1
|
Xiao MT, Ellsworth CR, Qin X. Emerging role of complement in COVID-19 and other respiratory virus diseases. Cell Mol Life Sci 2024; 81:94. [PMID: 38368584 PMCID: PMC10874912 DOI: 10.1007/s00018-024-05157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus. We review recent mechanistic studies and animal models that can be used for further investigation. Novel knockout studies are proposed to better understand the nuances of the activation of the complement system in respiratory viral diseases.
Collapse
Affiliation(s)
- Mark T Xiao
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Calder R Ellsworth
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Svanberg C, Ellegård R, Crisci E, Khalid M, Borendal Wodlin N, Svenvik M, Nyström S, Birse K, Burgener A, Shankar EM, Larsson M. Complement-Opsonized HIV Modulates Pathways Involved in Infection of Cervical Mucosal Tissues: A Transcriptomic and Proteomic Study. Front Immunol 2021; 12:625649. [PMID: 34093520 PMCID: PMC8173031 DOI: 10.3389/fimmu.2021.625649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Genital mucosal transmission is the most common route of HIV spread. The initial responses triggered at the site of viral entry are reportedly affected by host factors, especially complement components present at the site, and this will have profound consequences on the outcome and pathogenesis of HIV infection. We studied the initial events associated with host-pathogen interactions by exposing cervical biopsies to free or complement-opsonized HIV. Opsonization resulted in higher rates of HIV acquisition/infection in mucosal tissues and emigrating dendritic cells. Transcriptomic and proteomic data showed a significantly more pathways and higher expression of genes and proteins associated with viral replication and pathways involved in different aspects of viral infection including interferon signaling, cytokine profile and dendritic cell maturation for the opsonized HIV. Moreover, the proteomics data indicate a general suppression by the HIV exposure. This clearly suggests that HIV opsonization alters the initial signaling pathways in the cervical mucosa in a manner that promotes viral establishment and infection. Our findings provide a foundation for further studies of the role these early HIV induced events play in HIV pathogenesis.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Elisa Crisci
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | | | | | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kenzie Birse
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Adam Burgener
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| |
Collapse
|
4
|
Malekshahi Z, Bernklau S, Schiela B, Koske I, Banki Z, Stiasny K, Harris CL, Würzner R, Stoiber H. Incorporation of CD55 into the Zika Viral Envelope Contributes to Its Stability against Human Complement. Viruses 2021; 13:v13030510. [PMID: 33808725 PMCID: PMC8003375 DOI: 10.3390/v13030510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid spread of the virus in Latin America and the association of the infection with microcephaly in newborns or Guillain–Barré Syndrome in adults prompted the WHO to declare the Zika virus (ZIKV) epidemic to be an international public health emergency in 2016. As the virus was first discovered in monkeys and is spread not only by mosquitos but also from human to human, we investigated the stability to the human complement of ZIKV derived from mosquito (ZIKVInsect), monkey (ZIKVVero), or human cells (ZIKVA549 and ZIKVFibro), respectively. At a low serum concentration (10%), which refers to complement concentrations found on mucosal surfaces, the virus was relatively stable at 37 °C. At higher complement levels (up to 50% serum concentration), ZIKV titers differed significantly depending on the cell line used for the propagation of the virus. While the viral titer of ZIKVInsect decreased about two orders in magnitude, when incubated with human serum, the virus derived from human cells was more resistant to complement-mediated lysis (CML). By virus-capture assay and Western blots, the complement regulator protein CD55 was identified to be incorporated into the viral envelope. Blocking of CD55 by neutralizing Abs significantly increased the sensitivity to human complement. Taken together, these data indicate that the incorporation of CD55 from human cells contributes to the stability of ZIKV against complement-mediated virolysis.
Collapse
Affiliation(s)
- Zahra Malekshahi
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Sarah Bernklau
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Britta Schiela
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Iris Koske
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Zoltan Banki
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Claire L. Harris
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (R.W.); (H.S.)
| | - Heribert Stoiber
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (Z.M.); (S.B.); (B.S.); (I.K.); (Z.B.)
- Correspondence: (R.W.); (H.S.)
| |
Collapse
|
5
|
Malekshahi Z, Schiela B, Bernklau S, Banki Z, Würzner R, Stoiber H. Interference of the Zika Virus E-Protein With the Membrane Attack Complex of the Complement System. Front Immunol 2020; 11:569549. [PMID: 33193347 PMCID: PMC7655927 DOI: 10.3389/fimmu.2020.569549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system has developed different strategies to clear infections by several effector mechanisms, such as opsonization, which supports phagocytosis, attracting immune cells by C3 and C5 cleavage products, or direct killing of pathogens by the formation of the membrane attack complex (MAC). As the Zika virus (ZIKV) activates the classical complement pathway and thus has to avoid clearance by the complement system, we analyzed putative viral escape mechanisms, which limit virolysis. We identified binding of the recombinant viral envelope E protein to components of the terminal pathway complement (C5b6, C7, C8, and C9) by ELISA. Western blot analyses revealed that ZIKV E protein interfered with the polymerization of C9, induced on cellular surfaces, either by purified terminal complement proteins or by normal human serum (NHS) as a source of the complement. Further, the hemolytic activity of NHS was significantly reduced in the presence of the recombinant E protein or entire viral particles. This data indicates that ZIKV reduces MAC formation and complement-mediated lysis by binding terminal complement proteins to the viral E protein.
Collapse
Affiliation(s)
- Zahra Malekshahi
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Britta Schiela
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Bernklau
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltan Banki
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
7
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Wu B, Ouyang Z, Lyon CJ, Zhang W, Clift T, Bone CR, Li B, Zhao Z, Kimata JT, Yu XG, Hu Y. Plasma Levels of Complement Factor I and C4b Peptides Are Associated with HIV Suppression. ACS Infect Dis 2017; 3:880-885. [PMID: 28862830 PMCID: PMC5727467 DOI: 10.1021/acsinfecdis.7b00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Individuals who exhibit long-term
HIV suppression and CD4 T-cell preservation without antiretroviral
therapy are of great interest for HIV research. There is currently
no robust method for rapid identification of these “HIV controller”
subjects; however, HLA-B*57 (human leukocyte antigen (major histocompatibility
complex), class I, B*57) genotype exhibits modest sensitivity for
this phenotype. Complement C3b and C4b can influence HIV infection
and replication, but studies have not examined their possible link
to HIV controller status. We analyzed HLA-B*57 genotype and complement
levels in HIV-positive patients receiving suppressive antiretroviral
therapy, untreated HIV controllers, and HIV-negative subjects to identify
factors associated with HIV controller status. Our results revealed
that the plasma levels of three C4b-derived peptides and complement
factor I outperformed all other assayed biomarkers for HIV controller
identification, although we could not analyze the predictive value
of biomarker combinations with the current sample size. We believe
this rapid screening approach may prove useful for improved identification
of HIV controllers.
Collapse
Affiliation(s)
- Boyue Wu
- Biodesign Center
for Personalized Diagnostics, the Biodesign Institute, Arizona State University, 727 E. Tyler Street, Tempe, Arizona 85281, United States
- College of Laboratory Medicine, Tianjin Medical University, 1 Guangdong Road, Tianjin 300203, China
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Boston, Massachusetts 02139-3583, United States
| | - Christopher J. Lyon
- Biodesign Center
for Personalized Diagnostics, the Biodesign Institute, Arizona State University, 727 E. Tyler Street, Tempe, Arizona 85281, United States
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Wei Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110003, China
| | - Tori Clift
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Christopher R. Bone
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Boan Li
- Center for Clinical Laboratory, 302 Military Hospital of China, 100 Middle Section of West 4th Ring Road, Beijing 100038, China
| | - Zhen Zhao
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Boston, Massachusetts 02139-3583, United States
| | - Ye Hu
- Biodesign Center
for Personalized Diagnostics, the Biodesign Institute, Arizona State University, 727 E. Tyler Street, Tempe, Arizona 85281, United States
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- School of Biological and Health Systems
Engineering, Virginia G. Piper, Arizona State University, 727
E. Tyler Street, Tempe, Arizona 85281, United States
| |
Collapse
|
9
|
Mayr LM, Su B, Moog C. Non-Neutralizing Antibodies Directed against HIV and Their Functions. Front Immunol 2017; 8:1590. [PMID: 29209323 PMCID: PMC5701973 DOI: 10.3389/fimmu.2017.01590] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.
Collapse
Affiliation(s)
- Luzia M Mayr
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Imran M, Manzoor S, Saalim M, Resham S, Ashraf J, Javed A, Waqar AB. HIV-1 and hijacking of the host immune system: the current scenario. APMIS 2016; 124:817-31. [PMID: 27539675 DOI: 10.1111/apm.12579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/04/2016] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan.,Department of Medical Laboratory Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies (ICBS), Lahore, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan. ,
| | - Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saleha Resham
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Aneela Javed
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmed Bilal Waqar
- Department of Medical Laboratory Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies (ICBS), Lahore, Pakistan.,Imperial Post Graduate Medical Institute, Imperial College of Business Studies (ICBS), Lahore, Pakistan
| |
Collapse
|
11
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
12
|
Amet T, Lan J, Shepherd N, Yang K, Byrd D, Xing Y, Yu Q. Glycosylphosphatidylinositol Anchor Deficiency Attenuates the Production of Infectious HIV-1 and Renders Virions Sensitive to Complement Attack. AIDS Res Hum Retroviruses 2016; 32:1100-1112. [PMID: 27231035 PMCID: PMC5067833 DOI: 10.1089/aid.2016.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) escapes complement-mediated lysis (CML) by incorporating host regulators of complement activation (RCA) into its envelope. CD59, a key member of RCA, is incorporated into HIV-1 virions at levels that protect against CML. Since CD59 is a glycosylphosphatidylinositol-anchored protein (GPI-AP), we used GPI anchor-deficient Jurkat cells (Jurkat-7) that express intracellular CD59, but not surface CD59, to study the molecular mechanisms underlying CD59 incorporation into HIV-1 virions and the role of host proteins in virus replication. Compared to Jurkat cells, Jurkat-7 cells were less supportive to HIV-1 replication and more sensitive to CML. Jurkat-7 cells exhibited similar capacities of HIV-1 binding and entry to Jurkat cells, but were less supportive to viral RNA and DNA biosynthesis as infected Jurkat-7 cells produced reduced amounts of HIV-1 RNA and DNA. HIV-1 virions produced from Jurkat-7 cells were CD59 negative, suggesting that viral particles acquire CD59, and probably other host proteins, from the cell membrane rather than intracellular compartments. As a result, CD59-negative virions were sensitive to CML. Strikingly, these virions exhibited reduced activity of virus binding and were less infectious, implicating that GPI-APs may be also important in ensuring the integrity of HIV-1 particles. Transient expression of the PIG-A gene restored CD59 expression on the surface of Jurkat-7 cells. After HIV-1 infection, the restored CD59 was colocalized with viral envelope glycoprotein gp120/gp41 within lipid rafts, which is identical to that on infected Jurkat cells. Thus, HIV-1 virions acquire RCA from the cell surface, likely lipid rafts, to escape CML and ensure viral infectivity.
Collapse
Affiliation(s)
- Tohti Amet
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jie Lan
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicole Shepherd
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kai Yang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
| | - Daniel Byrd
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanyan Xing
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pathophysiology, Medical College of Jinan University, Guangzhou, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
13
|
Complement Opsonization Promotes Herpes Simplex Virus 2 Infection of Human Dendritic Cells. J Virol 2016; 90:4939-4950. [PMID: 26937039 PMCID: PMC4859714 DOI: 10.1128/jvi.00224-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is one of the most common sexually transmitted infections globally, with a very high prevalence in many countries. During HSV-2 infection, viral particles become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of immune responses. In genital mucosa, the primary target cells for HSV-2 infection are epithelial cells, but resident immune cells, such as dendritic cells (DCs), are also infected. DCs are the activators of the ensuing immune responses directed against HSV-2, and the aim of this study was to examine the effects opsonization of HSV-2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV-2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV-2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV-1- or HSV-2-specific antibodies more or less abolished HSV-2 infection of DCs. Our results clearly demonstrate the importance of studying HSV-2 infection under conditions that ensue in vivo, i.e., conditions under which the virions are covered in complement fragments and complement fragments and antibodies, as these shape the infection and the subsequent immune response and need to be further elucidated. IMPORTANCE During HSV-2 infection, viral particles should become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of the immune responses. The dendritic cells are activators of the immune responses directed against HSV-2, and the aim of this study was to examine the effects of complement alone or complement and antibodies on HSV-2 infection of dendritic cells and their ability to mount inflammatory and antiviral responses. Our results demonstrate that the presence of antibodies and complement in the genital environment can influence HSV-2 infection under in vitro conditions that reflect the in vivo situation. We believe that our findings are highly relevant for the understanding of HSV-2 pathogenesis.
Collapse
|
14
|
Ellegård R, Crisci E, Burgener A, Sjöwall C, Birse K, Westmacott G, Hinkula J, Lifson JD, Larsson M. Complement opsonization of HIV-1 results in decreased antiviral and inflammatory responses in immature dendritic cells via CR3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4590-601. [PMID: 25252956 PMCID: PMC4201991 DOI: 10.4049/jimmunol.1401781] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022]
Abstract
Immature dendritic cells (iDCs) in genital and rectal mucosa may be one of the first cells to come into contact with HIV-1 during sexual transmission of virus. HIV-1 activates the host complement system, which results in opsonization of virus by inactivated complement fragments, for example, iC3b. We investigated antiviral and inflammatory responses induced in human iDCs after exposure to free HIV-1 (F-HIV), complement-opsonized HIV-1 (C-HIV), and complement and Ab-opsonized HIV-1 (CI-HIV). F-HIV gave rise to a significantly higher expression of antiviral factors such as IFN-β, myxovirus resistance protein A, and IFN-stimulated genes, compared with C-HIV and CI-HIV. Additionally, F-HIV induced inflammatory factors such as IL-1β, IL-6, and TNF-α, whereas these responses were weakened or absent after C-HIV or CI-HIV exposure. The responses induced by F-HIV were TLR8-dependent with subsequent activation of IFN regulatory factor 1, p38, ERK, PI3K, and NF-κB pathways, whereas these responses were not induced by C-HIV, which instead induced activation of IFN regulatory factor 3 and Lyn. This modulation of TLR8 signaling was mediated by complement receptor 3 and led to enhanced infection. The impact that viral hijacking of the complement system has on iDC function could be an important immune evasion mechanism used by HIV-1 to establish infection in the host.
Collapse
Affiliation(s)
- Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Adam Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Christopher Sjöwall
- Division of Rheumatology/Autoimmunity and Immune Regulation Unit, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden; and
| | - Kenzie Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Garrett Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Jeffrey D Lifson
- Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden;
| |
Collapse
|
15
|
Page M, Quartey-Papafio R, Robinson M, Hassall M, Cranage M, Stott J, Almond N. Complement-mediated virus infectivity neutralisation by HLA antibodies is associated with sterilising immunity to SIV challenge in the macaque model for HIV/AIDS. PLoS One 2014; 9:e88735. [PMID: 24551145 PMCID: PMC3925162 DOI: 10.1371/journal.pone.0088735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/10/2014] [Indexed: 01/26/2023] Open
Abstract
Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed.
Collapse
Affiliation(s)
- Mark Page
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
- * E-mail:
| | - Ruby Quartey-Papafio
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Mark Robinson
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Mark Hassall
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Martin Cranage
- Centre for Infection & Immunity, Division of Clinical Sciences, St George’s, University of London, London, United Kingdom
| | - James Stott
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Neil Almond
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| |
Collapse
|
16
|
Tjomsland V, Ellegård R, Kjölhede P, Wodlin NB, Hinkula J, Lifson JD, Larsson M. Blocking of integrins inhibits HIV-1 infection of human cervical mucosa immune cells with free and complement-opsonized virions. Eur J Immunol 2013; 43:2361-72. [PMID: 23686382 PMCID: PMC4231223 DOI: 10.1002/eji.201243257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/31/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The initial interaction between HIV-1 and the host occurs at the mucosa during sexual intercourse. In cervical mucosa, HIV-1 exists both as free and opsonized virions and this might influence initial infection. We used cervical explants to study HIV-1 transmission, the effects of opsonization on infectivity, and how infection can be prevented. Complement opsonization enhanced HIV-1 infection of dendritic cells (DCs) compared with that by free HIV-1, but this increased infection was not observed with CD4(+) T cells. Blockage of the α4-, β7-, and β1-integrins significantly inhibited HIV-1 infection of both DCs and CD4(+) T cells. We found a greater impairment of HIV-1 infection in DCs for complement-opsonized virions compared with that of free virions when αM/β2- and α4-integrins were blocked. Blocking the C-type lectin receptor macrophage mannose receptor (MMR) inhibited infection of emigrating DCs but had no effect on CD4(+) T-cell infection. We show that blocking of integrins decreases the HIV-1 infection of both mucosal DCs and CD4(+) T cells emigrating from the cervical tissues. These findings may provide the basis of novel microbicidal strategies that may help limit or prevent initial infection of the cervical mucosa, thereby reducing or averting systemic HIV-1 infection.
Collapse
Affiliation(s)
- Veronica Tjomsland
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Preben Kjölhede
- Division of Gynecology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Ninni Borendal Wodlin
- Division of Gynecology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Jeffrey D Lifson
- SAIC/Fredrick, National Cancer Institute at FredrickFrederick, Maryland, USA
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| |
Collapse
|
17
|
A systems biology examination of the human female genital tract shows compartmentalization of immune factor expression. J Virol 2013; 87:5141-50. [PMID: 23449785 DOI: 10.1128/jvi.03347-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many mucosal factors in the female genital tract (FGT) have been associated with HIV susceptibility, but little is known about their anatomical distribution in the FGT compartments. This study comprehensively characterized global immune factor expression in different tissue sites of the lower and upper FGT by using a systems biology approach. Tissue sections from the ectocervix, endocervix, and endometrium from seven women who underwent hysterectomy were analyzed by a combination of quantitative mass spectrometry and immunohistochemical staining. Of the >1,000 proteins identified, 281 were found to be differentially abundant in different tissue sites. Hierarchical clustering identified four major functional pathways distinguishing compartments, including innate immune pathways (acute-phase response, LXR/RXR) and development (RhoA signaling, gluconeogenesis), which were enriched in the ectocervix/endocervix and endometrium, respectively. Immune factors important for HIV susceptibility, including antiproteases, immunoglobulins, complement components, and antimicrobial factors, were most abundant in the ectocervix/endocervix, while the endometrium had a greater abundance of certain factors that promote HIV replication. Immune factor abundance is heterogeneous throughout the FGT and shows unique immune microenvironments for HIV based on the exposure site. This may have important implications for early events in HIV transmission and site-specific susceptibility to HIV in the FGT.
Collapse
|
18
|
Dissection of functional sites in herpesvirus saimiri complement control protein homolog. J Virol 2012; 87:282-95. [PMID: 23077301 DOI: 10.1128/jvi.01867-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus saimiri is known to encode a homolog of human complement regulators named complement control protein homolog (CCPH). We have previously reported that this virally encoded inhibitor effectively inactivates complement by supporting factor I-mediated inactivation of complement proteins C3b and C4b (termed cofactor activity), as well as by accelerating the irreversible decay of the classical/lectin and alternative pathway C3 convertases (termed decay-accelerating activity). To fine map its functional sites, in the present study, we have generated a homology model of CCPH and performed substitution mutagenesis of its conserved residues. Functional analyses of 24 substitution mutants of CCPH indicated that (i) amino acids R118 and F144 play a critical role in imparting C3b and C4b cofactor activities, (ii) amino acids R35, K142, and K191 are required for efficient decay of the C3 convertases, (iii) positively charged amino acids of the linker regions, which are dubbed to be critical for functioning in other complement regulators, are not crucial for its function, and (iv) S100K and G110D mutations substantially enhance its decay-accelerating activities without affecting the cofactor activities. Overall, our data point out that ionic interactions form a major component of the binding interface between CCPH and its interacting partners.
Collapse
|
19
|
Effect of complement on HIV-2 plasma antiviral activity is intratype specific and potent. J Virol 2012; 87:273-81. [PMID: 23077299 DOI: 10.1128/jvi.01640-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2)-infected individuals develop immunodeficiency with a considerable delay and transmit the virus at rates lower than HIV-1-infected persons. Conceivably, comparative studies on the immune responsiveness of HIV-1- and HIV-2-infected hosts may help to explain the differences in pathogenesis and transmission between the two types of infection. Previous studies have shown that the neutralizing antibody response is more potent and broader in HIV-2 than in HIV-1 infection. In the present study, we have examined further the function of the humoral immune response and studied the effect of complement on the antiviral activity of plasma from singly HIV-1- or HIV-2-infected individuals, as well as HIV-1/HIV-2 dually infected individuals. The neutralization and antibody-dependent complement-mediated inactivation of HIV-1 and HIV-2 isolates were tested in a plaque reduction assay using U87.CD4.CCR5 cells. The results showed that the addition of complement increased intratype antiviral activities of both HIV-1 and HIV-2 plasma samples, although the complement effect was more pronounced with HIV-2 than HIV-1 plasma. Using an area-under-the-curve (AUC)-based readout, multivariate statistical analysis confirmed that the type of HIV infection was independently associated with the magnitude of the complement effect. The analyses carried out with purified IgG indicated that the complement effect was largely exerted through the classical complement pathway involving IgG in both HIV-1 and HIV-2 infections. In summary, these findings suggest that antibody binding to HIV-2 structures facilitates the efficient use of complement and thereby may be one factor contributing to a strong antiviral activity present in HIV-2 infection.
Collapse
|
20
|
Ejaz A, Steinmann E, Bánki Z, Anggakusuma, Khalid S, Lengauer S, Wilhelm C, Zoller H, Schloegl A, Steinmann J, Grabski E, Kleines M, Pietschmann T, Stoiber H. Specific acquisition of functional CD59 but not CD46 or CD55 by hepatitis C virus. PLoS One 2012; 7:e45770. [PMID: 23049856 PMCID: PMC3458075 DOI: 10.1371/journal.pone.0045770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/22/2012] [Indexed: 01/07/2023] Open
Abstract
Viruses of different families encode for regulators of the complement system (RCAs) or acquire such RCAs from the host to get protection against complement-mediated lysis (CML). As hepatitis C virus (HCV) shares no genetic similarity to any known RCA and is detectable at high titers in sera of infected individuals, we investigated whether HCV has adapted host-derived RCAs to resist CML. Here we report that HCV selectively incorporates CD59 while neither CD55, nor CD46 are associated with the virus. The presence of CD59 was shown by capture assays using patient- and cell culture-derived HCV isolates. Association of CD59 with HCV was further confirmed by Western blot analysis using purified viral supernatants from infected Huh 7.5 cells. HCV captured by antibodies specific for CD59 remained infectious for Huh 7.5 cells. In addition, blocking of CD59 in the presence of active complement reduced the titer of HCV most likely due to CML. HCV produced in CD59 knock-down cells were more significantly susceptible to CML compared to wild type virus, but neither replication, assembly nor infectivity of the virus seemed to be impaired in the absence of CD59. In summary our data indicate that HCV incorporates selectively CD59 in its envelope to gain resistance to CML in serum of infected individuals.
Collapse
Affiliation(s)
- Asim Ejaz
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The early stage of HIV-1 infection is when the virus is most vulnerable, and should therefore offer the best opportunity for therapeutic interventions. This review addresses the recent progress in the understanding of innate immune responses against HIV-1 with focus on the potential targets for prevention of viral acquisition, replication and dissemination. RECENT FINDINGS Research indicates that the host-derived factor trappin-2/elafin is protective against HIV, whereas semen-derived enhancer of viral infection and defensins 5 and 6 enhance viral transmission. Further, studies suggest that stimulation of TLR4 and inhibition of TLR7-9 pathways may be HIV suppressive. The regulation and function of viral restriction factors tetherin and APOBEC3G have been investigated and a molecule mimicking the premature uncoating achieved by TRIM5α, PF74, has been identified. Chloroquine has been shown to inhibit plasmacytoid dendritic cell activation and suppress negative modulators of T-cell responses. Blockade of HMBG1 has been found to restore natural-killer-cell-mediated killing of infected dendritic cells, normally suppressed by HIV-1. Interestingly, when used as adjuvants, EAT-2 and heat shock protein gp96 reportedly enhance innate immune responses. SUMMARY Several targets for innate immunity-mediated therapeutics have been identified. Nonetheless, more research is required to unveil their underlying mechanisms and interactions before testing these molecules in clinical trials.
Collapse
|
22
|
Tjomsland V, Ellegård R, Che K, Hinkula J, Lifson JD, Larsson M. Complement opsonization of HIV-1 enhances the uptake by dendritic cells and involves the endocytic lectin and integrin receptor families. PLoS One 2011; 6:e23542. [PMID: 21853149 PMCID: PMC3154940 DOI: 10.1371/journal.pone.0023542] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023] Open
Abstract
Interaction with the complement system is an underappreciated aspect of HIV-1 infection; even in primary infection, complement fragments are found on virions with potential to affect the interplay between the virus and dendritic cells (DC). Since opsonization may affect the efficiency of uptake and the type of receptors utilized, we compared the interactions of DC with free HIV-1 (F-HIV) and complement opsonized HIV-1 (C-HIV). We demonstrate that C-HIV significantly enhanced the uptake by immature DC (IDC) and mature DC (MDC) and that the internalization rate was dependent on both opsonization of the virus and DC maturation state. Increased DC uptake of C-HIV was not due to opsonization related increased binding of virus to the surface of DC but rather increased internalization of C-HIV despite utilizing a similar repertoire of receptors as F-HIV. Both F-HIV and C-HIV interacted with C-type lectins, integrins, and CD4 and blocking these receptor families prevented HIV-1 from binding to DC at 4°C. Blocking integrins significantly reduced the binding and uptake of F-HIV and C-HIV implicating the involvement of several integrins such as β1-integrin, CR3, LFA-1, and α4β7. Distinctive for C-HIV was usage of β1-integrin and for F-HIV, usage of β7-integrin, whereas both F-HIV and C-HIV utilized both integrin chains of CR3. We have in this study identified the receptor types used by both F-HIV and C-HIV to bind to DC. Noteworthy, C-HIV was internalized more efficiently by DC than F-HIV, probably via receptor mediated endocytosis, which may entail different intracellular processing of the virus leading to both elevated infection and altered activation of HIV specific immune responses.
Collapse
Affiliation(s)
- Veronica Tjomsland
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karlhans Che
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Bernet J, Ahmad M, Mullick J, Panse Y, Singh AK, Parab PB, Sahu A. Disabling complement regulatory activities of vaccinia virus complement control protein reduces vaccinia virus pathogenicity. Vaccine 2011; 29:7435-43. [PMID: 21803094 PMCID: PMC3195257 DOI: 10.1016/j.vaccine.2011.07.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/20/2011] [Accepted: 07/17/2011] [Indexed: 12/02/2022]
Abstract
Poxviruses encode a repertoire of immunomodulatory proteins to thwart the host immune system. One among this array is a homolog of the host complement regulatory proteins that is conserved in various poxviruses including vaccinia (VACV) and variola. The vaccinia virus complement control protein (VCP), which inhibits complement by decaying the classical pathway C3-convertase (decay-accelerating activity), and by supporting inactivation of C3b and C4b by serine protease factor I (cofactor activity), was shown to play a role in viral pathogenesis. However, the role its individual complement regulatory activities impart in pathogenesis, have not yet been elucidated. Here, we have generated monoclonal antibodies (mAbs) that block the VCP functions and utilized them to evaluate the relative contribution of complement regulatory activities of VCP in viral pathogenesis by employing a rabbit intradermal model for VACV infection. Targeting VCP by mAbs that inhibited the decay-accelerating activity as well as cofactor activity of VCP or primarily the cofactor activity of VCP, by injecting them at the site of infection, significantly reduced VACV lesion size. This reduction however was not pronounced when VCP was targeted by a mAb that inhibited only the decay-accelerating activity. Further, the reduction in lesion size by mAbs was reversed when host complement was depleted by injecting cobra venom factor. Thus, our results suggest that targeting VCP by antibodies reduces VACV pathogenicity and that principally the cofactor activity of VCP appears to contribute to the virulence.
Collapse
Affiliation(s)
- John Bernet
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Infection of human peripheral blood mononuclear cells by erythrocyte-bound HIV-1: Effects of antibodies and complement. Virology 2011; 412:441-7. [DOI: 10.1016/j.virol.2011.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/21/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
25
|
Jiang H, Liao L, Montefiori DC, Frank MM. Mechanisms by which HIV envelope minimizes immunogenicity. Immunol Res 2010; 49:147-58. [DOI: 10.1007/s12026-010-8178-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Ahmad M, Raut S, Pyaram K, Kamble A, Mullick J, Sahu A. Domain Swapping Reveals Complement Control Protein Modules Critical for Imparting Cofactor and Decay-Accelerating Activities in Vaccinia Virus Complement Control Protein. THE JOURNAL OF IMMUNOLOGY 2010; 185:6128-37. [DOI: 10.4049/jimmunol.1001617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Burgener A, Sainsbury J, Plummer FA, Ball TB. Systems biology-based approaches to understand HIV-exposed uninfected women. Curr HIV/AIDS Rep 2010; 7:53-9. [PMID: 20425558 DOI: 10.1007/s11904-010-0039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Worldwide HIV infects women more frequently than men, and it is clear that not all exposed to HIV become infected. Several populations of HIV-exposed uninfected (EU) women have been identified, including discordant couples and sex workers. Understanding what provides natural protection in EU women is critical in vaccine or microbicide development. However, correlates of protection in these women are still unclear. Most studies have used classical methods, examining single genes or cellular factors, a mainstay for traditional immunobiology. This reductionist approach may be limited in the information it can provide. Novel technologies are now available that allow us to take a "systems biology" approach, which allows the study of a complex biological system and identifies factors that may provide protection against HIV infection. Herein we report developments in discovery-based systems biology approaches in EU women and how this broadens our understanding of natural protection against HIV-1.
Collapse
Affiliation(s)
- Adam Burgener
- National Laboratory for HIV Immunology, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
28
|
Jia L, Xu Y, Zhang C, Wang Y, Chong H, Qiu S, Wang L, Zhong Y, Liu W, Sun Y, Qiao F, Tomlinson S, Song H, Zhou Y, He Y. A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement. Virol J 2010; 7:142. [PMID: 20584336 PMCID: PMC2904741 DOI: 10.1186/1743-422x-7-142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/29/2010] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. PRESENTATION OF THE HYPOTHESIS Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 x anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. TESTING THE HYPOTHESIS Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 x anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 x anti-C3d)-Fc lysis of HIV compared to untreated virus. IMPLICATIONS OF THE HYPOTHESIS The targeted complement activator, (anti-gp120 x anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells.
Collapse
Affiliation(s)
- Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yuanyong Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yanwei Zhong
- The 302nd Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Weijing Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Fei Qiao
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuxian He
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
29
|
Abstract
The complement system, a key component of innate immunity, is a first-line defender against foreign pathogens such as HIV-1. The role of the complement system in HIV-1 pathogenesis appears to be multifaceted. Although the complement system plays critical roles in clearing and neutralizing HIV-1 virions, it also represents a critical factor for the spread and maintenance of the virus in the infected host. In addition, complement regulators such as human CD59 present in the envelope of HIV-1 prevent complement-mediated lysis of HIV-1. Some novel approaches are proposed to combat HIV-1 infection through the enhancement of antibody-dependent complement activity against HIV-1. In this paper, we will review these diverse roles of complement in HIV-1 infection.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Because complement is present in all fluids of the body, including serum, saliva and seminal fluid, and is found at mucosal surfaces and in the brain, all pathogens have to deal with complement proteins. Thus, immediately upon entering the host, independent on the route of infection, HIV activates the complement system. Although a first line of immune defense, complement cannot eliminate retroviral infections completely. RECENT FINDINGS Recent data indicate that complement, in concert with non-neutralizing antibodies, contributes to the control of HIV replication at early stages of infection. In parallel or at later stages, complement and non-neutralizing antibodies may counteract the immune response by enhancing HIV infection via complement and Fc-receptor-positive cells in 'cis' and 'trans'. SUMMARY This review highlights current knowledge in this field and emphasizes the contribution of complement and non-neutralizing antibodies in controlling versus and enhancing infection.
Collapse
|
31
|
Kulkarni AP, Randall PJ, Murthy K, Kellaway LA, Kotwal GJ. Investigation of interaction of vaccinia virus complement control protein and curcumin with complement components c3 and c3b using quartz crystal microbalance with dissipation monitoring technology. Open Biochem J 2010; 4:9-21. [PMID: 20224684 PMCID: PMC2835864 DOI: 10.2174/1874091x01004010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/07/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022] Open
Abstract
C3 and C3b, the components central to the complement activation, also play a damaging role in several inflammatory disorders. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are natural compounds with different biological origins reported to regulate complement activation. However, both VCP and Cur have not been investigated for their interaction with the third component (C3) prior to it being converted to its activated form (C3b). These two compounds have also not been compared to each other with respect to their interactions with C3 and C3b. Quartz crystal microbalance with dissipation monitoring (QCM-D) is a novel technology used to study the interaction of biomolecules. This technology was applied to characterize the interactions of VCP, Cur and appropriate controls with the key complement components. Cur as well as VCP showed binding to both C3 and to C3b, Cur however bound to C3b to a lesser extent.
Collapse
Affiliation(s)
- Amod P Kulkarni
- Division of Neuroscience, Department of Human Biology, University of Cape Town, Cape Town South Africa
| | | | | | | | | |
Collapse
|
32
|
Pyaram K, Kieslich CA, Yadav VN, Morikis D, Sahu A. Influence of electrostatics on the complement regulatory functions of Kaposica, the complement inhibitor of Kaposi's sarcoma-associated herpesvirus. THE JOURNAL OF IMMUNOLOGY 2010; 184:1956-67. [PMID: 20089702 DOI: 10.4049/jimmunol.0903261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kaposica, the complement regulator of Kaposi's sarcoma-associated herpesvirus, inhibits complement by supporting factor I-mediated inactivation of the proteolytically activated form of C3 (C3b) and C4 (C4b) (cofactor activity [CFA]) and by accelerating the decay of classical and alternative pathway C3-convertases (decay-accelerating activity [DAA]). Previous data suggested that electrostatic interactions play a critical role in the binding of viral complement regulators to their targets, C3b and C4b. We therefore investigated how electrostatic potential on Kaposica influences its activities. We built a homology structure of Kaposica and calculated the electrostatic potential of the molecule, using the Poisson-Boltzmann equation. Mutants were then designed to alter the overall positive potential of the molecule or of each of its domains and linkers by mutating Lys/Arg to Glu/Gln, and the functional activities of the expressed mutants were analyzed. Our data indicate that 1) positive potential at specific sites and not the overall positive potential on the molecule guides the CFAs and classical pathway DAA; 2) positive potential around the linkers between complement control protein domains (CCPs) 1-2 and 2-3 is more important for DAAs than for CFAs; 3) positive potential in CCP1 is crucial for binding to C3b and C4b, and thereby its functional activities; 4) conversion to negative or enhancement of negative potential for CCPs 2-4 has a marked effect on C3b-linked activities as opposed to C4b-linked activities; and 5) reversal of the electrostatic potential of CCP4 to negative has a differential effect on classical and alternative pathway DAAs. Together, our data provide functional relevance to conservation of positive potential in CCPs 1 and 4 and the linkers of viral complement regulators.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | | | | | | | |
Collapse
|
33
|
Hu W, Yu Q, Hu N, Byrd D, Amet T, Shikuma C, Shiramizu B, Halperin JA, Qin X. A high-affinity inhibitor of human CD59 enhances complement-mediated virolysis of HIV-1: implications for treatment of HIV-1/AIDS. THE JOURNAL OF IMMUNOLOGY 2009; 184:359-68. [PMID: 19955519 DOI: 10.4049/jimmunol.0902278] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many pathogenic enveloped viruses, including HIV-1, escape complement-mediated virolysis by incorporating host cell regulators of complement activation into their own viral envelope. The presence of complement regulators including CD59 on the external surface of the viral envelope confers resistance to complement-mediated virolysis, which may explain why human pathogenic viruses such as HIV-1 are not neutralized by complement in human fluids, even in the presence of high Ab titers against the viral surface proteins. In this study, we report the development of a recombinant form of the fourth domain of the bacterial toxin intermedilysin (the recombinant domain 4 of intermedilysin [rILYd4]), a 114 aa protein that inhibits human CD59 function with high affinity and specificity. In the presence of rILYd4, HIV-1 virions derived from either cell lines or peripheral blood mononuclear cells of HIV-1-infected patients became highly sensitive to complement-mediated lysis activated by either anti-HIV-1 gp120 Abs or by viral infection-induced Abs present in the plasma of HIV-1-infected individuals. We also demonstrated that rILYd4 together with serum or plasma from HIV-1-infected patients as a source of anti-HIV-1 Abs and complement did not mediate complement-mediated lysis of either erythrocytes or peripheral blood mononuclear cells. These results indicate that rILYd4 may represent a novel therapeutic agent against HIV-1/AIDS.
Collapse
Affiliation(s)
- Weiguo Hu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu Y, Zhang C, Jia L, Wen C, Liu H, Wang Y, Sun Y, Huang L, Zhou Y, Song H. A novel approach to inhibit HIV-1 infection and enhance lysis of HIV by a targeted activator of complement. Virol J 2009; 6:123. [PMID: 19671191 PMCID: PMC3224960 DOI: 10.1186/1743-422x-6-123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/12/2009] [Indexed: 02/02/2023] Open
Abstract
Background The complement system is one of the most potent weapons of innate immunity. It is not only a mechanism for direct protection against invading pathogens but it also interacts with the adaptive immunity to optimize the pathogen-specific humoral and cellular defense cascades in the body. Complement-mediated lysis of HIV is inefficient but the presence of HIV particles results in complement activation by the generation of many C3-fragments, such as C3dg and C3d. It has been demonstrated that activation of complement can enhance HIV infection through the binding of special complement receptor type 2 expression on the surface of mature B cells and follicular dendritic cells. Presentation of the hypothesis Previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that a new activator of complement, consisting of a target domain (C3-binding region of complement receptor type 2) linked to a complement-activating human IgG1 Fc domain (CR2-Fc), can target and amplify complement deposition on HIV virions and enhance the efficiency of HIV lysis. Testing the hypothesis Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified CR2-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of CR2-Fc-enhanced lysis of HIV compared to untreated virus. Implications of the hypothesis The targeted complement activator, CR2-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells.
Collapse
Affiliation(s)
- Yuanyong Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mapping of functional domains in herpesvirus saimiri complement control protein homolog: complement control protein domain 2 is the smallest structural unit displaying cofactor and decay-accelerating activities. J Virol 2009; 83:10299-304. [PMID: 19640995 DOI: 10.1128/jvi.00217-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herpesvirus saimiri encodes a functional homolog of human regulator-of-complement-activation proteins named CCPH that inactivates complement by accelerating the decay of C3 convertases and by serving as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we map the functional domains of CCPH. We demonstrate that short consensus repeat 2 (SCR2) is the minimum domain essential for classical/lectin pathway C3 convertase decay-accelerating activity as well as for factor I cofactor activity for C3b and C4b. Thus, CCPH is the first example wherein a single SCR domain has been shown to display complement regulatory functions.
Collapse
|
36
|
Falkensammer B, Rubner B, Hiltgartner A, Wilflingseder D, Stahl Hennig C, Kuate S, Uberla K, Norley S, Strasak A, Racz P, Stoiber H. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV) in macaques vaccinated with replication-deficient viral vectors. Retrovirology 2009; 6:60. [PMID: 19545395 PMCID: PMC2713197 DOI: 10.1186/1742-4690-6-60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/21/2009] [Indexed: 01/13/2023] Open
Abstract
Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV) encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p < 0.03) compared to controls. Considerable amounts of neutralizing antibodies were induced in systemic immunized monkeys. Most of the sera harvested during peak viremia exhibited a trend with an inverse correlation between complement C3-deposition on viral particles and plasma viral load within the different vaccination groups. In contrast, the amount of the observed complement-mediated lysis did not correlate with the reduction of SIV titres. Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.
Collapse
Affiliation(s)
- Barbara Falkensammer
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
It has been known for some time that HIV-1 virions contain cellular proteins in addition to proteins encoded by the viral genome. Recent studies have vastly increased the number of host proteins detected in HIV-1. This review summarises the current findings on several cellular proteins present in these virions, including some functional studies on their potential roles in the viral replication cycle and pathogenesis. Because retroviruses require extensive assistance from host proteins and pathways, the data from biochemical characterisations of HIV-1 serve as an important starting point for understanding the role of cellular proteins that act in or influence the biology of HIV-1. Additionally, a better understanding of the interactions between cellular proteins and viral components might provide more targets for anti-HIV therapeutic intervention and provide for a better understanding of how HIV-1 alters the immune system. The extensive study of HIV-1 has already brought new insights to the fields of immunology and vaccine science. In the same way, knowledge of viral--cellular protein interactions might assist our understanding of important cellular pathways.
Collapse
Affiliation(s)
- David E Ott
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
38
|
Burgener A, Boutilier J, Wachihi C, Kimani J, Carpenter M, Westmacott G, Cheng K, Ball TB, Plummer F. Identification of differentially expressed proteins in the cervical mucosa of HIV-1-resistant sex workers. J Proteome Res 2008; 7:4446-54. [PMID: 18707157 DOI: 10.1021/pr800406r] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel tools are necessary to understand mechanisms of altered susceptibility to HIV-1 infection in women of the Pumwani Sex Worker cohort, Kenya. In this cohort, more than 140 of the 2000 participants have been characterized to be relatively resistant to HIV-1 infection. Given that sexual transmission of HIV-1 occurs through mucosal surfaces such as that in the cervicovaginal environment, our hypothesis is that innate immune factors in the genital tract may play a role in HIV-1 infection resistance. Understanding this mechanism may help develop microbicides and/or vaccines against HIV-1. A quantitative proteomics technique (2D-DIGE: two-dimensional difference in-gel electrophoresis) was used to examine cervical mucosa of HIV-1 resistant women ( n = 10) for biomarkers of HIV-1 resistance. Over 15 proteins were found to be differentially expressed between HIV-1-resistant women and control groups ( n = 29), some which show a greater than 8-fold change. HIV-1-resistant women overexpressed several antiproteases, including those from the serpin B family, and also cystatin A, a known anti-HIV-1 factor. Immunoblotting for a selection of the identified proteins confirmed the DIGE volume differences. Validation of these results on a larger sample of individuals will provide further evidence these biomarkers are associated with HIV-1 resistance and could help aid in the development of effective microbicides against HIV-1.
Collapse
Affiliation(s)
- Adam Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Potent human immunodeficiency virus-neutralizing and complement lysis activities of antibodies are not obligatorily linked. J Virol 2008; 82:3834-42. [PMID: 18234794 DOI: 10.1128/jvi.02569-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the contribution of complement-mediated lysis to the in vivo activities of neutralizing antibodies, we analyzed the influence of complement activation on treatment success in a recent passive immunization trial with the neutralizing monoclonal antibodies 2G12, 2F5, and 4E10. Administration of monoclonal antibodies led to an immediate, high activation of the complement system even in the absence of viremia in the 14 participating human immunodeficiency virus-infected individuals. Lysis activity measured in patient plasma increased during passive immunization; however, the increases were modest and only partially attributable to the administration of antibodies. We found that unlike neutralization activity, lysis activity was not associated with treatment success in this trial. Compared to complement lysis mounted by the polyclonal antibody response in vivo, monoclonal antibodies were weak inducers of this activity, suggesting that polyclonal responses are more effective in reaching the required threshold of complement activation. Importantly, strong neutralization activity of the monoclonal antibodies did not predict complement lysis activity against patient and reference viruses, suggesting that these activities are not linked. In summary, our data support the notion that the in vivo activities of 2G12, 2F5, and 4E10 are likely due to direct neutralization or Fc receptor-mediated mechanisms such as phagocytosis and antibody-dependent cellular cytotoxicity.
Collapse
|
40
|
Identification of hot spots in the variola virus complement inhibitor (SPICE) for human complement regulation. J Virol 2008; 82:3283-94. [PMID: 18216095 DOI: 10.1128/jvi.01935-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is approximately 90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement.
Collapse
|
41
|
Huber M, Olson WC, Trkola A. Antibodies for HIV treatment and prevention: window of opportunity? Curr Top Microbiol Immunol 2007; 317:39-66. [PMID: 17990789 DOI: 10.1007/978-3-540-72146-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Monoclonal antibodies are routinely used as therapeutics in a number of disease settings and have thus also been explored as potential treatment for human immunodeficiency virus (HIV)-1 infection. Antibodies targeting viral antigens, and those directed to the cellular receptors, have been considered for use in prevention and therapy. For virus-targeted antibodies, attention has focused primarily on their neutralizing activity, but such antibodies also have the potential to exert antiviral effects via effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), opsonization, or complement activation. Anti-cell antibodies act through occlusion or down-modulation of the viral receptors with notable impact in vivo, as recent trials have shown. This review summarizes the diverse specificities and modes of action of therapeutic antibodies against HIV-1 infection. Successes, challenges, and future opportunities of harnessing antibodies for therapy of HIV-1 infection are discussed.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | |
Collapse
|
42
|
Soederholm A, Bánki Z, Wilflingseder D, Gassner C, Zwirner J, López-Trascasa M, Falkensammer B, Dierich MP, Stoiber H. HIV-1 induced generation of C5a attracts immature dendriticcells and promotes infection of autologous T cells. Eur J Immunol 2007; 37:2156-63. [PMID: 17595678 DOI: 10.1002/eji.200636820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For the recruitment of dendritic cells (DC) to the site of infection, DC express several sensors for danger signals, such as receptors for C5a. This anaphylatoxin is generated upon complement activation. As HIV-1 triggers the complement cascade, we determined whether C5a is generated by the virus and tested the functional activity of C5a in migration and infection assays. The immature (i)DC responded in migration assays to recombinant C5a and native C5a, which was generated in situ upon activation of the complement system by HIV-1. In combined migration and infection assays, a C5a-dependent enhancement of HIV-1 infection in DC-T cell cocultures was observed. These results indicate that HIV induces generation of C5a and thereby attracts iDC, which in turn promote the productive infection of autologous primary T cells.
Collapse
Affiliation(s)
- Anna Soederholm
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, and Central Institute for Blood Transfusion and Division for Immunology, University Hospital, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lake-Bakaar G, Dustin L, McKeating J, Newton K, Freeman V, Frost SDW. Hepatitis C virus and alanine aminotransferase kinetics following B-lymphocyte depletion with rituximab: evidence for a significant role of humoral immunity in the control of viremia in chronic HCV liver disease. Blood 2007; 109:845-6. [PMID: 17210867 DOI: 10.1182/blood-2006-08-041525] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Abstract
Humoral immunity is considered a key component of effective vaccines against HIV-1. Hence, an enormous effort has been put into investigating the neutralizing antibody response to HIV-1 over the past 20 years which generated key information on epitope specificity, potency, breadth and in vivo activity of the neutralizing antibodies. Less clear is still the role of antibody-mediated effector functions (antibody-dependent cellular cytotoxicity, phagocytosis, complement system) and uncertainty prevails whether Fc-mediated mechanisms are largely beneficial or detrimental for the host. The current knowledge on the manifold functions of the humoral immune response in HIV infection, their underlying mechanisms and potential in vaccine-induced immunity will be discussed in this review.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
45
|
Kim JO, Chakrabarti BK, Guha-Niyogi A, Louder MK, Mascola JR, Ganesh L, Nabel GJ. Lysis of human immunodeficiency virus type 1 by a specific secreted human phospholipase A2. J Virol 2006; 81:1444-50. [PMID: 17093191 PMCID: PMC1797512 DOI: 10.1128/jvi.01790-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase A2 (PLA2) proteins affect cellular activation, signal transduction, and possibly innate immunity. A specific secretory PLA2, sPLA2-X, is shown here to neutralize human immunodeficiency virus type 1 (HIV-1) through degradation of the viral membrane. Catalytic function was required for antiviral activity, and the target cells of infection were unaffected. sPLA2-X potently reduced gene transfer of HIV-1 Env-pseudotyped lentivirus vectors and inhibited the replication of both CCR5- and CXCR4-tropic HIV-1 in human CD4+ T cells. Virions resistant to damage by antibody and complement were sensitive to lysis by sPLA2-X, suggesting a novel mechanism of antiviral surveillance independent of the acquired immune system.
Collapse
Affiliation(s)
- Jae-Ouk Kim
- Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Bldg. 40, MSC-3005, 40 Convent Dr., Bethesda, MD 20892-3005, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Bánki Z, Wilflingseder D, Ammann CG, Pruenster M, Müllauer B, Holländer K, Meyer M, Sprinzl GM, van Lunzen J, Stellbrink HJ, Dierich MP, Stoiber H. Factor I-mediated processing of complement fragments on HIV immune complexes targets HIV to CR2-expressing B cells and facilitates B cell-mediated transmission of opsonized HIV to T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3469-76. [PMID: 16920989 DOI: 10.4049/jimmunol.177.5.3469] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our study demonstrates that binding of complement-opsonized HIV to complement receptor type 1 on human erythrocytes (E) via C3b fragments is followed by a rapid normal human serum-mediated detachment of HIV from E. The release was dependent on the presence of factor I indicating a conversion of C3b fragments to iC3b and C3d on the viral surface. This in turn resulted in an efficient binding of opsonized HIV to CR2-expressing B cells, thus facilitating B cell-mediated transmission of HIV to T cells. These data provide a new dynamic view of complement opsonization of HIV, suggesting that association of virus with E might be a transient phenomenon and the factor I-mediated processing of C3b to iC3b and C3d on HIV targets the virus to complement receptor type 2-expressing cells. Thus, factor I in concert with CR1 on E and factor H in serum due to their cofactor activity are likely to be important contributors for the generation of C3d-opsonized infectious HIV reservoirs on follicular dendritic cells and/or B cells in HIV-infected individuals.
Collapse
Affiliation(s)
- Zoltán Bánki
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mark L, Spiller OB, Villoutreix BO, Blom AM. Kaposi's sarcoma-associated herpes virus complement control protein: KCP--complement inhibition and more. Mol Immunol 2006; 44:11-22. [PMID: 16905191 DOI: 10.1016/j.molimm.2006.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 01/06/2023]
Abstract
The complement system is an important part of innate immunity providing immediate protection against pathogens without a need for previous exposure, as well as priming the adaptive immune response through opsonisation, leukocyte recruitment and enhancing humoral immune responses. Its importance is not only shown through recurring fulminant infections in individuals with complement component deficiencies, but also through the many complement evasion strategies discovered for a wide range of infectious microbes (including acquisition of endogenous host complement inhibitors and expression of own homologues). Knowledge of these mechanisms at a molecular level may aid development of vaccines and novel therapeutic strategies. Here, we review the structure-function studies of the membrane-bound complement inhibitor KCP that is expressed on the surface of Kaposi's sarcoma-associated herpesvirus (KSHV) virions and infected cells. KCP accelerates the decay of classical C3 convertase and induces the degradation of activated complement factors C4b and C3b by a serine proteinase, factor I. Molecular modeling and site-directed mutagenesis have identified sites on the surface of KCP required for complement inhibition and support the hypothesis that KCP has evolved to mimic the structure and function of endogenous human inhibitors. KCP additionally enhances virion binding to permissive cells through a heparin/heparan sulfate-binding site located at the N-terminus of the protein.
Collapse
Affiliation(s)
- Linda Mark
- Department of Laboratory Medicine, Lund University, University Hospital Malmö, Malmö S-20502, Sweden
| | | | | | | |
Collapse
|
48
|
Moutsopoulos NM, Greenwell-Wild T, Wahl SM. Differential mucosal susceptibility in HIV-1 transmission and infection. Adv Dent Res 2006; 19:52-6. [PMID: 16672550 DOI: 10.1177/154407370601900111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HIV infection occurs primarily through mucosal surfaces, indicating that protection at mucosal sites may be crucial in prevention and treatment. The host innate and adaptive immune elements provide a level of protection, which differs between mucosal compartments, and appears to be most successful in the oral environment, where transmission is rare. In addition to the distinct oral mucosal architecture and cellular constituents, oral fluids, unlike other mucosal secretions, are rarely a vehicle for HIV infection. Multiple soluble factors may contribute to this antiviral activity, including neutralizing antibodies, secretory leukocyte protease inhibitor (SLPI), antiviral peptides such as defensins and cystatins, glycoproteins including thrombospondin and lactoferrin, and complement components. Understanding the antiviral activities of these and other potential resistance factors is becoming increasingly important in attempts to design treatments in the era of HAART resistance. In this regard, the mechanism of anti-HIV action of SLPI has recently been further elucidated by the discovery of its binding protein/receptor, which plays a key role in the infection of macrophages and may consequently be a novel therapeutic target. Continued elucidation of the unique features of mucosal HIV immunology is essential for understanding HIV pathogenesis and for developing effective vaccines and therapeutics.
Collapse
Affiliation(s)
- N M Moutsopoulos
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Rm. 320, 30 Convent Dr., MSC 4352, Bethesda, MD 20892-4352, USA
| | | | | |
Collapse
|