1
|
Patwardhan RS, Kundu K, Purohit V, Kumar BK, Singh B, Thoh M, Undavia K, Bhilwade HN, Nayak SK, Sharma D, Sandur SK. Malabaricone C, a constituent of spice Myristica malabarica, exhibits anti-inflammatory effects via modulation of cellular redox. J Biosci 2023. [PMID: 36971326 PMCID: PMC10040911 DOI: 10.1007/s12038-023-00329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The present study primarily focuses on the efficacy of Malabaricone C (Mal C) as an anti-inflammatory agent. Mal C inhibited mitogen-induced T-cell proliferation and cytokine secretion. Mal C significantly reduced cellular thiols in lymphocytes. N-acetyl cysteine (NAC) restored cellular thiol levels and abrogated Mal C-mediated inhibition of T-cell proliferation and cytokine secretion. Physical interaction between Mal C and NAC was evinced from HPLC and spectral analysis. Mal C treatment significantly inhibited concanavalin A-induced phosphorylation of ERK/JNK and DNA binding of NF-κB. Administration of Mal C to mice suppressed T-cell proliferation and effector functions ex vivo. Mal C treatment did not alter the homeostatic proliferation of T-cells in vivo but completely abrogated acute graft-versus-host disease (GvHD)-associated morbidity and mortality. Our studies indicate probable use of Mal C for prophylaxis and treatment of immunological disorders caused due to hyper-activation of T-cells.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Binita Kislay Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Beena Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Khushboo Undavia
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Hari N Bhilwade
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Sandip K Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| |
Collapse
|
2
|
Cruces MP, González E, Pimentel E, Jiménez E, Sánchez P. Relationship between lifespan and somatic mutation in D. melanogaster after treatment with chlorophyllin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103891. [PMID: 35654371 DOI: 10.1016/j.etap.2022.103891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Sodium copper chlorophyllin (SCC) has a genetic damage inhibitory capacity due to its antioxidant action. For this reason, it was considered to investigate its role in the life span of Drosophila melanogaster and its relationship with the frequency of somatic mutation induced by gamma rays. Results indicated that SCC alone prolonged the lifespan only in females, but in combination with 20 Gy of gamma rays, the aging delay in both sexes was significant. In addition to confirming that the porphyrin reduces the frequency of mutation, the individuals with the highest mutation load are the individuals who die more quickly, and once they are eliminated, the survivor individuals treated with 20 Gy or with SCC + 20 Gy, died at the same rate. The results together indicate that SCC not only inhibits induced genetic damage, but it also has beneficial effects that probably cause an aging delay of the treated population that need to be investigated.
Collapse
Affiliation(s)
- Martha Patricia Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México
| | - Elena González
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México.
| | - Elizabeth Jiménez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca, S/N, la Marquesa, Ocoyoacac CP. 52750, México
| | - Petra Sánchez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Edo Mex., México
| |
Collapse
|
3
|
Pucci C, Martinelli C, Degl'Innocenti A, Desii A, De Pasquale D, Ciofani G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol Biosci 2021; 21:e2100181. [PMID: 34212510 DOI: 10.1002/mabi.202100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Indexed: 02/01/2023]
Abstract
Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| |
Collapse
|
4
|
Ding L, Tan Y, Xu L, Jin Y, Liu Y, Tu H, Zhang D, Wu B, Chen Y, Shen H, Liu L, Huang T, Zhou F. Shengxuening Extracted from Silkworm Excrement Mitigates Myelosuppression via SCF-Mediated JAK2/STAT3 Signaling. Chem Biodivers 2021; 18:e2100139. [PMID: 33973702 DOI: 10.1002/cbdv.202100139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022]
Abstract
Shengxuening (SXN) is a Chinese patent medicine with main ingredients (including chlorophyll derivatives and sodium iron chlorophyllin) extracted from silkworm excrement. SXN exhibited efficacy in clinical trials of renal anemia and iron deficiency anemia; however, the specific mechanisms remain unclear. This study found that SXN increased the number of peripheral blood cells and improved the bone marrow morphology in myelosuppressed mouse model, reversed the reduction in body weight and spleen indices, and increased the serum levels of erythropoietin and granulocyte-macrophage colony-stimulating factor. Quantitative real-time PCR array and Western blot analysis showed the enhanced expression of stem cell factor (SCF), JAK2, and STAT3 in the liver. These results suggested that SXN promoted the recovery of hemopoietic function in myelosuppressed models by increasing the secretion of hematopoietic factors and activating the JAK2/STAT3 pathway. Therefore, this medicine may be applied as therapeutic pharmaceutical drug to mitigate myelosuppression.
Collapse
Affiliation(s)
- Lu Ding
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Lulin Xu
- Wuhan United Pharmaceutical Co., Ltd., Wuhan, 430071, P. R. China
| | - Yanxia Jin
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Yin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Honglei Tu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Dongdong Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Yiran Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Tingting Huang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhang District, Wuhan, 430071, P. R. China
| |
Collapse
|
5
|
Liu Z, Xia S, Wang X, Lan Q, Li P, Xu W, Wang Q, Lu L, Jiang S. Sodium Copper Chlorophyllin Is Highly Effective against Enterovirus (EV) A71 Infection by Blocking Its Entry into the Host Cell. ACS Infect Dis 2020; 6:882-890. [PMID: 32233455 DOI: 10.1021/acsinfecdis.0c00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human enteroviruses (HEVs) pose an ongoing threat to global public health. Particularly, enterovirus-A71 (EV-A71), the main pathogen causing hand-foot-and-mouth disease (HFMD), has caused ongoing outbreaks globally in recent years associated with severe neurological manifestations and several deaths. Currently, no effective antivirals are available for the prevention or treatment of EV-A71 infection. In this study, we found that sodium copper chlorophyllin (CHL), a health food additive and an over-the-counter anticancer medicine or treatment to reduce the odor of urine or feces, exhibited potent inhibitory activity against infection by divergent EV-A71 and coxsackievirus-A16 (CV-A16) isolates at a low micromolar concentration with excellent safety. The antiviral activity of each was confirmed by colorimetric viral infection and qRT-PCR assays. A series of mechanistic studies showed that CHL did not target the host cell but blocked the entry of EV-A71 and CV-A16 into the host cell at the postattachment stage. In the mouse model, CHL could significantly reduce the viral titer in the lungs and muscles. Since CHL has been used in clinics for many years with excellent safety, it has the potential to be further developed into a prophylactic or therapeutic to prevent or treat HFMD caused by EV-A71 or CV-A16 infection.
Collapse
Affiliation(s)
- Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| |
Collapse
|
6
|
Murthuza S, Manjunatha BK. Radioprotective and immunomodulatory effects of Mesua ferrea (Linn.) from Western Ghats of India., in irradiated Swiss albino mice and splenic lymphocytes. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Syed Murthuza
- Department of Biotechnology, The Oxford College of Engineering, Bommanahalli, Bengaluru, 560068, India
| | | |
Collapse
|
7
|
Gerić M, Gajski G, Mihaljević B, Miljanić S, Domijan AM, Garaj-Vrhovac V. Radioprotective properties of food colorant sodium copper chlorophyllin on human peripheral blood cells in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403027. [PMID: 31561900 DOI: 10.1016/j.mrgentox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/31/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Sodium copper chlorophyllin (CHL) is a food colorant that exhibits many beneficial properties, including potential for use in radiotherapy. Nevertheless, genotoxicity studies investigating radioprotective properties against γ-radiation on human cells are rather scarce. The aim of this study was to assess the cytotoxicity, genotoxicity and induction of malondialdehyde formation on CHL pre-treated whole blood cells after an absorbed dose of 5 Gy γ-radiation. Irradiated whole blood cells pre-treated with 100, 500, and 1000 μg/mL CHL showed less DNA-strand breaks (10.92 ± 0.74%, 10.69 ± 0.68%, and 8.81 ± 0.69%, respectively) than untreated irradiated cells (12.58 ± 0.88%). At the same time, the level of malondialdehyde was lower in CHL pre-treated samples with 100, 500, and 1000 μg/mL CHL (14.11 ± 0.43, 16.35 ± 2.82, and 13.08 ± 1.03 μmol/L, respectively) compared to untreated irradiated samples (24.11 ± 0.25 μmol/L). Regarding cytotoxicity, no changes were observed in the samples tested. Another important finding is that CHL had no cyto/genotoxic properties toward human blood cells. Taken together, since CHL had no cyto/genotoxic effects and showed good radioprotective properties in human blood cells, further studies should be conducted in order to find its possible application in radiotherapy.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, Croatia.
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, Croatia
| | | | - Saveta Miljanić
- Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, Croatia.
| |
Collapse
|
8
|
Patar AK, Sharma A, Syiem D, Bhan S. Chlorophyllin supplementation modulates hyperglycemia-induced oxidative stress and apoptosis in liver of streptozotocin-administered mice. Biofactors 2018; 44:418-430. [PMID: 30303271 DOI: 10.1002/biof.1438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
Chlorophyllin is a water-soluble mixture of sodium-copper salts of chlorophyll with antioxidant and antimutagen properties. In this study, an attempt has been made to evaluate the effect of chlorophyllin on hyperglycemia-induced oxidative stress and apoptosis in liver of streptozotocin (STZ)-administered mice. In STZ-induced diabetes, two causative factors for pancreatic β-cell deaths are DNA alkylation and profound reactive oxygen species (ROS) generation. In this study, chlorophyllin treatment was found to be able to modulate oxidative stress and apoptosis in liver of diabetic mice. Diabetic mice exhibited a significant reduction of ROS, malondialdehyde (MDA), and protein carbonyl levels upon treatment with the chlorophyllin. However, antioxidant enzymes, such as copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and catalase (CAT) showed enhanced activity as well as expression in chlorophyllin-administered diabetic mice. The hepatoprotective effect of chlorophyllin was confirmed from the decreased activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). The histological and ultrastructural studies revealed the ability of chlorophyllin to restore morphological and cellular alterations as observed in STZ-induced diabetic mice. The effect of chlorophyllin on apoptosis showed the downregulation of cysteine-dependent aspartate-specific protease (caspase) 3 and caspase 9, whereas upregulation of B-cell lymphoma-2 (Bcl-2) protein, and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay demonstrated a few apoptotic cells. In conclusion, it can be stated that chlorophyllin treatment can exert hepatoprotective effect via modulating hyperglycemia-induced oxidative stress and apoptosis in STZ-administered diabetic mice. © 2018 BioFactors, 44(5):418-430, 2018.
Collapse
Affiliation(s)
- Abani Kumar Patar
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| | - Anupama Sharma
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| | - Donkupar Syiem
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| | - Surya Bhan
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
9
|
D´Epiro GFR, Semprebon SC, Niwa AM, Marcarini JC, Mantovani MS. Roles of chlorophyllin in cell proliferation and the expression of apoptotic and cell cycle genes in HB4a non-tumor breast cells. Toxicol Mech Methods 2016; 26:348-54. [DOI: 10.3109/15376516.2016.1172692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Lei W, Browning JD, Eichen PA, Brownstein KJ, Folk WR, Sun GY, Lubahn DB, Rottinghaus GE, Fritsche KL. Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages. Int Immunopharmacol 2015; 29:254-262. [PMID: 26585972 DOI: 10.1016/j.intimp.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/20/2015] [Accepted: 11/08/2015] [Indexed: 12/23/2022]
Abstract
Sutherlandia frutescens is a botanical widely used in southern Africa for treatment of inflammatory and other conditions. Previously, an ethanolic extract of S. frutescens (SFE) has been shown to inhibit the production of reactive oxygen species (ROS) and nitric oxide (NO) by murine neurons and a microglia cell line (BV-2 cells). In this study we sought to confirm the anti-inflammatory activities of SFE on a widely used murine macrophage cell line (i.e., RAW 264.7 cells) and primary mouse macrophages. Furthermore, experiments were conducted to investigate the anti-inflammatory activity of the flavonol and cycloartanol glycosides found in high quantities in S. frutescens. While the SFE exhibited anti-inflammatory activities upon murine macrophages similar to that reported with the microglia cell line, this effect does not appear to be mediated by sutherlandiosides or sutherlandins. In contrast, chlorophyll in our extracts appeared to be partly responsible for some of the activity observed in our macrophage-dependent screening assay.
Collapse
Affiliation(s)
- Wei Lei
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jimmy D Browning
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Peggy A Eichen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Korey J Brownstein
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - George E Rottinghaus
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211, USA
| | - Kevin L Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Suryavanshi S, Sharma D, Checker R, Thoh M, Gota V, Sandur SK, Sainis KB. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis. Free Radic Biol Med 2015; 85:56-70. [PMID: 25872101 DOI: 10.1016/j.freeradbiomed.2015.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/08/2015] [Accepted: 04/03/2015] [Indexed: 02/05/2023]
Abstract
Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.
Collapse
Affiliation(s)
- Shweta Suryavanshi
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vikram Gota
- Clinical Pharmacology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Krishna B Sainis
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
12
|
Experimental application of Lactobacillus fermentum CCM 7421 in combination with chlorophyllin in dogs. Appl Microbiol Biotechnol 2015; 99:8681-90. [DOI: 10.1007/s00253-015-6724-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022]
|
13
|
Khan NM, Poduval TB. Bilirubin augments radiation injury and leads to increased infection and mortality in mice: molecular mechanisms. Free Radic Biol Med 2012; 53:1152-69. [PMID: 22819982 DOI: 10.1016/j.freeradbiomed.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/08/2012] [Indexed: 01/15/2023]
Abstract
Our earlier results demonstrated that clinically relevant concentrations of unconjugated bilirubin (UCB) possessed immunotoxic effects. Whole-body irradiation (WBI) with 1 to 6 Gy leads to acute radiation syndrome, immunosuppression, and makes the host susceptible to infection. Since hyperbilirubinemia has been shown to be associated with several types of cancer, the present studies were undertaken to evaluate the radiomodifying effects of UCB in radiation-exposed mice having elevated levels of UCB. Pretreatment of splenic lymphocytes with UCB (1-50 μM at UCB/BSA ratio <1) augmented radiation-induced DNA strand breaks, MMP loss, calcium release, and apoptosis. Combination treatment of mice with UCB (50mg/kg bw) followed by WBI (2 Gy) 0.5h later, resulted in significantly increased splenic atrophy, bone marrow aplasia, decreased counts of peritoneal exudate cells, and different splenocyte subsets such as CD3+ T, CD4+ T, CD8+ T, CD19+ B, and CD14+ macrophages as compared to either UCB or WBI treatment. Hematological studies showed that WBI-induced lymphopenia, thrombocytopenia, and neutropenia were further aggravated in the combination treatment group. UCB pretreatment of mice potentiated WBI-induced apoptosis and decreased WBI-induced loss of functional response of various immune cells leading to augmentation of immunosuppression and infection susceptibility caused by WBI. In an acute bacterial peritonitis model, UCB pretreatment of mice significantly increased WBI-induced proinflammatory cytokines, nitric oxide, and peritoneal bacterial load resulting in increased infection and death. Studies using the pharmacological inhibitor of p38MAPK demonstrated the involvement of p38MAPK activation in the inflammatory cascade of peritonitis. These findings should prove useful in understanding the potential risk to hyperbilirubinemic patients during radiotherapy and victims of acute radiation exposure in the course of radiation accidents.
Collapse
Affiliation(s)
- Nazir M Khan
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | |
Collapse
|
14
|
|
15
|
Cariddi L, Escobar F, Sabini C, Torres C, Reinoso E, Cristofolini A, Comini L, Núñez Montoya S, Sabini L. Apoptosis and mutagenicity induction by a characterized aqueous extract of Baccharis articulata (Lam.) Pers. (Asteraceae) on normal cells. Food Chem Toxicol 2011; 50:155-61. [PMID: 22107990 DOI: 10.1016/j.fct.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/21/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
In a previous study we have demonstrated that cold aqueous extract of Baccharis articulata (Ba-CAE) induced the death of human peripheral blood mononuclear cells (PBMCs) and exerted low mutagenic effects on mice at 6h after administration. The aim of this work was to investigate whether the PBMCs death induced by Ba-CAE is due to apoptosis, and whether this extract exerts mutagenic effects on mice at 24 and 48h after administration. In addition, Ba-CAE was chemically characterized. PBMCs from healthy volunteers were exposed to extract (10, 20, 40, 80, 160, 320, 640 and 1280μg/mL) for 18-24h. Cell viability was determined by staining of trypan blue dye exclusion method. Apoptosis was determined by Hoechst 33258 staining, TUNEL, and DNA fragmentation analysis by agarose gel electrophoresis. BALB/c mice were injected with extract (1800, 900 and 450mg/kg) and sacrificed at 24 and 48h postinjection. Bone marrow samples were used to assess chromosome mutations by the micronucleus test. The extract induced PBMCs death by apoptosis and increased the frequency of micronuclei in bone marrow. The phytochemical study of Ba-CAE showed the presence of flavones as luteolin and acacetin, caffeoylquinic acids as chlorogenic acid, and tannins.
Collapse
Affiliation(s)
- Laura Cariddi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Smina TP, De S, Devasagayam TPA, Adhikari S, Janardhanan KK. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. Mutat Res 2011; 726:188-94. [PMID: 21944902 DOI: 10.1016/j.mrgentox.2011.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/24/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
The development of radioprotective agents has been the subject of intense research, especially in the field of radiotherapy. In this study, we examined the radioprotective activity of the total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst in mouse splenic lymphocytes in vitro. Using the MTT assay, Ganoderma triterpenes were found to have no effect on cell viability, indicating that they are non-toxic to splenic lymphocytes. The effect of the total triterpenes on DNA damage and apoptosis induced by radiation was analyzed using the comet assay, DNA ladder assay and flow cytometric analysis. Total triterpenes were found to be highly effective in preventing DNA laddering, even at low concentrations (25μg/ml). The comet assay demonstrated that the G. triterpenes effectively prevented DNA damage, and flow cytometry revealed a reduction in apoptotic cells. The effect of the total triterpenes on intracellular reactive oxygen species (ROS) level and endogenous antioxidant enzyme activity in splenic lymphocytes were determined to elucidate possible radioprotective mechanisms. Total triterpenes successfully reduced the formation of intracellular ROS and enhanced endogenous antioxidant enzyme activity in splenic lymphocytes following irradiation. Thus, these findings indicate that the total triterpenes isolated from G. lucidum have a remarkable ability to protect normal cells from radiation-induced damage, which suggests therapeutic potential.
Collapse
Affiliation(s)
- T P Smina
- Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India
| | | | | | | | | |
Collapse
|
17
|
Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B1-induced liver carcinogenesis in rats. Br J Nutr 2011; 107:1006-16. [DOI: 10.1017/s0007114511003953] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present investigation was carried out to evaluate the hepatoprotective effect of probiotic fermented milk (FM) containing Lactobacillus rhamnosus GG and Lactobacillus casei strain Shirota, alone as well as in combination with chlorophyllin (CHL) as an antioxidant agent in male Wistar rats administered aflatoxin-B1 (AFB1). AFB1 was injected intraperitoneally at the rate of 450 μg/kg body weight per animal twice a week for 6 weeks, maintaining an equal time interval between the two consecutive AFB1 administrations. A total of 125 male Wistar rats were randomly allocated to five groups, each group having twenty-five animals. Group I was offered FM containing L. rhamnosus GG and L. casei strain Shirota. Group II was administered AFB1 and served as the control group; group III was administered FM-AFB1, in which besides administering AFB1, FM was also offered. Group IV was offered CHL and AFB1, and group V was offered both FM and CHL along with AFB1. The rats were euthanised at the 15th and 25th week of the experiment and examined for the biochemical and hepatopathological profile. A significant reduction in thiobarbituric acid-reactive substances (TBARS) was observed in the FM–CHL–AFB1 group compared with the AFB1 control group. FM alone or in combination with CHL was found to show a significant (P < 0·05) hepatoprotective effect by lowering the levels of TBARS and by enhancing the activities of antioxidant enzymes such as glutathione peroxidase, superoxide dismutase, catalase and glutathione-S-transferase, indicating that probiotic FM alone or in combination with CHL possesses a potent protective effect against AFB1-induced hepatic damage.
Collapse
|
18
|
TONG YANG, GAO LIJING, XIAO GUOMIN, PAN XIAOMEI. MICROWAVE PRETREATMENT-ASSISTED ETHANOL EXTRACTION OF CHLOROPHYLLS FROMSPIRULINA PLATENSIS. J FOOD PROCESS ENG 2011. [DOI: 10.1111/j.1745-4530.2010.00629.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Tong Y, Gao L, Xiao G, Pan X. Supercritical CO2 Extraction of Chlorophyll a from Spirulina platensis with a Static Modifier. Chem Eng Technol 2010. [DOI: 10.1002/ceat.201000379] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Sharma D, Sandur SK, Rashmi R, Maurya D, Suryavanshi S, Checker R, Krishnan S, Sainis K. Differential activation of NF-κB and nitric oxide in lymphocytes regulates in vitro and in vivo radiosensitivity. Mutat Res 2010; 703:149-57. [PMID: 20732448 PMCID: PMC3071568 DOI: 10.1016/j.mrgentox.2010.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/19/2010] [Accepted: 08/15/2010] [Indexed: 11/22/2022]
Abstract
Lymphocytes are more sensitive to radiation in vivo than in vitro. However, the mechanism of this differential response is poorly understood. In the present study, it was found that the lipid peroxidation and cell death were significantly higher in lymphocytes following whole body irradiation (WBI) as compared to lymphocytes exposed to radiation in vitro. EL-4 cells transplanted in mice were also more sensitive to radiation than EL-4 cells irradiated in vitro. DNA repair, as assessed by comet assay, was significantly faster in lymphocytes exposed to 4Gy radiation in vitro as compared to that in lymphocytes obtained from whole body irradiated mice exposed to the same dose of radiation. This was associated with increased NF-κB activation in response to genotoxic stress and lesser activation of caspase in lymphocytes in vitro compared to in vivo. To explain the differential radiosensitivity, we postulated a role of nitric oxide, an extrinsic diffusible mediator of radiosensitivity that has also been implicated in DNA repair inhibition. Nitric oxide levels were significantly elevated in the plasma of whole body irradiated mice but not in the supernatant of cells irradiated in vitro. Addition of sodium nitroprusside (SNP), a nitric oxide donor to cells irradiated in vitro inhibited the repair of DNA damage and enhanced apoptosis (increased Bax to Bcl-2 ratio). Administration of l-NAME, a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. These results confirm that the observed differential radiosensitivity of lymphocytes was due to slow repair of DNA due to nitric oxide production in vivo.
Collapse
Affiliation(s)
- Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Santosh K. Sandur
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - R. Rashmi
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - D.K. Maurya
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Shweta Suryavanshi
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Sunil Krishnan
- Division of Radiation Oncology, Univ. of Texas M. D. Anderson Cancer Center, Houston, TX 77030 USA
| | - K.B. Sainis
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| |
Collapse
|
21
|
Checker R, Sharma D, Sandur SK, Subrahmanyam G, Krishnan S, Poduval TB, Sainis KB. Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols. J Cell Biochem 2010; 110:1082-93. [PMID: 20564204 DOI: 10.1002/jcb.22620] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plumbagin inhibited activation, proliferation, cytokine production, and graft-versus-host disease in lymphocytes and inhibited growth of tumor cells by suppressing nuclear factor-kappaB (NF-kappaB). Plumbagin was also shown to induce reactive oxygen species (ROS) generation in tumor cells via an unknown mechanism. Present report describes a novel role of cellular redox in modulation of immune responses in normal lymphocytes by plumbagin. Plumbagin depleted glutathione (GSH) levels that led to increase in ROS generation. The decrease in GSH levels was due to direct reaction of plumbagin with GSH as evinced by mass spectrometric and HPLC analysis. Further, addition of plumbagin to cells resulted in decrease in free thiol groups on proteins and increase in glutathionylation of proteins. The suppression of mitogen-induced T-cell proliferation and cytokine (IL-2/IL-4/IL-6/IFN-gamma) production by plumbagin was abrogated by thiol antioxidants but not by non-thiol antioxidants confirming that thiols but not ROS play an important role in biological activity of plumbagin. Plumbagin also abrogated mitogen-induced phosphorylation of ERK, IKK, and degradation of IkappaB-alpha. However, it did not affect phosphorylation of P38, JNK, and AKT. Our results for the first time show that antiproliferative effects of plumbagin are mediated by modulation of cellular redox. These results provide a rationale for application of thiol-depleting agents as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Itoh A, Isoda K, Kondoh M, Kawase M, Kobayashi M, Tamesada M, Yagi K. Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol Pharm Bull 2009; 32:1215-9. [PMID: 19571388 DOI: 10.1248/bpb.32.1215] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The edible mushroom Lentinula edodes (shiitake) contains many bioactive compounds. In the present study, we cultivated L. edodes mycelia in solid medium and examined the hot-water extract (L.E.M.) for its suppressive effect on concanavalin A (ConA)-induced liver injury in mice. ConA injection into the tail vein caused a great increase in the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. The intraperitoneal administration of L.E.M. significantly decreased the levels of the transaminases. L.E.M. contains many bioactive substances, including polysaccharides and glucan, which could be immunomodulators. Since ConA-induced liver injury is caused by the activation of T cells, immunomodulating substances might be responsible for the suppressive effect of L.E.M. L.E.M. also contains phenolic compounds that are produced from lignocellulose by mycelia-derived enzymes. The major phenolics in L.E.M., syringic acid and vanillic acid, were intraperitoneally injected into mice shortly before the ConA treatment. Similar to L.E.M., the administration of syringic acid or vanillic acid significantly decreased the transaminase activity and suppressed the disorganization of the hepatic sinusoids. In addition, the inflammatory cytokines tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6 in the serum increased rapidly, within 3 h of the ConA administration, but the administration of syringic acid or vanillic acid significantly suppressed the cytokine levels. Together, these findings indicate that the phenolic compounds in L.E.M. are hepatoprotective through their suppression of immune-mediated liver inflammation.
Collapse
Affiliation(s)
- Ayano Itoh
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Guan L, Wang X, Wen T, Xing J, Zhao J. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radic Res 2009; 42:362-71. [DOI: 10.1080/10715760801993076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Sharma D, Kumar SS, Checker R, Raghu R, Khanam S, Krishnan S, Sainis KB. Spatial distribution, kinetics, signaling and cytokine production during homeostasis driven proliferation of CD4+ T cells. Mol Immunol 2009; 46:2403-12. [PMID: 19447493 DOI: 10.1016/j.molimm.2009.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 01/01/2023]
Abstract
During recovery from lymphopenia, the naïve T-cells undergo homeostasis driven proliferation (HDP) and acquire a memory phenotype. The HDP of T-cells requires signals derived from T-cell-receptor, p56lck kinase, IL-7R and IL-15R. However, the role of other signaling molecules during HDP of CD4+ T-cells remains speculative. The differentiation of naïve T-cells into Th1/Th2/Th17 or Treg populations during HDP is not well understood. Present report describes the spatial and signaling characteristics of HDP of CD4+ T-cells and their cytokine profiles. The HDP of CD4+ T-cells was found to occur only in specific areas (T-cell zones) of secondary lymphoid organs of lymphopenic mice. The inhibitors of MEK and PKC and their combination with inhibitors of PI3kinase and mTOR suppressed mitogen induced T-cell proliferation without affecting their HDP. The CD4+ T-cells taken from reconstituted lymphopenic mice showed activation of proteins involved in NF-kappaB pathway, significantly higher production of pro-inflammatory cytokine IL-6, and lower production of IL-4 as compared to T-cells from normal mice. Plumbagin, a known NF-kappaB blocker inhibited survival as well as HDP of CD4+ T-cells and IL-6 production in activated T-cells. Our results demonstrate the essential role of NF-kappaB during HDP of T-cells.
Collapse
Affiliation(s)
- Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai 400085, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Checker R, Sharma D, Sandur SK, Khanam S, Poduval TB. Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. Int Immunopharmacol 2009; 9:949-58. [PMID: 19374955 DOI: 10.1016/j.intimp.2009.03.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 11/16/2022]
Abstract
Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), a quinone isolated from the roots of Plumbago zeylanica was recently reported to suppress the activation of NF-kappaB in tumor cells. NF-kappaB, a ubiquitous transcription factor, plays a central role in regulating diverse processes in leukocytes like cellular proliferation, expression of immunoregulatory genes and apoptosis during innate and adaptive immune responses. Consequently, plumbagin might affect the biological functions of leukocytes participating in various immune responses. The present report describes novel immunomodulatory effects of plumbagin. Plumbagin inhibited T cell proliferation in response to polyclonal mitogen Concanavalin A (Con A) by blocking cell cycle progression. It also suppressed expression of early and late activation markers CD69 and CD25 respectively, in activated T cells. At these immunosuppressive doses (up to 5 microM), plumbagin did not reduce the viability of lymphocytes. Further, the inhibition of T cell proliferation by plumbagin was accompanied by a decrease in the levels of Con A induced IL-2, IL-4, IL-6 and IFN-gamma cytokines. Similar immunosuppressive effects of plumbagin on cytokine levels were seen in vivo. To characterize the mechanism of inhibitory action of plumbagin, the mitogen induced IkappaB-alpha degradation and nuclear translocation of NF-kappaB was studied in lymphocytes. Plumbagin completely inhibited Con A induced IkappaB-alpha degradation and NF-kappaB activation. Further, plumbagin prevented Graft Versus Host Disease-induced mortality in mice. To our knowledge this is the first report showing the immunomodulatory effects of plumbagin in lymphocytes via modulation of NF-kappaB activation.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | | | | | | | | |
Collapse
|
26
|
Raghu R, Sharma D, Ramakrishnan R, Khanam S, Chintalwar GJ, Sainis KB. Molecular events in the activation of B cells and macrophages by a non-microbial TLR4 agonist, G1-4A from Tinospora cordifolia. Immunol Lett 2009; 123:60-71. [DOI: 10.1016/j.imlet.2009.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
|
27
|
Huang S, Hung C, Wu W, Chen B. Determination of chlorophylls and their derivatives in Gynostemma pentaphyllum Makino by liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2008; 48:105-12. [DOI: 10.1016/j.jpba.2008.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/01/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
|
28
|
Narang H, Krishna M. Effect of nitric oxide donor and gamma irradiation on MAPK signaling in murine peritoneal macrophages. J Cell Biochem 2008; 103:576-87. [PMID: 17551965 DOI: 10.1002/jcb.21429] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irradiation (IR) of cells is known to activate enzymes of mitogen activated protein kinase (MAPK) family. These are known to be involved in cellular response to stress and are determinants of cell death or survival. When radiotherapy is delivered to malignant cells, macrophages, being radioresistant, survive, get activated, and produce large amounts of nitric oxide. As a result of activation they recognize and phagocytose tumor and normal cell apoptotic bodies leading to tumor regression. In this study, the MAPK signaling in peritoneal macrophages was investigated which plays an important role in its various functions, in an environment which is predominantly nitric oxide, as is after IR. The behavior of macrophages in such an environment was also looked at. The three MAPK (ERK1/2, p38, and JNK) respond differently to Sodium nitroprusside (SNP) alone or IR alone. All the three were activated following IR but only JNK was activated following SNP treatment. Surprisingly, when both the stresses were given simultaneously or one after the other, this differential response was lost and there was a complete inhibition of phosphorylation of all the three MAPKs, irrespective of the order of the two insults (IR and SNP). The noteworthy observation was that despite the complete inhibition of MAPK signaling there was no effect on either the viability or the phagocytic efficiency of peritoneal macrophages.
Collapse
Affiliation(s)
- Himanshi Narang
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | |
Collapse
|
29
|
Checker R, Chatterjee S, Sharma D, Gupta S, Variyar P, Sharma A, Poduval TB. Immunomodulatory and radioprotective effects of lignans derived from fresh nutmeg mace (Myristica fragrans) in mammalian splenocytes. Int Immunopharmacol 2008; 8:661-9. [PMID: 18387508 DOI: 10.1016/j.intimp.2008.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/19/2007] [Accepted: 01/09/2008] [Indexed: 11/16/2022]
Abstract
Recently, the lignans present in the aqueous extract of fresh nutmeg mace (aril of the fruit of Myristica fragrans) were shown to possess antioxidant properties in cell free systems and protected PUC18 plasmid against radiation-induced DNA damage. The present report describes the immunomodulatory and radiomodifying properties of lignans present in the aqueous extract of fresh nutmeg mace in mammalian splenocytes. These macelignans (ML) inhibited the proliferation of splenocytes in response to polyclonal T cell mitogen concanavalin A (Con A). This inhibition of proliferation was due to cell cycle arrest in G1 phase and augmentation of apoptosis as shown by increase in pre G1 cells. The increase in activation induced cell death by ML was dose dependent. It was found to inhibit the transcription of IL-2 and IL-4 genes in response to Con A. The production of IL-2, IL-4 and IFN-gamma cytokines was significantly inhibited by ML in Con A-stimulated lymphocytes in a dose dependent manner. ML protected splenocytes against radiation-induced intracellular ROS production in a dose dependent manner. ML was not cytotoxic towards lymphocytes. On the contrary, it significantly inhibited the radiation-induced DNA damage in splenocytes as indicated by decrease in DNA fragmentation. To our knowledge, this is the first report showing the antioxidant, radioprotective and immunomodulatory effects of lignans in mammalian cells.
Collapse
Affiliation(s)
- Rahul Checker
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | | | | | | | | | | | | |
Collapse
|