, Henikoff S. Expansion of human centromeric arrays in cells undergoing break-induced replication. Cell Rep 2024; 43:113851. [PMID: 38427559 PMCID: PMC11034957 DOI: 10.1016/j.celrep.2024.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Human centromeres are located within α-satellite arrays and evolve rapidly, which can lead to individual variation in array length. Proposed mechanisms for such alterations in length are unequal crossover between sister chromatids, gene conversion, and break-induced replication. However, the underlying molecular mechanisms responsible for the massive, complex, and homogeneous organization of centromeric arrays have not been experimentally validated. Here, we use droplet digital PCR assays to demonstrate that centromeric arrays can expand and contract within ∼20 somatic cell divisions of an alternative lengthening of telomere (ALT)-positive cell line. We find that the frequency of array variation among single-cell-derived subclones ranges from a minimum of ∼7% to a maximum of ∼100%. Further clonal evolution revealed that centromere expansion is favored over contraction. We find that the homologous recombination protein RAD52 and the helicase PIF1 are required for extensive array change, suggesting that centromere sequence evolution can occur via break-induced replication.
Collapse
Affiliation(s)
- Soyeon Showman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yiling Xu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard O Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Scelfo A, Angrisani A, Grillo M, Barnes BM, Muyas F, Sauer CM, Leung CWB, Dumont M, Grison M, Mazaud D, Garnier M, Guintini L, Nelson L, Esashi F, Cortés-Ciriano I, Taylor SS, Déjardin J, Wilhelm T, Fachinetti D. Specialized replication mechanisms maintain genome stability at human centromeres. Mol Cell 2024; 84:1003-1020.e10. [PMID: 38359824 DOI: 10.1016/j.molcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Annapaola Angrisani
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marco Grillo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | | | - Marie Dumont
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marine Grison
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - David Mazaud
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Mickaël Garnier
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Laetitia Guintini
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| |
Collapse
|
9
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
11
|
Marcon F, Giunta S, Bignami M. Emerging roles of DNA repair factors in the stability of centromeres. Semin Cell Dev Biol 2024; 156:121-129. [PMID: 37852903 DOI: 10.1016/j.semcdb.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
12
|
Liang Y, Yuan Q, Zheng Q, Mei Z, Song Y, Yan H, Yang J, Wu S, Yuan J, Wu W. DNA Damage Atlas: an atlas of DNA damage and repair. Nucleic Acids Res 2024; 52:D1218-D1226. [PMID: 37831087 PMCID: PMC10767978 DOI: 10.1093/nar/gkad845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
DNA damage and its improper repair are the major source of genomic alterations responsible for many human diseases, particularly cancer. To aid researchers in understanding the underlying mechanisms of genome instability, a number of genome-wide profiling approaches have been developed to monitor DNA damage and repair events. The rapid accumulation of published datasets underscores the critical necessity of a comprehensive database to curate sequencing data on DNA damage and repair intermediates. Here, we present DNA Damage Atlas (DDA, http://www.bioinformaticspa.com/DDA/), the first large-scale repository of DNA damage and repair information. Currently, DDA comprises 6,030 samples from 262 datasets by 59 technologies, covering 16 species, 10 types of damage and 135 treatments. Data collected in DDA was processed through a standardized workflow, including quality checks, hotspots identification and a series of feature characterization for the hotspots. Notably, DDA encompasses analyses of highly repetitive regions, ribosomal DNA and telomere. DDA offers a user-friendly interface that facilitates browsing, searching, genome browser visualization, hotspots comparison and data downloading, enabling convenient and thorough exploration for datasets of interest. In summary, DDA will stand as a valuable resource for research in genome instability and its association with diseases.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qingqing Yuan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qijie Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Zilv Mei
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yawei Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Huan Yan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jiao Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
13
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
14
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Volpe E, Corda L, Tommaso ED, Pelliccia F, Ottalevi R, Licastro D, Guarracino A, Capulli M, Formenti G, Tassone E, Giunta S. The complete diploid reference genome of RPE-1 identifies human phased epigenetic landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565049. [PMID: 38168337 PMCID: PMC10760208 DOI: 10.1101/2023.11.01.565049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented variation between haplotypes. This work showcases the use of matched reference genomes for multiomics analyses and serves as the foundation for a call to comprehensively assemble experimentally relevant cell lines for widespread application.
Collapse
Affiliation(s)
- Emilia Volpe
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luca Corda
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Di Tommaso
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franca Pelliccia
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Ottalevi
- Department of Bioinformatic, Dante Genomics Corp Inc., 667 Madison Avenue, New York, NY 10065 USA and S.s.17, 67100, L’Aquila, Italy
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giulio Formenti
- The Rockefeller University, 1230 York Avenue, 10065 New York, USA
| | - Evelyne Tassone
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simona Giunta
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
17
|
Choo ZN, Behr JM, Deshpande A, Hadi K, Yao X, Tian H, Takai K, Zakusilo G, Rosiene J, Da Cruz Paula A, Weigelt B, Setton J, Riaz N, Powell SN, Busam K, Shoushtari AN, Ariyan C, Reis-Filho J, de Lange T, Imieliński M. Most large structural variants in cancer genomes can be detected without long reads. Nat Genet 2023; 55:2139-2148. [PMID: 37945902 PMCID: PMC10703688 DOI: 10.1038/s41588-023-01540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
Short-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured. Some loose ends represent neotelomeres, which we propose as a hallmark of the alternative lengthening of telomeres phenotype. These pan-cancer findings were confirmed by long-molecule profiles of 38 breast cancer and melanoma cases. Our results indicate that aberrant homologous recombination is unlikely to drive the majority of large cancer SVs. Furthermore, analysis of mass balance in short-read whole genome data provides a surprisingly complete picture of cancer chromosomal structure.
Collapse
Affiliation(s)
- Zi-Ning Choo
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional MD PhD Program, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Julie M Behr
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Aditya Deshpande
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Kevin Hadi
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Xiaotong Yao
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Huasong Tian
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kaori Takai
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - George Zakusilo
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joel Rosiene
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Britta Weigelt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klaus Busam
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Titia de Lange
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Marcin Imieliński
- New York Genome Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Showman S, Talbert PB, Xu Y, Adeyemi RO, Henikoff S. Expansion of human centromeric arrays in cells undergoing break-induced replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566714. [PMID: 38014305 PMCID: PMC10680626 DOI: 10.1101/2023.11.11.566714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Human centromeres are located within α-satellite arrays and evolve rapidly, which can lead to individual variation in array lengths. Proposed mechanisms for such alterations in lengths are unequal cross-over between sister chromatids, gene conversion, and break-induced replication. However, the underlying molecular mechanisms responsible for the massive, complex, and homogeneous organization of centromeric arrays have not been experimentally validated. Here, we use droplet digital PCR assays to demonstrate that centromeric arrays can expand and contract within ~20 somatic cell divisions of a cell line. We find that the frequency of array variation among single-cell-derived subclones ranges from a minimum of ~7% to a maximum of ~100%. Further clonal evolution revealed that centromere expansion is favored over contraction. We find that the homologous recombination protein RAD52 and the helicase PIF1 are required for extensive array change, suggesting that centromere sequence evolution can occur via break-induced replication.
Collapse
Affiliation(s)
- Soyeon Showman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul B. Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yiling Xu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
19
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
20
|
Scelfo A, Fachinetti D. Centromere: A Trojan horse for genome stability. DNA Repair (Amst) 2023; 130:103569. [PMID: 37708591 DOI: 10.1016/j.dnarep.2023.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Centromeres play a key role in the maintenance of genome stability to prevent carcinogenesis and diseases. They are specialized chromosome loci essential to ensure faithful transmission of genomic information across cell generations by mediating the interaction with spindle microtubules. Nonetheless, while fulfilling these essential roles, their distinct repetitive composition and susceptibility to mechanical stresses during cell division render them susceptible to breakage events. In this review, we delve into the present understanding of the underlying causes of centromere fragility, from the mechanisms governing its DNA replication and repair, to the pathways acting to counteract potential challenges. We propose that the centromere represents a "Trojan horse" exerting vital functions that, at the same time, potentially threatens whole genome stability.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
21
|
Saayman X, Graham E, Leung CWB, Esashi F. exo-FISH: Protocol for detecting DNA breaks in repetitive regions of mammalian genomes. STAR Protoc 2023; 4:102487. [PMID: 37549036 PMCID: PMC10425934 DOI: 10.1016/j.xpro.2023.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
Detecting DNA breaks in defined regions of the genome is critical to advancing our understanding of genome stability maintenance. Here, we present exo-FISH, a protocol to label exposed single-stranded DNA in defined repetitive regions of mammalian genomes by combining in vitro restriction enzyme digestion on fixed cells with fluorescence in situ hybridization (FISH). We describe steps for cell harvesting and fixation, slide treatments, and FISH probe hybridization. We then detail procedures for imaging and analysis. For complete details on the use and execution of this protocol, please refer to Saayman et al. (2023).1.
Collapse
Affiliation(s)
- Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Nassar R, Thompson L, Fouquerel E. Molecular mechanisms protecting centromeres from self-sabotage and implications for cancer therapy. NAR Cancer 2023; 5:zcad019. [PMID: 37180029 PMCID: PMC10167631 DOI: 10.1093/narcan/zcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Centromeres play a crucial role in DNA segregation by mediating the cohesion and separation of sister chromatids during cell division. Centromere dysfunction, breakage or compromised centromeric integrity can generate aneuploidies and chromosomal instability, which are cellular features associated with cancer initiation and progression. Maintaining centromere integrity is thus essential for genome stability. However, the centromere itself is prone to DNA breaks, likely due to its intrinsically fragile nature. Centromeres are complex genomic loci that are composed of highly repetitive DNA sequences and secondary structures and require the recruitment and homeostasis of a centromere-associated protein network. The molecular mechanisms engaged to preserve centromere inherent structure and respond to centromeric damage are not fully understood and remain a subject of ongoing research. In this article, we provide a review of the currently known factors that contribute to centromeric dysfunction and the molecular mechanisms that mitigate the impact of centromere damage on genome stability. Finally, we discuss the potential therapeutic strategies that could arise from a deeper understanding of the mechanisms preserving centromere integrity.
Collapse
Affiliation(s)
- Rim Nassar
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Lily Thompson
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| |
Collapse
|
23
|
Mongia P, Toyofuku N, Pan Z, Xu R, Kinoshita Y, Oki K, Takahashi H, Ogura Y, Hayashi T, Nakagawa T. Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere. Commun Biol 2023; 6:551. [PMID: 37237082 DOI: 10.1038/s42003-023-04925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rad51 maintains genome integrity, whereas Rad52 causes non-canonical homologous recombination leading to gross chromosomal rearrangements (GCRs). Here we find that fission yeast Srr1/Ber1 and Skb1/PRMT5 promote GCRs at centromeres. Genetic and physical analyses show that srr1 and skb1 mutations reduce isochromosome formation mediated by centromere inverted repeats. srr1 increases DNA damage sensitivity in rad51 cells but does not abolish checkpoint response, suggesting that Srr1 promotes Rad51-independent DNA repair. srr1 and rad52 additively, while skb1 and rad52 epistatically reduce GCRs. Unlike srr1 or rad52, skb1 does not increase damage sensitivity. Skb1 regulates cell morphology and cell cycle with Slf1 and Pom1, respectively, but neither Slf1 nor Pom1 causes GCRs. Mutating conserved residues in the arginine methyltransferase domain of Skb1 greatly reduces GCRs. These results suggest that, through arginine methylation, Skb1 forms aberrant DNA structures leading to Rad52-dependent GCRs. This study has uncovered roles for Srr1 and Skb1 in GCRs at centromeres.
Collapse
Affiliation(s)
- Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yakumo Kinoshita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keitaro Oki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
24
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
25
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|