1
|
Choudhary C, Kishore D, Meghwanshi KK, Verma V, Shukla JN. A sex-specific homologue of waprin is essential for embryonic development in the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2025; 34:111-121. [PMID: 39167359 DOI: 10.1111/imb.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Waprin, a WAP (Whey acidic protein) domain-containing extracellular secretory protein, is widely known for its antibacterial properties. In this study, a waprin homologue (Tc_wapF) expressing in a female-specific manner was identified in Tribolium castaneum, through the analysis of sex-specific transcriptomes. Developmental- and tissue-specific profiling revealed the widespread expression of Tc_wapF in adult female tissues, particularly in the ovary, gut and fatbody. This female-specific expression of Tc_wapF is not regulated by the classical sex-determination cascade of T. castaneum, as we fail to get any attenuation in Tc_wapF transcript levels in Tcdsx and Tctra (key players of sex determination cascade of T. castaneum) knockdown females. RNA interference-mediated knockdown of Tc_wapF in females led to the non-hatching of eggs laid by these females, suggesting the crucial role of Tc_wapF in the embryonic development in T. castaneum. This is the first report on the identification of a sex-specific waprin homologue in an insect and its involvement in embryonic development. Future investigations on the functional conservation of insect waprins and their mechanistic role in embryonic development can be exploited for improving pest management strategies.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Divyanshu Kishore
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vivek Verma
- Gujarat Biotechnology University, Gandhinagar, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
2
|
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024; 10:e38079. [PMID: 39386776 PMCID: PMC11462253 DOI: 10.1016/j.heliyon.2024.e38079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a critical component of the innate immune system, playing a key role in defending against a variety of pathogenic microorganisms. While many AMPs act primarily on the cell membrane of target pathogens, leading to lysis and subsequent cell death, less is known about their nonlytic membrane activity. This nonlytic activity allows AMPs to target and disrupt bacterial cells without causing lysis, leading to bacterial death through alternative mechanisms.Understanding these nonlytic properties of AMPs is crucial, as they present a promising alternative to traditional antibiotics, which can induce bacterial resistance and have adverse effects on human health and the environment. The mechanisms by which AMPs exhibit nonlytic membrane activity are still being explored. However, it is believed that AMPs penetrate the bacterial membrane and interact directly with internal cellular components such as DNA, RNA, and various enzymes essential for microbial survival and replication. This interaction disrupts metabolic homeostasis, ultimately resulting in bacterial death.The nonlytic activity of AMPs also results in minimal damage to host cells and tissues, making them attractive candidates for the development of new, more effective antibiotics. This review emphasizes the mechanisms by which AMPs nonlytically target cellular components, including DNA, proteins, RNA, and other biomolecules, and discusses their clinical significance. Understanding these mechanisms may pave the way for developing alternatives to conventional antibiotics, offering a solution to the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Gagandeep K R
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Ramesh Balenahalli Narasingappa
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Gatta Vishnu Vyas
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
- ICAR-AICRP On Post Harvest Engineering and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, 560065, India
| |
Collapse
|
3
|
Si Q, Min X, Dai X, Gao Q, Jiang Q, Ren Q. Diversity of MrTolls and their regulation of antimicrobial peptides expression during Enterobacter cloacae infection in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109279. [PMID: 38072137 DOI: 10.1016/j.fsi.2023.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Toll/Toll-like receptor (TLR) is an important pattern recognition receptor that plays an important role in the immunity of animals. Six Toll genes were identified in Macrobrachium rosenbergii, namely, MrToll, MrToll1, MrToll2, MrToll3, MrToll4, and MrToll5. SMART analysis showed that all six Tolls have a transmembrane domain, a TIR domain, and different number of LRR domains. The phylogenetic tree showed that six Tolls were located in six different branches. Among these six Tolls, only MrToll4 contains the QHR motif, which is similar to insect Toll9. MrToll4 belongs to V-type/scc Toll with only one LRRCT domain. MrToll1 and MrToll5 are classical P-type/mcc Toll with two LRRCT domains and an LRRNT. MrTolls were distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. During the infection of Enterobacter cloacae, the expression level of MrToll and MrToll1-4 was upregulated in the intestine of M. rosenbergii. RNA interference experiments showed that the expression of most antimicrobial peptide (AMP) genes was negatively regulated by MrTolls during E. cloacae infection. On the contrary, crustin (Cru) 3 and Cru4 were inhibited after the knockdown of MrToll, and Cru1 and Cru4 were significantly downregulated with the knockdown of MrToll4 during E. cloacae challenge. These results suggest that MrTolls may be involved in the regulation of AMP expression in the intestine during E. cloacae infection.
Collapse
Affiliation(s)
- Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu, 211100, China
| | - Xiuwen Min
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China.
| |
Collapse
|
4
|
Martinez-Porchas M, Hernández-López J, Vargas-Albores F. Where are the Penaeids crustins? PeerJ 2023; 11:e15596. [PMID: 37489125 PMCID: PMC10363340 DOI: 10.7717/peerj.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Crustins are antimicrobial peptides and members of the four-disulfide core (4-DSC) domain-containing proteins superfamily. To date, crustins have only been reported in crustaceans and possess a structural signature characterized by a single 4-DSC domain and one cysteine-rich region. The high-throughput sequencing technologies have produced vastly valuable genomic information that sometimes dilutes information about previously sequenced molecules. This study aimed (1) to corroborate the loss of valuable descriptive information regarding crustin identification when high throughput sequencing carries out automatic annotation processes and (2) to detect possible crustin sequences reported in Penaeids to attempt a list considering structural similarities, which allows the establishment of phylogenetic relationships based on molecular characteristics. All crustins sequences reported in Penaeids and registered in the databases were obtained. The first list was made with the proteins reported as crustin or carcinin, excluding those that did not meet the structural characteristics. Subsequently, using local alignments, sequences were sought with high similarity even if they had been reported with a different name of crustin but with a probability of being crustin. This broader list, including proteins with high structural similarity, can help establish phylogenetic relationships of shrimp genes and the evolutionary trajectory of this antimicrobial distributed exclusively among crustaceans. Results revealed that in most sequences obtained by Sanger or transcriptomics, which met the structural criteria, the identification was correctly established as crustin. Contrarily, the sequences corresponding to crustins obtained by whole genome sequencing projects were incorrectly classified or not characterized, being momentarily "buried" in the information generated. In addition, the sequences that complied with the criteria of crustin tended to be grouped into species separated by geographical regions; for example, the crustins of the inhabitant shrimp of the American coasts differ from those corresponding to the natives of the Asian coasts. Finally, the results suggest the convenience of annotations considering the previous but correct information, even if such information was generated with previous technologies.
Collapse
|
5
|
Xu K, Wang W, Liu D, Wang C, Zhu J, Yan B, Gao H, Hu G. Characterization of a crustin-like peptide involved in shrimp immune response to bacteria and Enterocytozoon hepatopenaei (EHP) infection in Palaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2023:108871. [PMID: 37295736 DOI: 10.1016/j.fsi.2023.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/12/2023]
Abstract
Crustins represent one type of antimicrobial peptides (AMPs) that are key components of the innate immune process of crustaceans. This study successfully identified a novel crustin-like peptide, EcCrustin2, in ridgetail white prawn, Palaemon carinicauda (formerly Exopalaemon carinicauda). EcCrustin2 was found to be 1082 bp in length, with a 378 bp open reading frame (ORF) encoding 125 amino acids. The deduced amino acid sequence of EcCrustin2 exhibited characteristics of crustins in crustacean, including a Cys-rich region at the N-terminus as well as a whey acidic protein domain at the C-terminus. Phylogenetic analysis revealed that the EcCrustin2 was first clustered with Type I crustins, then with other crustins. Expression of EcCrustin2 was mainly detected in immune tissues, including hemocytes, gill and stomach. The expression level of EcCrustin2 was also significantly up-regulated after being exposed to lipopolysaccharide (LPS), lipoteichoic acid (LTA), Vibrio parahaemolyticus and Staphylococcus aureus. EHP infection could also induce EcCrustin2 expression in P. carinicauda. Knockdown of EcCrustin2 with siRNA increased the mortality of V. parahaemolyticus challenged shrimp. Finally, the recombinant EcCrustin2 protein was obtained and demonstrated a wide spectrum of antibacterial activity in vitro. These results indicated that EcCrustin2 takes part in the immune response against bacteria and EHP infection.
Collapse
Affiliation(s)
- Kai Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China
| | - Weili Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China
| | - Dong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China
| | - Chao Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China
| | - Jun Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guangwei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 22005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Lv X, Li S, Yu Y, Zhang X, Li F. Crustin Defense against Vibrio parahaemolyticus Infection by Regulating Intestinal Microbial Balance in Litopenaeus vannamei. Mar Drugs 2023; 21:md21020130. [PMID: 36827171 PMCID: PMC9963704 DOI: 10.3390/md21020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Crustins are a kind of antimicrobial peptide (AMP) that exist in crustaceans. Some crustins do not have direct antimicrobial activity but exhibit in vivo defense functions against Vibrio. However, the underlying molecular mechanism is not clear. Here, the regulatory mechanism was partially revealed along with the characterization of the immune function of a type I crustin, LvCrustin I-2, from Litopenaeus vannamei. LvCrustin I-2 was mainly detected in hemocytes, intestines and gills and was apparently up-regulated after Vibrio parahaemolyticus infection. Although the recombinant LvCrustin I-2 protein possessed neither antibacterial activity nor agglutinating activity, the knockdown of LvCrustin I-2 accelerated the in vivo proliferation of V. parahaemolyticus. Microbiome analysis showed that the balance of intestinal microbiota was impaired after LvCrustin I-2 knockdown. Further transcriptome analysis showed that the intestinal epithelial barrier and immune function were impaired in shrimp after LvCrustin I-2 knockdown. After removing the intestinal bacteria via antibiotic treatment, the phenomenon of impaired intestinal epithelial barrier and immune function disappeared in shrimp after LvCrustin I-2 knockdown. This indicated that the impairment of the shrimp intestine after LvCrustin I-2 knockdown was caused by the dysbiosis of the intestinal microbiota. The present data suggest that crustins could resist pathogen infection through regulating the intestinal microbiota balance, which provides new insights into the functional mechanisms of antimicrobial peptides during pathogen infection.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (F.L.)
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (S.L.); (F.L.)
| |
Collapse
|
7
|
Punginelli D, Schillaci D, Mauro M, Deidun A, Barone G, Arizza V, Vazzana M. The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104258. [PMID: 34530039 DOI: 10.1016/j.dci.2021.104258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Department of Geosciences, Faculty of Science, University of Malta, Msida MSD, 2080, Malta
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
8
|
Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents. Mar Drugs 2021; 19:md19110600. [PMID: 34822471 PMCID: PMC8626000 DOI: 10.3390/md19110600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Crustins are widely distributed among different crustacean groups. They are characterized by a whey acidic protein (WAP) domain, and most examined Crustins show activity against Gram-positive bacteria. This study reports two Crustins, Al-crus 3 and Al-crus 7, from hydrothermal vent shrimp, Alvinocaris longirostris. Al-crus 3 and Al-crus 7 belong to Crustin Type IIa, with a similarity of about 51% at amino acid level. Antibacterial assays showed that Al-crus 3 mainly displayed activity against Gram-positive bacteria with MIC50 values of 10–25 μM. However, Al-crus 7 not only displayed activity against Gram-positive bacteria but also against Gram-negative bacteria Imipenem-resistant Acinetobacter baumannii, in a sensitive manner. Notably, in the effective antibacterial spectrum, Methicillin-sensitive Staphylococcus aureus, Escherichia coli (ESBLs) and Imipenem-resistant A. baumannii were drug-resistant pathogens. Narrowing down the sequence to the WAP domain, Al-crusWAP 3 and Al-crusWAP 7 demonstrated antibacterial activities but were weak. Additionally, the effects on bacteria did not significantly change after they were maintained at room temperature for 48 h. This indicated that Al-crus 3 and Al-crus 7 were relatively stable and convenient for transportation. Altogether, this study reported two new Crustins with specific characteristics. In particular, Al-crus 7 inhibited Gram-negative imipenem-resistant A. baumannii.
Collapse
|
9
|
Wang Y, Zhang J, Sun Y, Sun L. A Crustin from Hydrothermal Vent Shrimp: Antimicrobial Activity and Mechanism. Mar Drugs 2021; 19:176. [PMID: 33807037 PMCID: PMC8005205 DOI: 10.3390/md19030176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Crustin is a type of antimicrobial peptide and plays an important role in the innate immunity of arthropods. We report here the identification and characterization of a crustin (named Crus1) from the shrimp Rimicaris sp. inhabiting the deep-sea hydrothermal vent in Manus Basin (Papua New Guinea). Crus1 shares the highest identity (51.76%) with a Type I crustin of Penaeus vannamei and possesses a whey acidic protein (WAP) domain, which contains eight cysteine residues that form the conserved 'four-disulfide core' structure. Recombinant Crus1 (rCrus1) bound to peptidoglycan and lipoteichoic acid, and effectively killed Gram-positive bacteria in a manner that was dependent on pH, temperature, and disulfide linkage. rCrus1 induced membrane leakage and structure damage in the target bacteria, but had no effect on bacterial protoplasts. Serine substitution of each of the 8 Cys residues in the WAP domain did not affect the bacterial binding capacity but completely abolished the bactericidal activity of rCrus1. These results provide new insights into the characteristic and mechanism of the antimicrobial activity of deep sea crustins.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- School of Ocean, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
11
|
Lv X, Li S, Yu Y, Zhang X, Li F. Characterization of a gill-abundant crustin with microbiota modulating function in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 105:393-404. [PMID: 32702477 DOI: 10.1016/j.fsi.2020.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Gills as the respiratory tissue of crustacean encounter various threats in the environment. The immune defense in gills is essential to the health of shrimp. In the present study, we identified a novel gill-abundant crustin, LvCrustin Ⅱ-1, from the shrimp Litopenaeus vannamei. The full-length open reading frame of LvCrustin Ⅱ-1 is 522 bp, which encodes 173 amino acid residues. The amino acid sequence of LvCrustin Ⅱ-1 contained a signal peptide, a glycine rich region, a cysteine rich region and a whey acidic protein (WAP) domain. The expression level of LvCrustin Ⅱ-1 was significantly up-regulated at different time points after Vibrio parahaemolyticus immersion. When LvCrustin Ⅱ-1 was silenced by dsRNA interference, the count of bacteria colonies increased significantly in the hepatopancreas of shrimp after V. parahaemolyticus immersion, which indicated that the infection progress of pathogenic bacteria was accelerated after LvCrustin Ⅱ-1 knockdown. Compared with the microbiota of seawater, the lower proportion of aquatic bacteria and higher proportion of symbiont in the gills microbiota of shrimp indicated the bacterial colonization was modulated by the host. Knockdown of LvCrustin Ⅱ-1 changed the proportion of some potential pathogens and aquatic bacteria, which supported the idea that the new identified crustin in the gills played important roles in modulation of the microbiota community in shrimp. The present data provided new insights into the multiple functions of crustin in the immunity of shrimp.
Collapse
Affiliation(s)
- Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
12
|
Lv X, Li S, Yu Y, Xiang J, Li F. The immune function of a novel crustin with an atypical WAP domain in regulating intestinal microbiota homeostasis in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103756. [PMID: 32485179 DOI: 10.1016/j.dci.2020.103756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Crustins are a family of antimicrobial peptides (AMP) with multiple functions, including antimicrobial activity, capability of protease inhibition, phagocytosis promotion, and wound healing in crustaceans. Till present, several members of crustins have been identified and their activities were studied. However, there are still less investigations on how they play functions in vivo. Here, we identified a novel crustin with an atypical WAP domain, LvCrustin Ⅰ-1, which is mainly distributed in tissues, including intestine, gill, epidermis and stomach of the shrimp Litopenaeus vannamei. The expression level of LvCrustin Ⅰ-1 was significantly up-regulated at 3 h, 6 h, 12 h, and 24 h after Vibrio parahaemolyticus infection. Knockdown of LvCrustin Ⅰ-1 with dsRNA resulted in a significant increase of the bacteria number in hepatopancreas of shrimp upon V. parahaemolyticus infection, showing that LvCrustin Ⅰ-1 participated in pathogen infection process. Recombinant LvCrustin Ⅰ-1 protein showed microorganism-binding activity rather than antibacterial activity against tested bacteria. Furthermore, significant difference existed between the intestinal microbiota in shrimp before and after LvCrustin Ⅰ-1 knockdown based on the result of alpha and NMDS analyses. Knockdown of LvCrustin Ⅰ-1 increased the proportion of Demequina, Nautella, Propionibacterium, Anaerospora and decreased the proportion of Bacteroidia and Vibrio. These data suggest that LvCrustin Ⅰ-1 might perform its immunological function through modulation of the intestinal microbiota homeostasis rather than direct inhibition of bacterial growth in shrimp.
Collapse
Affiliation(s)
- Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
13
|
Li S, Lv X, Yu Y, Zhang X, Li F. Molecular and Functional Diversity of Crustin-Like Genes in the Shrimp Litopenaeus vannamei. Mar Drugs 2020; 18:E361. [PMID: 32668696 PMCID: PMC7401287 DOI: 10.3390/md18070361] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Crustins are crustacean cationic cysteine-rich antimicrobial peptides that contain one or two whey acidic protein (WAP) domain(s) at the carboxyl terminus and mainly show antimicrobial and/or proteinase inhibitory activities. Here, we performed genome and transcriptome screening and identified 34 full-length crustin-like encoding genes in Litopenaeus vannamei. Multiple sequence analysis of the deduced mature peptides revealed that these putative crustins included 10 type Ia, two type Ib, one type Ic, 11 type IIa, three type IIb, four type III, one type IV, one type VI, and one type VII. These putative crustins were clustered into different groups. Phylogenetic analysis, considering their domain composition, showed that different types of crustin-like genes in crustaceans might be originated from the WAP core region, along with sequence insertion, duplication, deletion, and amino acid substitution. Tissue distribution analysis suggested that most crustin-like genes were mainly detected in immune-related tissues while several crustin-like genes exhibited tissue-specific expression patterns. Quantitative PCR analysis on 15 selected crustin-like genes showed that most of them were apparently upregulated after Vibrio parahaemolyticus or white spot syndrome virus (WSSV) infection. One type Ib crustin-like gene, mainly expressed in the ovary, showed the highest expression levels before the gastrula stage and was hardly detected after the limb bud stage, suggesting that it was a maternal immune effector. Collectively, the present data revealed the molecular and functional diversity of crustins and their potential evolutionary routes in crustaceans.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Dai X, Huang X, Zhang Z, Zhang R, Cao X, Zhang C, Wang K, Ren Q. Molecular cloning and expression analysis of two type II crustin genes in the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 98:446-456. [PMID: 31904538 DOI: 10.1016/j.fsi.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Innate immunity is the primary defense of crustaceans against pathogens. Crustins, as antimicrobial peptides, are important to crustacean innate immunity. In this study, two kinds of Gly-rich crustin genes were cloned from Macrobrachium nipponense and were referred to as Mn-Gly-Cru1 and Mn-Gly-Cru2. These crustins belong to type II crustins with typical type II crustin structures. The full-length cDNA of Mn-Gly-Cru1 is 677 bp and contains a 576 bp open reading frame (ORF) encoding 191 amino acids. The full-length cDNA of Mn-Gly-Cru2 is 727 bp, with 573 bp ORF encoding 190 amino acids. The constructed phylogenetic tree indicated that Mn-Gly-Cru1 and Mn-Gly-Cru2 belong to the type IIa subfamily. RT-PCR analysis showed that Mn-Gly-Cru1 and Mn-Gly-Cru2 are widely distributed in various tissues. qRT-PCR results indicated that Mn-Gly-Cru1 is mainly expressed in the gills, whereas Mn-Gly-Cru2 is expressed at the highest level in hemocytes. The transcripts of Mn-Gly-Cru1 and Mn-Gly-Cru2 respond to bacterial or white spot syndrome virus (WSSV) stimuli. After injection of 48 h dsMnRelish, the expression of MnRelish, Mn-Gly-Cru1, and Mn-Gly-Cru2 were all inhibited. After WSSV, Vibrio parahaemolyticus, or Staphylococcus aureus challenge, MnRelish, Mn-Gly-Cru1, and Mn-Gly-Cru2 were all upregulated. However, the expression levels of MnRelish, Mn-Gly-Cru1, and Mn-Gly-Cru2 at 6 h bacteria or 36 h WSSV challenge were downregulated in Relish-silenced prawns when compared with the control (bacteria or WSSV challenge only, bacteria or WSSV challenge plus dsGFP injection). Results suggest that Mn-Gly-Cru1 and Mn-Gly-Cru2 play essential roles in M. nipponense innate immunity against bacteria or WSSV, and the expression levels of both genes are regulated by Relish transcriptional factor.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhuoxing Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
15
|
Purification of WAP domain-containing antimicrobial peptides from green tiger shrimp Peaneaus semisulcatus. Microb Pathog 2019; 140:103920. [PMID: 31843546 DOI: 10.1016/j.micpath.2019.103920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022]
Abstract
Antimicrobial peptide crustin was isolated and purified from Penaeus semisulcatus using Sephadox G-100 column gel filtration chromatography. P. semisulcatus crustins was observed as a single band with 14 kDa of molecular weight on SDS-PAGE and the retention time of 46 min in RP-HPLC. Circular dichroism spectra of P. semisulcatus crustin showed alpha helices in its secondary structure followed by random coils. Crystalline nature and functional groups arrangement were investigated by X-Ray Diffraction (XRD) and Fourier Transform Infra-Red spectroscopy (FTIR). P. semisulcatus crustin showed the effective antibacterial activity against Gram positive strains B. thuringienisis (4 μg/ml) and B. pumilis (6 μg/ml) when compare to Gram negative strains. Biofilm Inhibitory Concentration (BIC) were determined for these strains and percentage of biofilm inhibition was confirmed and visualized through in sit microscopic analysis. Hence, we reported the effect of crustin on biofilm inhibition and eradication at low concentrations by using crystal violet staining and confocal microscopic observations. In addition, haemolytic activity of this purified crustin also analysed using human RBCs. The results of this study, suggests that this bio peptide crustin is a potential and promising therapeutic agent to treat drug resistant bacteria and biofilm-related infections.
Collapse
|
16
|
Li M, Ma C, Zhu P, Yang Y, Lei A, Chen X, Liang W, Chen M, Xiong J, Li C. A new crustin is involved in the innate immune response of shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 94:398-406. [PMID: 31521782 DOI: 10.1016/j.fsi.2019.09.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Crustin is an antimicrobial peptide (AMP) that plays a key role in the innate immunity of crustaceans. This study cloned a new crustin from Pacific white shrimp Litopenaeus vannamei, which we designated as LvCrustinB, using rapid amplification of cDNA ends (RACE). The full-length cDNA of LvCrustinB is 751 bp with an open reading frame (ORF) of 591 bp encoding a peptide of 196 amino acids that includes a putative signal sequence. LvCrustinB is a type II crustin that has a glycine-rich region and a single whey acidic protein domain (WAP) domain. The mRNA transcript of LvCrustinB was detected in all examined tissues and was found to be most abundantly expressed in the epithelium and muscle. The expression of LvCrustinB in hemocytes was significantly upregulated after L. vannamei was challenged with LPS, Vibrio parahaemolyticus, and white spot syndrome virus (WSSV). When LvCrustinB was knocked down with RNAi, the mortality rate of L. vannamei significantly increased after V. parahaemolyticus or WSSV infection. Recombinant LvCrustinB was produced using Pichia pastoris GS115 and was shown to bind to 2 g-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and 2 g-negative bacteria (Escherichia coli and V. parahaemolyticus) via polysaccharides, which included PGN, LTA, and LPS. In vivo, the recombinant LvCrustinB remarkably protected L. vannamei from V. parahaemolyticus infection. These results suggest that LvCrustinB plays an important role in innate immunity and may be potentially utilized as antibacterial agents in shrimp.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, PR China
| | - Yanhao Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Aiyingi Lei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Wanwen Liang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Ming Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Jianha Xiong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China.
| | - Chaozheng Li
- State Key Laboratory of Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China.
| |
Collapse
|
17
|
Du ZQ, Wang Y, Ma HY, Shen XL, Wang K, Du J, Yu XD, Fang WH, Li XC. A new crustin homologue (SpCrus6) involved in the antimicrobial and antiviral innate immunity in mud crab, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2019; 84:733-743. [PMID: 30381264 DOI: 10.1016/j.fsi.2018.10.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Crustins play important roles in defending against bacteria in the innate immunity system of crustaceans. In present study, we identified a crustin gene in Scylla paramamosain, which was named as SpCrus6. The ORF of SpCrus6 possessed a signal peptide sequence (SPS) at the N-terminus and a WAP domain at the C-terminus. And there were 5 Proline residues, 5 Glycine and 4 Cysteine residues between SPS and WAP domain in SpCrus6. These features indicated that SpCrus6 was a new member of crustin family. The SpCrus6 mRNA transcripts were up-regulated obviously after bacteria or virus challenge. These changes showed that SpCrus6 was involved in the antimicrobial and antiviral responses of Scylla paramamosain. Recombinant SpCrus6 (rSpCrus6) showed strong inhibitory abilities against Gram-positive bacteria (Bacillus megaterium, Staphylococcus aureus, and Bacillus subtilis). But the inhibitory abilities against four Gram-negative bacteria (Vibrio parahemolyticus, Vibrio alginolyticus, Vibrio harveyi and Escherichia coli) and two fungi (Pichia pastoris and Candida albicans) were not strong enough. Besides, rSpCrus6 could strongly bind to two Gram-positive bacteria (B. subtilis and B. megaterium) and three Gram-negative bacteria (V. alginolyticus, V. parahemolyticus, and V. harveyi). And the binding levels to S. aureus and two fungi (P. pastoris and C. albicans) were weak. The polysaccharides binding assays' results showed rSpCrus6 had superior binding activities to LPS, LTA, PGN and β-glucan. Through agglutinating assays, we found rSpCrus6 could agglutinate well three Gram-positive bacteria (S. aureus, B. subtilis and B. megaterium). And the agglutinating activities to Gram-negative bacteria and fungi were not found. In the aspect of antiviral functions, rSpCrus6 could bind specifically to the recombinant envelop protein 26 (rVP26) of white spot syndrome virus (WSSV) but not to recombinant envelop protein 28 (rVP28), whereas GST protein could not bind to rVP26 or rVP28. Besides, rSpCrus6 could suppress WSSV reproduction to some extent. Taken together, SpCrus6 was a multifunctional immunity effector in the innate immunity defending response of S. paramamosain.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Yue Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hong-Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Kai Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jie Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Xiao-Dong Yu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China.
| |
Collapse
|
18
|
Tandel GM, Kondo H, Hirono I. Gills specific type 2 crustin isoforms: Its molecular cloning and characterization from kuruma shrimp Marsupenaeus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:25-30. [PMID: 29596851 DOI: 10.1016/j.dci.2018.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/19/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Crustins are diverse group of antimicrobial peptides (AMPs) that have numerous isoforms mainly identified from hemocytes in decapods crustacean. However, little is known about its presence solely in gills tissue. In this study, we found two new crustin isoforms MjCRS8 and MjCRS9 by using transcriptome analysis from gills. Open reading frame of MjCRS8 and MjCRS9 were 593 bp and 459 bp encoding 197aa and 152aa, respectively. Tissue distribution analysis indicated that both MjCRS8 and MjCRS9 are expressed only in gills tissue. Multiple sequence alignment and phylogenetic analysis with previously reported crustin suggested that both MjCRS8 and MjCRS9 belong to type 2 crustin family. Experimental infection was conducted against Vibrio parahaemolyticus and white spot syndrome virus (WSSV) by immersion test. However, no significant upregulation was observed.
Collapse
Affiliation(s)
- Gauravkumar M Tandel
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
19
|
Wang Y, Zhang XW, Wang H, Fang WH, Ma H, Zhang F, Wang Y, Li XC. SpCrus3 and SpCrus4 share high similarity in mud crab (Scylla paramamosain) exhibiting different antibacterial activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:139-151. [PMID: 29352984 DOI: 10.1016/j.dci.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Type I crustins are crucial effectors of crustacean immune system. Various type I crustins with high sequence diversity possess different antimicrobial activities. To date, the mechanism on how the sequence diversity of type I crustins affects their antimicrobial activities is largely unclear, and how different crustins function together against bacterial invasion still remains unknown. In this study, we identified two novel type I crustins, namely, SpCrus3 and SpCrus4, from an economically important crab, Scylla paramamosain. Either SpCrus3 or SpCrus4 was highly expressed in gill. After challenges with Vibrio parahemolyticus or Staphylococcus aureus, SpCrus4 was up-regulated, whereas SpCrus3 was down-regulated. No significant expression change of SpCrus3 and SpCrus4 was observed after white spot syndrome virus injection, suggesting that these two genes may not participate in the antiviral immune responses. SpCrus3 and SpCrus4 had the common 5' terminus and high similarity of 66.06%, but SpCrus4 exhibited stronger antimicrobial activity than that of SpCrus3. Microorganism-binding assay results revealed that both SpCrus3 and SpCrus4 exhibited binding ability to all tested microorganisms. Furthermore, the polysaccharide-binding assay showed that these two proteins exhibited strong binding activity to bacterial polysaccharides, such as lipopolysaccharide (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN). SpCrus3 and SpCrus4 exhibited stronger binding activity to LPS or LTA than to PGN. Moreover, SpCrus4 showed stronger binding activity to LTA than that of SpCrus3, which may be responsible for the significantly distinct antimicrobial activity between these two proteins. In addition, SpCrus4 displayed stronger agglutination activity against several kinds of microorganisms than that of SpCrus3. This increased agglutination activity may also contribute to the strong antibacterial activity of SpCrus4. On the basis of all these results, a possible antibacterial mode exerted by SpCrus3 and SpCrus4 was proposed as follows. SpCrus3 was highly expressed in normal crabs to maintain low-level antibacterial activity without bacterial challenges. When crabs were challenged with bacteria, large amount of SpCrus4 was generated to exhibit strong antibacterial activity against bacterial invasion. This study provides new insights to understand the antibacterial functions and mechanisms of type I crustins.
Collapse
Affiliation(s)
- Yue Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China; College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao-Wen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hui Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fengxia Zhang
- Department of Arts and Sciences, New York University, Shanghai, 200122, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, Shanghai, 200090, China.
| |
Collapse
|
20
|
Specific Molecular Signatures for Type II Crustins in Penaeid Shrimp Uncovered by the Identification of Crustin-Like Antimicrobial Peptides in Litopenaeus vannamei. Mar Drugs 2018; 16:md16010031. [PMID: 29337853 PMCID: PMC5793079 DOI: 10.3390/md16010031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/23/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023] Open
Abstract
Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or “Crustins” and Type IIb or “Crustin-like”) possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV). As Crustin Lv, Crustin-like Lv transcripts were found to be present early in development, suggesting a maternal contribution to shrimp progeny. Altogether, our in silico and transcriptional data allowed to conclude that (1) each sub-type displays a specific amino acid signature at the C-terminal end holding both the cysteine-rich region and the whey acidic protein (WAP) domain, and that (2) shrimp Type II crustins evolved from a common ancestral gene that conserved a similar pattern of transcriptional regulation.
Collapse
|
21
|
Sruthy KS, Nair A, Puthumana J, Antony SP, Singh ISB, Philip R. Molecular cloning, recombinant expression and functional characterization of an antimicrobial peptide, Crustin from the Indian white shrimp, Fenneropenaeus indicus. FISH & SHELLFISH IMMUNOLOGY 2017; 71:83-94. [PMID: 28964865 DOI: 10.1016/j.fsi.2017.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial peptides (AMPs) comprise molecules that involve in the defense mechanism of various organisms towards pathogens such as bacteria, fungi, parasites and viruses. Crustins are generally defined as multi-domain cationic antimicrobial peptides containing one whey acidic protein (WAP) domain at the C-terminus as the functional unit. In this study, we identified and characterized a novel crustin homolog (Fi-Crustin2) with 354 bp fragment cDNA encoding 117 amino acids and an ORF of 100 amino acids with a net charge of +1 from the mRNA of F. indicus haemocytes. This study forms the second report of a crustin isoform from F. indicus. Blast analysis revealed that Fi-crustin2 exhibits similarity to shrimp crustins already reported. The active mature peptide has a molecular weight of 10.61 kDa and pI of 7.59 with a beta sheeted structure. The mature peptide was cloned into pET-32a(+) with a N-terminal hexa-histidine tag fused in-frame, and expressed in Escherichia coli, and the recombinant crustin, Fi-crustin2 inhibited the growth of Gram-negative bacteria with low MIC. All these features suggest that Fi-crustin2 is a potent antibacterial protein against Gram-negative bacteria and could play an important role in the innate immune mechanism of F. indicus.
Collapse
Affiliation(s)
- K S Sruthy
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, Kerala, India
| | - Aishwarya Nair
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, Kerala, India
| | - J Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, Kerala, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, Kerala, India.
| |
Collapse
|
22
|
Vargas-Albores F, Martínez-Porchas M. Crustins are distinctive members of the WAP-containing protein superfamily: An improved classification approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:9-17. [PMID: 28512012 DOI: 10.1016/j.dci.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Crustins are considered effector molecules of innate immunity in arthropods, and classification schemes have been proposed over the last 10 years. However, classification problems have emerged: for example, proteins that have been well identified as members of a particular category have also been classified as crustins. Therefore, the objective of this manuscript was to analyze and, based on solid arguments, improve the original proposed nomenclature to make crustins a distinctive group of antibacterial proteins. The presence of WAP or 4DSC domain has been considered a distinctive feature of crustins; however, several antibacterial proteins containing WAP domains have been detected in diverse taxonomic groups (including mammals). Here, we present evidence supporting the idea that the Cys-rich region and the 4DSC domain can be considered a signature of crustins and, together with some distance arrangements occurring within this 12-Cys region, yield enough information for the classification of these proteins. Herein, the core characteristics to be considered for classification purposes are the length of the Gly-rich region and the repetitive tetrapeptides occurring within this region; these characteristics are then hierarchically followed by the F and A distances located within the 4DSC domain. Finally, the proposed system considers the crustin signature as the common structure in all members, which is a differentiator from other proteins containing WAP domains, separating crustins as a well-distinguished member of the superfamily of WAP-domain containing proteins.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, Mexico.
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, Mexico
| |
Collapse
|
23
|
Visetnan S, Supungul P, Tassanakajon A, Donpudsa S, Rimphanitchayakit V. A single WAP domain-containing protein from Litopenaeus vannamei possesses antiproteinase activity against subtilisin and antimicrobial activity against AHPND-inducing Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2017; 68:341-348. [PMID: 28743625 DOI: 10.1016/j.fsi.2017.07.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
The single WAP domain-containing protein (SWD) is a type III crustin antimicrobial peptide whose function is to defense the host animal against the bacterial infection by means of antimicrobial and antiproteinase activities. A study of SWD from Litopenaeus vannamei (LvSWD) is reported herein about its activities and function against bacteria, particularly the AHPND-inducing Vibrio parahaemolyticus (VPAHPND) that causes acute hepatopancreatic necrosis disease (AHPND). The LvSWD is mainly synthesized in hemocytes and up-regulated in response to VPAHPND infection. Over-expressed mature recombinant LvSWD (rLvSWD) and its WAP domain (rLvSWD-WAP) are able to strongly inhibit subtilisin but not trypsin, chymotrypsin and elastase. The rLvSWD inhibits subtilisin with the inhibition constant (Ki) of 14.3 nM. However, only rLvSWD exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria. Unlike the rLvSWD, the rLvSWD-WAP does not possess antimicrobial activity. Therefore, the killing effect of rLvSWD on VPAHPND and Bacillus megaterium was studied. The MIC of 30 μM against VPAHPND is bactericidal whereas the MIC against B. megaterium is not. With four times the MIC of rLvSWD, the VPAHPND-treated post larval shrimp are able to survive longer with 50% survival rate as long as 78 h as compared to 36 h of the infected shrimp without rLvSWD. The antimicrobial activity of LvSWD against the VPAHPND infection suggests its potential application for disease control in aquaculture.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 10120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suchao Donpudsa
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Rudtanatip T, Boonsri N, Asuvapongpatana S, Withyachumnarnkul B, Wongprasert K. A sulfated galactans supplemented diet enhances the expression of immune genes and protects against Vibrio parahaemolyticus infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2017; 65:186-197. [PMID: 28442419 DOI: 10.1016/j.fsi.2017.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
A sulfated galactans (SG) supplemented diet was evaluated for the potential to stimulate immune activity in shrimp Penaeus vannamei (P. vannamei). Shrimp given the SG supplemented diet (0.5, 1 and 2% w/w) for 7 days showed enhanced expression of the downstream signaling mediator of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) and immune related genes including p-NF-κB, IMD, IKKβ and IKKε, antimicrobial peptide PEN-4, proPO-I and II. Following immersion with Vibrio parahaemolyticus (V. parahaemolyticus) for 14 days, the shrimp given the SG supplemented diet (1 and 2% w/w) showed a decrease in bacterial colonies and bacterial toxin gene expression, compared to shrimp given a normal diet, and they reached 50% mortality at day 14. However, shrimp given the normal diet and challenged with the bacteria reached 100% mortality at day 6. SG-fed shrimp increased expression of immune genes related to LGBP signaling at day 1 after the bacterial immersion compared to control (no immersion), which later decreased to control levels. Shrimp on the normal diet also increased expression of immune related genes at day 1 after immersion which however decreased below control levels by day 3. Taken together, the results indicate the efficacy of the SG supplemented diet to enhance the immune activity in shrimp which could offer protection from V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand
| | - Nantavadee Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand
| | - Somluk Asuvapongpatana
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand
| | - Boonsirm Withyachumnarnkul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand; Centex Shrimp, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand; The Shrimp Genetic Improvement Center, Chaiya District, Surat Thani 84100, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6th Road, Bangkok 10400, Thailand.
| |
Collapse
|
25
|
Sivakamavalli J, Nirosha R, Vaseeharan B. Purification and Characterization of a Cysteine-Rich 14-kDa Antibacterial Peptide from the Granular Hemocytes of Mangrove Crab Episesarma tetragonum and Its Antibiofilm Activity. Appl Biochem Biotechnol 2015; 176:1084-101. [DOI: 10.1007/s12010-015-1631-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
26
|
Yang CC, Lu CL, Chen S, Liao WL, Chen SN. Immune gene expression for diverse haemocytes derived from pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:265-271. [PMID: 25681751 DOI: 10.1016/j.fsi.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
In this study, diverse haemocytes from Pacific white shrimp Litopenaeus vannamei were spread by flow cytometer sorting system. Using the two commonly flow cytometric parameters FSC and SSC, the haemocytes could be divided into three populations. Microscopy observation of L. vannamei haemocytes in anticoagulant buffer revealed three morphologically distinct cell types designated as granular cell, hyaline cell and semigranular cell. Immune genes, which includes prophenoloxidase (proPO), lipopolysaccharide-β-glucan binding protein (LGBP), peroxinectin, crustin, lysozyme, penaeid-3a and transglutaminase (TGase), expressed from different haemocyte were analysed by quantitative real time PCR (qPCR). Results from the mRNA expression was estimated by relative level of each gene to β-actin gene. Finally, the seven genes could be grouped by their dominant expression sites. ProPO, LGBP and peroxinectin were highly expressed in granular cells, while LGBP, crustin, lysozyme and P-3a were highly expressed in semigranular cells and TGase was highly expressed in hyaline cells. In this study, L. vannamei haemocytes were firstly grouped into three different types and the immune related genes expression in grouped haemocytes were estimated.
Collapse
Affiliation(s)
- Chih-Chiu Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chung-Lun Lu
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Wen-Liang Liao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC.
| | - Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
27
|
Jiang HS, Jia WM, Zhao XF, Wang JX. Four crustins involved in antibacterial responses in Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 43:387-395. [PMID: 25583545 DOI: 10.1016/j.fsi.2015.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Crustins are a family of cationic, cysteine-rich antimicrobial peptides with a whey acidic protein (WAP) domain in the C-terminal. They have diverse functions in antimicrobial immune responses. Four groups of crustins (crustins I, II, III, and IV) have been identified in crustaceans, but type I crustins have not been reported in penaeid shrimp until now. In this study, we identified four crustins in kuruma shrimp Marsupenaeus japonicus, and named them MjCrus I-2, 3, 4 and 5. These four crustins belong to type I crustins, which contain a signal peptide, cysteine-rich region at the N-terminus, and WAP domain at the C-terminus. Tissue distribution demonstrated that MjCrus I-2, 3 and 5 had high expression levels in hemocytes, gills and stomach. whereas MjCrus I-4 was distributed in all tissues detected. MjCrus I-2 to 5 showed different expression patterns in different tissues after Gram-positive bacterial (Staphylococcus aureus), Gram-negative bacterial (Vibrio anguillarum), and white spot syndrome virus (WSSV) challenge. The expression of MjCrus I-2 to 5 was upregulated by bacterial or WSSV challenge. The three crustins were recombinantly expressed in Escherichia coli, and the purified proteins showed few antimicrobial activities. Three MjCrus Is could bind to different bacteria. MjCrus I-2 and 3 showed different inhibitory abilities to secreted bacterial proteases. MjCrus I-4 could not inhibit bacterial proteases. After knockdown of MjCrus I-3, the bacterial scavenging ability to V. anguillarum was impaired. These results suggested that type I crustins played an important role in the innate immunity of shrimp.
Collapse
Affiliation(s)
- Hai-Shan Jiang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen-Ming Jia
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
28
|
Liu N, Lan JF, Sun JJ, Jia WM, Zhao XF, Wang JX. A novel crustin from Marsupenaeus japonicus promotes hemocyte phagocytosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:313-22. [PMID: 25479014 DOI: 10.1016/j.dci.2014.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 05/25/2023]
Abstract
Crustins are cationic cysteine-rich antimicrobial peptides (AMPs) that contain multiple domains (glycine-rich, cysteine-rich, or proline-rich) at the N-terminus and whey acidic protein (WAP) domains at the C-terminus. Crustins have multiple functions, including protease inhibition and antimicrobial activity. Other functions of crustins need to be clarified. In this study, a novel crustin with a cysteine-rich region, and a single WAP domain, belonging to type I crustins, was identified in Marsupenaeus japonicus and designated as MjCru I-1. MjCru I-1 was expressed in various tissues. The expression of MjCru I-1 was upregulated in the hemocytes of shrimp challenged with bacteria. MjCru I-1 could bind to bacteria by binding to the cell wall molecules of the bacteria, such as lipopolysaccharide (LPS), peptidoglycan (PGN), and lipoteichoic acid (LTA). The synthesized WAP domain of MjCru I-1 but not synthesized Cys-rich domain has antibacterial and agglutinative activities. Scanning electron microscope assay showed that the bacterial cells treated with sMjCru I-1 appeared to be disrupted and cracked compared with those of the control samples. The knockdown of MjCru I-1 could reduce bacterial clearance and injection of MjCru I-1 could significantly increase the survival rate of shrimp infected with Vibrio anguillarum and Staphylococcus aureus compared with those of the control samples. Further study discovered that MjCru I-1 could increase the hemocyte phagocytosis against V. anguillarum and S. aureus. These results suggest that MjCru I-1 has dual functions, bactericidal and phagocytosis promoting activities, in the antibacterial immunity of shrimp.
Collapse
Affiliation(s)
- Ning Liu
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiang-Feng Lan
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jie-Jie Sun
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen-Ming Jia
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
29
|
Davies CE, Rowley AF. Are European lobsters (Homarus gammarus) susceptible to infection by a temperate Hematodinium sp.? J Invertebr Pathol 2015; 127:6-10. [PMID: 25721169 DOI: 10.1016/j.jip.2015.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
Hematodinium spp. infect over 40 species of crustaceans worldwide, but have not been reported to infect the European lobster, Homarus gammarus. In this study, Hematodinium parasites (a mixture of uni- and multinucleate trophont-like stages) were taken from donor crabs (Cancer pagurus) and injected into juvenile H. gammarus. Juvenile C. pagurus were also injected with the same inoculum. Haemolymph was taken at regular intervals and examined for the presence of Hematodinium using light microscopy and PCR, in two separate experiments of duration 4 and 8months. All lobsters were negative for Hematodinium whilst the C. pagurus challenged became infected. It is concluded that European lobsters are not susceptible to infection with a clade of Hematodinium that infects C. pagurus.
Collapse
Affiliation(s)
- Charlotte E Davies
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, Wales, UK.
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
30
|
Tassanakajon A, Somboonwiwat K, Amparyup P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:324-341. [PMID: 24950415 DOI: 10.1016/j.dci.2014.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
31
|
Yu P, Gu H. Bioactive substances from marine fishes, shrimps, and algae and their functions: present and future. Crit Rev Food Sci Nutr 2015; 55:1114-36. [PMID: 24915345 DOI: 10.1080/10408398.2012.686933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Marine fishes, shrimps, and algae have many important bioactive substances, such as peptides, unsaturated fatty acids, polysaccharides, trace elements, and natural pigments. The introduction of these substances contributes to a significant improvement in developing them in final processed products. In fact, the knowledge of these bioactive substances has experienced a rapid increase in the past 20 years and prompted the relevant technological revolution with a decisive contribution to the final application. The purpose of this review was to introduce critically and comprehensively the present knowledge of these bioactive substances and pointed out their future developmental situation.
Collapse
Affiliation(s)
- Ping Yu
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| | | |
Collapse
|
32
|
Clark KF. Characterization and functional classification of American lobster (Homarus americanus) immune factor transcripts. FISH & SHELLFISH IMMUNOLOGY 2014; 41:12-26. [PMID: 24981290 DOI: 10.1016/j.fsi.2014.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
The American lobster (Homarus americanus) is the most important commercially exploited marine species in Canada. Very little is known about the H. americanus molecular humoral immune response or how to determine if a seemingly healthy lobster is infected with a pathogen. The goal of this work is to characterize several important H. americanus immune genes as well as highlight and classify hundreds of others into functional immune groups. The protein sequence of H. americanus acute phase serum amyloid protein A (SAA) was found to be similar to that of vertebrate SAA, and is likely a good clinical marker for immune activation in lobsters and some crustaceans. Additionally, only one gene, Trypsin 1b, was found to be differentially regulated during bacterial, microparasitic and viral challenges in lobster and is likely critical for the activation of the H. americanus immune response. Bioinformatic analysis was used to functionally annotate, 263 H. americanus immune genes and identify the few shared patterns of differential gene expression in lobsters in response to bacterial, parasitic and viral challenge. Many of the described immune genes are biomarker candidates which could be used as clinical indicators for lobster health and disease. Biomarkers can facilitate early detection of pathogens, or anthropomorphic stressors, so that mitigation strategies can be developed in order to prevent the devastating economic losses that have occurred in Southern New England, USA. This work is contributes to further our understanding of how the lobster immune system works and how it can be used to maintain the health and sustainability of the overall American lobster fishery.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada.
| |
Collapse
|
33
|
Sun Y, Li F, Sun Z, Zhang X, Li S, Zhang C, Xiang J. Transcriptome analysis of the initial stage of acute WSSV infection caused by temperature change. PLoS One 2014; 9:e90732. [PMID: 24595043 PMCID: PMC3942461 DOI: 10.1371/journal.pone.0090732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
White spot syndrome virus (WSSV) is the most devastating virosis threatening the shrimp culture industry worldwide. Variations of environmental factors in shrimp culture ponds usually lead to the outbreak of white spot syndrome (WSS). In order to know the molecular mechanisms of WSS outbreak induced by temperature variation and the biological changes of the host at the initial stage of WSSV acute infection, RNA-Seq technology was used to analyze the differentially expressed genes (DEGs) in shrimp with a certain amount of WSSV cultured at 18°C and shrimp whose culture temperature were raised to 25°C. To analyze whether the expression changes of the DEGs were due to temperature rising or WSSV proliferation, the expression of selected DEGs was analyzed by real-time PCR with another shrimp group, namely Group T, as control. Group T didn't suffer WSSV infection but was subjected to temperature rising in parallel. At the initial stage of WSSV acute infection, DEGs related to energy production were up-regulated, whereas most DEGs related to cell cycle and positive regulation of cell death and were down-regulated. Triose phosphate isomerase, enolase and alcohol dehydrogenase involved in glycosis were up-regulated, while pyruvate dehydrogenase, citrate synthase and isocitrate dehydrogenase with NAD as the coenzyme involved in TCA pathway were down-regulated. Also genes involved in host DNA replication, including DNA primase, DNA topoisomerase and DNA polymerase showed down-regulated expression. Several interesting genes including crustin genes, acting binding or inhibiting protein genes, a disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) gene and a GRP 78 gene were also analyzed. Understanding the interactions between hosts and WSSV at the initial stage of acute infection will not only help to get a deep insight into the pathogenesis of WSSV but also provide clues for therapies.
Collapse
Affiliation(s)
- Yumiao Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
34
|
Kim B, Kim M, Kim AR, Yi M, Choi JH, Park H, Park W, Kim HW. Differences in gene organization between type I and type II crustins in the morotoge shrimp, Pandalopsis japonica. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1176-1184. [PMID: 23891592 DOI: 10.1016/j.fsi.2013.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Crustins are cysteine-rich cationic antimicrobial peptides (AMPs) found in decapod crustaceans. Six novel crustin genes (Paj-CrusIc, Id, Ie, If, IIb and IIc) were identified in the morotoge shrimp, Pandalopsis japonica. Deduced amino acid sequences of isolated Paj-Crus genes ranged from 99 to 178 amino acid residues (10.6-17.8 kDa). Sequence analysis of nine isolated Paj-Crus genes and 100 different crustins from various decapod crustaceans revealed that a splice site and KXXXCP motif within the WAP domain may be the main criteria for classifying type I and II crustins, suggesting that the two types of crustin genes may have been generated by different processes. We also identified three intron-less crustin I genes (Paj-Crus Id, Ie and If) for the first time, which may have been generated by gene duplication. The tissue distribution profiles showed that Paj-CrusI genes were expressed predominantly in the gill and epidermis, whereas Paj-CrusII genes were expressed ubiquitously, suggesting that the two types of crustins may play different roles in various tissues or under different physiological conditions. Differing from previous results, hemocyte-specific crustin was not isolated from Pandalopsis japonica. This study showed that both types of crustin genes (types I and II) exist in decapod crustaceans and their primary structure and expression profiles differ from each other, suggesting that they may play different biological roles. This will help to extend our knowledge of the crustacean innate immune response, which will provide important basic information of shrimp immunity against various pathogens.
Collapse
Affiliation(s)
- Bokwang Kim
- Department of Marine Biology, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li S, Jin XK, Guo XN, Yu AQ, Wu MH, Tan SJ, Zhu YT, Li WW, Wang Q. A double WAP domain-containing protein Es-DWD1 from Eriocheir sinensis exhibits antimicrobial and proteinase inhibitory activities. PLoS One 2013; 8:e73563. [PMID: 23967346 PMCID: PMC3742519 DOI: 10.1371/journal.pone.0073563] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/21/2013] [Indexed: 10/27/2022] Open
Abstract
Whey acidic proteins (WAP) belong to a large gene family of antibacterial peptides, which are critical in the host immune response against microbial invasion. The common feature of these proteins is a single WAP domain maintained by at least one four-disulfide core (4-DSC) structure rich in cysteine residues. In this study, a double WAP domain (DWD)-containing protein, Es-DWD1, was first cloned from the Chinese mitten crab (Eriocheirsinensis). The full-length Es-DWD1cDNA was 1193 bp, including a 411 bp open reading frame (ORF) encoding 136 amino acids with a signal peptide of 22 amino acids in the N-terminus. A comparison with other reported invertebrate and vertebrate sequences revealed the presence of WAP domains characteristic of WAP superfamilies. As determined by quantitative real-time RT-PCR, Es-DWD1 transcripts were ubiquitously expressed in all tissues, but it was up-regulated in hemocytes post-challenge with pathogen-associated molecular patterns (PAMPs). The mature recombinant Es-DWD1 (rEs-DWD1) protein exhibited different binding activities to bacteria and fungus. Moreover, rEs-DWD1 could exert agglutination activities against Bacillus subtilis and Pichiapastoris and demonstrated inhibitory activities against the growth of Staphylococcus aureus, Aeromonas hydrophila and P. pastoris. Furthermore, rEs-DWD1 showed a specific protease inhibitory activity in B. subtilis. Coating of rEs-DWD1 onto agarose beads enhanced encapsulation of the beads by crab hemocytes. Collectively, the results suggest that Es-DWD1 is a double WAP domain containing protein with antimicrobial and proteinase inhibitory activities, which play significant roles in the immunity of crustaceans.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Ai-Qing Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Min-Hao Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Shang-Jian Tan
- School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Afsal V, Antony SP, Bright AR, Philip R. Molecular identification and characterization of Type I crustin isoforms from the hemocytes of portunid crabs, Scylla tranquebarica and Portunus pelagicus. Cell Immunol 2013; 284:45-50. [DOI: 10.1016/j.cellimm.2013.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/20/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022]
|
37
|
Arockiaraj J, Gnanam AJ, Muthukrishnan D, Gudimella R, Milton J, Singh A, Muthupandian S, Kasi M, Bhassu S. Crustin, a WAP domain containing antimicrobial peptide from freshwater prawn Macrobrachium rosenbergii: immune characterization. FISH & SHELLFISH IMMUNOLOGY 2013; 34:109-118. [PMID: 23069787 DOI: 10.1016/j.fsi.2012.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/21/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Crustin (MrCrs) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrCrs protein contains a signal peptide region at N-terminus between 1 and 22 and a long whey acidic protein domain (WAP domain) at C-terminus between 57 and 110 along with a WAP-type 'four-disulfide core' motif. Phylogenetic results show that MrCrs is clustered together with other crustacean crustin groups. MrCrs showed high sequence similarity (77%) with crustin from Pacific white shrimp Litopenaeus vannamei and Japanese spiny lobster Panulirus japonicas. I-TASSER uses the best structure templates to predict the possible structures of MrCrs along with PDB IDs such as 2RELA and 1FLEI. The gene expressions of MrCrs in both healthy M. rosenbergii and those infected with virus including infectious hypodermal and hematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) and bacteria Aeromonas hydrophila (Gram-negative) and Enterococcus faecium (Gram-positive) were examined using quantitative real time PCR. To understand its biological activity, the recombinant MrCrs gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCrs protein agglutinated with the bacteria considered for analysis at a concentration of 25 μg/ml, except Lactococcus lactis. The bactericidal results showed that the recombinant MrCrs protein destroyed all the bacteria after incubation, even less than 6 h. These results suggest that MrCrs is a potential antimicrobial peptide, which is involved in the defense system of M. rosenbergii against viral and bacterial infections.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duan Y, Liu P, Li J, Li J, Chen P. Immune gene discovery by expressed sequence tag (EST) analysis of hemocytes in the ridgetail white prawn Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2013; 34:173-182. [PMID: 23092732 PMCID: PMC3542427 DOI: 10.1016/j.fsi.2012.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 06/01/2023]
Abstract
The ridgetail white prawn Exopalaemon carinicauda is one of the most important commercial species in eastern China. However, little information of immune genes in E. carinicauda has been reported. To identify distinctive genes associated with immunity, an expressed sequence tag (EST) library was constructed from hemocytes of E. carinicauda. A total of 3411 clones were sequenced, yielding 2853 ESTs and the average sequence length is 436 bp. The cluster and assembly analysis yielded 1053 unique sequences including 329 contigs and 724 singletons. Blast analysis identified 593 (56.3%) of the unique sequences as orthologs of genes from other organisms (E-value < 1e-5). Based on the COG and Gene Ontology (GO), 593 unique sequences were classified. Through comparison with previous studies, 153 genes assembled from 367 ESTs have been identified as possibly involved in defense or immune functions. These genes are categorized into seven categories according to their putative functions in shrimp immune system: antimicrobial peptides, prophenoloxidase activating system, antioxidant defense systems, chaperone proteins, clottable proteins, pattern recognition receptors and other immune-related genes. According to EST abundance, the major immune-related genes were thioredoxin (141, 4.94% of all ESTs) and calmodulin (14, 0.49% of all ESTs). The EST sequences of E. carinicauda hemocytes provide important information of the immune system and lay the groundwork for development of molecular markers related to disease resistance in prawn species.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
- College of Fisheries and Life Science, Shanghai Ocean University, No. 999 Huchenghuan Road, Lingang Harbor, Shanghai 201306, PR China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Jitao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Ping Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| |
Collapse
|
39
|
Kim M, Jeon JM, Oh CW, Kim YM, Lee DS, Kang CK, Kim HW. Molecular characterization of three crustin genes in the morotoge shrimp, Pandalopsis japonica. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:161-71. [PMID: 22613817 DOI: 10.1016/j.cbpb.2012.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/15/2012] [Accepted: 05/12/2012] [Indexed: 11/28/2022]
Abstract
Crustins are among the most important antimicrobial peptides (AMPs) found in decapod crustaceans. They are small cationic AMPs (5-7 kDa) characterized by a proline-rich amino-terminal domain and a cysteine-rich carboxyl-terminal domain. Here, the first 3 crustin-like cDNAs (Pj-crus Ia, Ib, and II) were identified from the morotoge shrimp, Pandalopsis japonica. The full-length cDNAs of Pj-crus Ia, Ib, and II consisted of 1135, 580, and 700 nucleotides and encoded putative proteins containing 109, 119, and 186 amino acids residues, respectively. All 3 identified Pj-crus sequences exhibited the conserved domain organization for crustins, including a signal sequence, a cysteine-containing region, a glycine-rich region, and a whey-acidic protein (WAP) domain. Amino acid sequence comparisons and phylogenetic analysis revealed that the Pj-crus Ia and Ib belong to type I crustins (e.g., carcinin), which have been mostly identified from Brachyura and Astacidea, whereas Pj-crus II was classified as belonging to the type II crustins, which are mainly found in Dendrobranchiata. An analysis of the organization of these 3 Pj-crus genes revealed that the splicing site within the WAP domain may be an important key for classifying types I and II crustin family members. The tissue distribution profile results showed that the Pj-crus I genes were expressed in a tissue-specific manner but that the Pj-crus II gene was expressed ubiquitously, suggesting that these crustins may play different roles in various tissues or under different physiological conditions. The bacterial challenge results suggested that the Pj-crus genes may be transcriptionally influenced by different bacterial types. This comparative study of various crustin family members will help extend the knowledge on the crustacean innate immune response, which will provide important basic information for controlling shrimp immunity against various pathogens.
Collapse
Affiliation(s)
- MeeSun Kim
- Department of Marine Biology, Pukyong National University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Harnedy PA, FitzGerald RJ. Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.09.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
41
|
Krusong K, Poolpipat P, Supungul P, Tassanakajon A. A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:208-215. [PMID: 21855569 DOI: 10.1016/j.dci.2011.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
Several isoforms of crustin have been identified in the black tiger shrimp Penaeus monodon. These cationic cysteine-rich antimicrobial peptides contain a single whey acidic protein (WAP) domain at the C-terminus and exhibit antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this paper, we investigate the binding properties and antimicrobial actions of crustinPm1 and crustinPm7, the two most abundant crustin isoforms found in the haemocyte of P. monodon. Previously, crustinPm1 showed strong inhibition against Gram-positive bacteria, whilst crustinPm7 acted against both Gram-positive and Gram-negative bacteria. A binding study showed that both crustins can bind to Gram-positive and Gram-negative bacterial cells. Enzyme-linked immunosorbent (ELISA) assay suggested that crustins bind to the cell wall components, lipoteichoic acid (LTA) and lipopolysaccharide (LPS) with positive cooperativity of Hill slope (H)>2. This indicates that at least two molecules of crustins interact with one LTA or LPS molecule. In addition, both crustins can induce bacterial agglutination and cause inner membrane permeabilization in Escherichia coli. Scanning Electron Microscopy (SEM) revealed the remarkable change on the cell surface of Staphylococcus aureus, Vibrio harveyi and E. coli after the bacteria were treated with the recombinant crustinPm7. Meanwhile, crustinPm1 can cause a visible change on the cell surface of S. aureus and E. coli only. This is in agreement with the fact that crustinPm1 has shown no antimicrobial activity against V. harveyi. It is likely that the antimicrobial activity of crustins mainly relies on their ability to agglutinate bacterial cells and to disrupt the physiochemical properties of bacterial surface.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
42
|
Li F, Wang L, Qiu L, Zhang H, Gai Y, Song L. A double WAP domain-containing protein from Chinese mitten crab Eriocheir sinensis with antimicrobial activities against Gram-negative bacteria and yeast. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:183-190. [PMID: 21798281 DOI: 10.1016/j.dci.2011.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
The whey acidic protein (WAP) domain is characterized by a 'four-disulfide-core' (4-DSC) motif comprising of approximately 50 amino acids with eight highly conserved cysteine residues. Previous research indicated that WAP domain-containing proteins played an important role in the innate immunity of crustaceans. In the present study, a novel double WAP domain (DWD)-containing protein gene was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD was of 593 bp, consisting of a 5'-terminal untranslated region (UTR) of 71 bp, a 3' UTR of 120 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 402 bp. The ORF encoded a polypeptide of 133 amino acids with the predicted molecular weight of 14.4 kDa and the theoretical isoelectric point of 8.14, including a signal peptide of 22 amino acids and two WAP domains. The EsDWD mRNA transcripts were ubiquitously expressed in all the tested tissues, and its expression level in gill was significantly higher than that in other tissues. The mRNA expression of EsDWD in haemocytes was up-regulated after challenge of Vibrio anguillarum and Pichia pastoris GS115, as well as injury treatment. The cDNA encoding the mature EsDWD protein was cloned and expressed in Escherichia coli BL21 (DE3) pLysS, and the purified recombinant EsDWD (rEsDWD) protein exhibited antimicrobial activities against Gram-negative bacteria V. anguillarum, yeast P. pastoris GS115 and Candida parapsilosis. The results collectively suggested that EsDWD was a novel member of double WAP domain (DWD)-containing proteins, and involved in the immune defense against microorganism and wound healing in E. sinensis.
Collapse
Affiliation(s)
- Fengmei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
43
|
Ghosh J, Lun CM, Majeske AJ, Sacchi S, Schrankel CS, Smith LC. Invertebrate immune diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:959-974. [PMID: 21182860 DOI: 10.1016/j.dci.2010.12.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 05/30/2023]
Abstract
The arms race between hosts and pathogens (and other non-self) drives the molecular diversification of immune response genes in the host. Over long periods of evolutionary time, many different defense strategies have been employed by a wide variety of invertebrates. We review here penaeidins and crustins in crustaceans, the allorecognition system encoded by fuhc, fester and Uncle fester in a colonial tunicate, Dscam and PGRPs in arthropods, FREPs in snails, VCBPs in protochordates, and the Sp185/333 system in the purple sea urchin. Comparisons among immune systems, including those reviewed here have not identified an immune specific regulatory "genetic toolkit", however, repeatedly identified sequences (or "building materials" on which the tools act) are present in a broad range of immune systems. These include a Toll/TLR system, a primitive complement system, an LPS binding protein, and a RAG core/Transib element. Repeatedly identified domains and motifs that function in immune proteins include NACHT, LRR, Ig, death, TIR, lectin domains, and a thioester motif. In addition, there are repeatedly identified mechanisms (or "construction methods") that generate sequence diversity in genes with immune function. These include genomic instability, duplications and/or deletions of sequences and the generation of clusters of similar genes or exons that appear as families, gene recombination, gene conversion, retrotransposition, alternative splicing, multiple alleles for single copy genes, and RNA editing. These commonly employed "materials and methods" for building and maintaining an effective immune system that might have been part of that ancestral system appear now as a fragmented and likely incomplete set, likely due to the rapid evolutionary change (or loss) of host genes that are under pressure to keep pace with pathogen diversity.
Collapse
Affiliation(s)
- Julie Ghosh
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | | | | | | | | |
Collapse
|
44
|
Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationic antimicrobial peptides in penaeid shrimp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:639-657. [PMID: 21533916 DOI: 10.1007/s10126-011-9381-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 05/30/2023]
Abstract
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
45
|
Afsal VV, Antony SP, Sathyan N, Philip R. Molecular characterization and phylogenetic analysis of two antimicrobial peptides: Anti-lipopolysaccharide factor and crustin from the brown mud crab, Scylla serrata. RESULTS IN IMMUNOLOGY 2011; 1:6-10. [PMID: 24371546 DOI: 10.1016/j.rinim.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 11/15/2022]
Abstract
AMPs are evolutional weapons, widely used by animals and plants in their innate immune system to fend off invading microbes. The present study reports characterization of a new ALF isoform (Sc-ALF; HQ638024) and the first crustin (Sc-crustin; HQ638025) from the mud crab, Scylla serrata. The full-length cDNA of Sc-ALF consisted of 477 bp with an ORF of 123 amino acids and a putative signal peptide of 26 amino acids. Sc-ALF had a predicted molecular weight (MW) of 11.17 kDa and theoretical isoelectric point (pI) of 9.95. Two highly conserved cysteine residues and putative LPS binding domain were observed in Sc-ALF. Comparison of amino acid sequences with neighbor-joining tree indicated that Sc-ALF shared maximum similarity with ALF of S. paramamosain. Peptide model of Sc-ALF created using SWISS-MODEL server was found to consist of two α-helices crowded against a four-strand β-sheet. The full-length cDNA of Sc-crustin consisted of 433 base pairs with an ORF of 111 amino acids and a putative signal peptide of 21 amino acids. Comparison of amino acid sequences with a neighbor-joining tree revealed that Sc-crustin shared high identity with other known crustins characterized from S. paramamosain, P. trituberculatus, H. araneus, C. maenas and F. chinensis. A whey-acidic-protein domain could be detected at the C-terminus with the characteristic four disulfide core. Sc-crustin had a predicted MW of 10.24 kDa and a pI of 8.76. Peptide model of Sc-crustin created using SWISS-MODEL server indicated a random coiled structure that is with two possible β-sheets but no helices.
Collapse
Affiliation(s)
- V V Afsal
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Fine Arts Avenue, Kochi 682 016, Kerala, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Fine Arts Avenue, Kochi 682 016, Kerala, India
| | - Naveen Sathyan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Fine Arts Avenue, Kochi 682 016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Fine Arts Avenue, Kochi 682 016, Kerala, India
| |
Collapse
|
46
|
Mu C, Zheng P, Zhao J, Wang L, Qiu L, Zhang H, Gai Y, Song L. A novel type III crustin (CrusEs2) identified from Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2011; 31:142-147. [PMID: 21549196 DOI: 10.1016/j.fsi.2011.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
Antimicrobial peptides are important effectors in the host innate immune response against microbial invasion. In the present study, the cDNA encoding a crustin (designated CrusEs2) was cloned from Chinese mitten crab Eriocheir sinensis by using EST analysis and rapid amplification of cDNA ends (RACE) approach. The full-length cDNA of CrusEs2 was of 1237 bp, containing a 5' untranslated region (UTR) of 12 bp, a 3' UTR of 886 bp with a poly (A) tail, and an open reading frame (ORF) of 339 bp encoding a polypeptide of 112 amino acids with a signal peptide of 19 amino acids. The CrusEs2 contained a typical WAP domain, but lacked the Gly-rich domain of the type II crustin and the Cys-rich region present in both type I and type II crustin, suggesting that CrusEs2 should be classified as a type III crustin. The mRNA transcripts of CrusEs2 could be detected in haemocytes and gill, and its expression level in haemocytes was up-regulated after Listonella anguillarum challenge, while decreased after Micrococcus luteus challenge. The mature peptide coding region of CrusEs2 was cloned into pET-21a+ and expressed in Escherichia coli. The purified recombinant CrusEs2 inhibited the growth of Gram-positive bacteria at MIC of 0.093-0.37 μM. The results indicated that CrusEs2 was involved in immune response of E. sinensis against bacterial challenge.
Collapse
Affiliation(s)
- Changkao Mu
- Key laboratory of Experimental Marine biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvåg K. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 2011; 29:519-30. [PMID: 21683779 DOI: 10.1016/j.biotechadv.2011.05.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 12/22/2022]
Abstract
The emergence of pathogenic bacteria resistance to conventional antibiotics calls for an increased focus on the purification and characterization of antimicrobials with new mechanisms of actions. Antimicrobial peptides are promising candidates, because their initial interaction with microbes is through binding to lipids. The interference with such a fundamental cell structure is assumed to hamper resistance development. In the present review we discuss antimicrobial peptides isolated from marine invertebrates, emphasizing the isolation and activity of these natural antibiotics. The marine environment is relatively poorly explored in terms of potential pharmaceuticals, and it contains a tremendous species diversity which evolved in close proximity to microorganisms. As invertebrates rely purely on innate immunity, including antimicrobial peptides, to combat infectious agents, it is believed that immune effectors from these animals are efficient and rapid inhibitors of microbial growth.
Collapse
Affiliation(s)
- Sigmund V Sperstad
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
48
|
Xu N, Kim HG, Bhagavath B, Cho SG, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AMH, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim SH, Cameron RS, Layman LC. Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril 2011; 95:1613-20.e1-7. [PMID: 21300340 DOI: 10.1016/j.fertnstert.2011.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine if mutations in NELF, a gene isolated from migratory GnRH neurons, cause normosmic idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS). DESIGN Molecular analysis correlated with phenotype. SETTING Academic medical center. PATIENT(S) A total of 168 IHH/KS patients as well as unrelated control subjects were studied for NELF mutations. INTERVENTION(S) NELF coding regions/splice junctions were subjected to polymerase chain reaction (PCR)-based DNA sequencing. Eleven additional IHH/KS genes were sequenced in three patients with NELF mutations. MAIN OUTCOME MEASURE(S) Mutations were confirmed by sorting intolerant from tolerant, reverse-transcription (RT)-PCR, and Western blot analysis. RESULT(S) Three novel NELF mutations absent in 372 ethnically matched control subjects were identified in 3/168 (1.8%) IHH/KS patients. One IHH patient had compound heterozygous NELF mutations (c.629-21G>C and c.629-23C>G), and he did not have mutations in 11 other known IHH/KS genes. Two unrelated KS patients had heterozygous NELF mutations and mutation in a second gene: NELF/KAL1 (c.757G>A; p.Ala253Thr of NELF and c.488_490delGTT; p.Cys163del of KAL1) and NELF/TACR3 (c.1160-13C>T of NELF and c.824G>A; p.Trp275X of TACR3). In vitro evidence of these NELF mutations included reduced protein expression and splicing defects. CONCLUSION(S) Our findings suggest that NELF is associated with normosmic IHH and KS, either singly or in combination with a mutation in another gene.
Collapse
Affiliation(s)
- Ning Xu
- Section of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molecular characterization of a crustin-like antimicrobial peptide in the giant tiger shrimp, Penaeus monodon, and its expression profile in response to various immunostimulants and challenge with WSSV. Immunobiology 2011; 216:184-94. [DOI: 10.1016/j.imbio.2010.05.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 11/22/2022]
|
50
|
Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationic antimicrobial peptides in penaeid shrimp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:487-505. [PMID: 20379756 DOI: 10.1007/s10126-010-9288-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 05/29/2023]
Abstract
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | | | | | |
Collapse
|