1
|
Oyarzun P, Kashyap M, Fica V, Salas-Burgos A, Gonzalez-Galarza FF, McCabe A, Jones AR, Middleton D, Kobe B. A Proteome-Wide Immunoinformatics Tool to Accelerate T-Cell Epitope Discovery and Vaccine Design in the Context of Emerging Infectious Diseases: An Ethnicity-Oriented Approach. Front Immunol 2021; 12:598778. [PMID: 33717077 PMCID: PMC7952308 DOI: 10.3389/fimmu.2021.598778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
Emerging infectious diseases (EIDs) caused by viruses are increasing in frequency, causing a high disease burden and mortality world-wide. The COVID-19 pandemic caused by the novel SARS-like coronavirus (SARS-CoV-2) underscores the need to innovate and accelerate the development of effective vaccination strategies against EIDs. Human leukocyte antigen (HLA) molecules play a central role in the immune system by determining the peptide repertoire displayed to the T-cell compartment. Genetic polymorphisms of the HLA system thus confer a strong variability in vaccine-induced immune responses and may complicate the selection of vaccine candidates, because the distribution and frequencies of HLA alleles are highly variable among different ethnic groups. Herein, we build on the emerging paradigm of rational epitope-based vaccine design, by describing an immunoinformatics tool (Predivac-3.0) for proteome-wide T-cell epitope discovery that accounts for ethnic-level variations in immune responsiveness. Predivac-3.0 implements both CD8+ and CD4+ T-cell epitope predictions based on HLA allele frequencies retrieved from the Allele Frequency Net Database. The tool was thoroughly assessed, proving comparable performances (AUC ~0.9) against four state-of-the-art pan-specific immunoinformatics methods capable of population-level analysis (NetMHCPan-4.0, Pickpocket, PSSMHCPan and SMM), as well as a strong accuracy on proteome-wide T-cell epitope predictions for HIV-specific immune responses in the Japanese population. The utility of the method was investigated for the COVID-19 pandemic, by performing in silico T-cell epitope mapping of the SARS-CoV-2 spike glycoprotein according to the ethnic context of the countries where the ChAdOx1 vaccine is currently initiating phase III clinical trials. Potentially immunodominant CD8+ and CD4+ T-cell epitopes and population coverages were predicted for each population (the Epitope Discovery mode), along with optimized sets of broadly recognized (promiscuous) T-cell epitopes maximizing coverage in the target populations (the Epitope Optimization mode). Population-specific epitope-rich regions (T-cell epitope clusters) were further predicted in protein antigens based on combined criteria of epitope density and population coverage. Overall, we conclude that Predivac-3.0 holds potential to contribute in the understanding of ethnic-level variations of vaccine-induced immune responsiveness and to guide the development of epitope-based next-generation vaccines against emerging pathogens, whose geographic distributions and populations in need of vaccinations are often well-defined for regional epidemics.
Collapse
Affiliation(s)
- Patricio Oyarzun
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Manju Kashyap
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Victor Fica
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | | | - Faviel F Gonzalez-Galarza
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Antony McCabe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Derek Middleton
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Ho JKT, Jeevan-Raj B, Netter HJ. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020; 12:v12020126. [PMID: 31973017 PMCID: PMC7077199 DOI: 10.3390/v12020126] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B remains one of the major global health problems more than 40 years after the identification of human hepatitis B virus (HBV) as the causative agent. A critical turning point in combating this virus was the development of a preventative vaccine composed of the HBV surface (envelope) protein (HBsAg) to reduce the risk of new infections. The isolation of HBsAg sub-viral particles (SVPs) from the blood of asymptomatic HBV carriers as antigens for the first-generation vaccines, followed by the development of recombinant HBsAg SVPs produced in yeast as the antigenic components of the second-generation vaccines, represent landmark advancements in biotechnology and medicine. The ability of the HBsAg SVPs to accept and present foreign antigenic sequences provides the basis of a chimeric particulate delivery platform, and resulted in the development of a vaccine against malaria (RTS,S/AS01, MosquirixTM), and various preclinical vaccine candidates to overcome infectious diseases for which there are no effective vaccines. Biomedical modifications of the HBsAg subunits allowed the identification of strategies to enhance the HBsAg SVP immunogenicity to build potent vaccines for preventative and possibly therapeutic applications. The review provides an overview of the formation and assembly of the HBsAg SVPs and highlights the utilization of the particles in key effective vaccines.
Collapse
Affiliation(s)
- Joan Kha-Tu Ho
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Beena Jeevan-Raj
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Hans-Jürgen Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
- Correspondence:
| |
Collapse
|
4
|
Moss DL, Park HW, Mettu RR, Landry SJ. Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes. J Biol Chem 2019; 294:4667-4681. [PMID: 30683694 DOI: 10.1074/jbc.ra118.006704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Indexed: 11/06/2022] Open
Abstract
Effective adaptive immune responses depend on activation of CD4+ T cells via the presentation of antigen peptides in the context of major histocompatibility complex (MHC) class II. The structure of an antigen strongly influences its processing within the endolysosome and potentially controls the identity of peptides that are presented to T cells. A recombinant immunotoxin, comprising exotoxin A domain III (PE-III) from Pseudomonas aeruginosa and a cancer-specific antibody fragment, has been developed to manage cancer, but its effectiveness is limited by the induction of neutralizing antibodies. Here, we observed that this immunogenicity is substantially reduced by substituting six residues within PE-III. Although these substitutions targeted T-cell epitopes, we demonstrate that reduced conformational stability and protease resistance were responsible for the reduced antibody titer. Analysis of mouse T-cell responses coupled with biophysical studies on single-substitution versions of PE-III suggested that modest but comprehensible changes in T-cell priming can dramatically perturb antibody production. The most strongly responsive PE-III epitope was well-predicted by a structure-based algorithm. In summary, single-residue substitutions can drastically alter the processing and immunogenicity of PE-III but have only modest effects on CD4+ T-cell priming in mice. Our findings highlight the importance of structure-based processing constraints for accurate epitope prediction.
Collapse
Affiliation(s)
- Daniel L Moss
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Hee-Won Park
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Ramgopal R Mettu
- the Department of Computer Science, Tulane University, New Orleans, Louisiana 70118
| | - Samuel J Landry
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
5
|
Paul S, Karosiene E, Dhanda SK, Jurtz V, Edwards L, Nielsen M, Sette A, Peters B. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands. Front Immunol 2018; 9:1795. [PMID: 30127785 PMCID: PMC6087742 DOI: 10.3389/fimmu.2018.01795] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
CD4+ T cells have a major role in regulating immune responses. They are activated by recognition of peptides mostly generated from exogenous antigens through the major histocompatibility complex (MHC) class II pathway. Identification of epitopes is important and computational prediction of epitopes is used widely to save time and resources. Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no accurate methods exist to predict which ligands are generated as a result of natural antigen processing. We utilized a dataset of around 14,000 naturally processed ligands identified by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate the existence of sequence signatures potentially related to the cleavage mechanisms that liberate the presented peptides from their source antigens. This analysis revealed preferred amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific cleavage preferences. We used these cleavage motifs to develop a method for predicting naturally processed MHC II ligands, and validated that it had predictive power to identify ligands from independent studies. We further confirmed that prediction of ligands based on cleavage motifs could be combined with predictions of MHC binding, and that the combined prediction had superior performance. However, when attempting to predict CD4+ T cell epitopes, either alone or in combination with MHC binding predictions, predictions based on the cleavage motifs did not show predictive power. Given that peptides identified as epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is possible that motifs are present but outside of the mapped epitope. Our attempts to take that into account computationally did not show any sign of an increased presence of cleavage motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions were suboptimal, other possible explanations are that the cleavage signal is too diluted to be detected, or that elution data are enriched for ligands generated through an antigen processing and presentation pathway that is less frequently utilized for T cell epitopes.
Collapse
Affiliation(s)
- Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Vanessa Jurtz
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Koblischke M, Mackroth MS, Schwaiger J, Fae I, Fischer G, Stiasny K, Heinz FX, Aberle JH. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Sci Rep 2017; 7:8907. [PMID: 28827760 PMCID: PMC5566484 DOI: 10.1038/s41598-017-09331-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
The live attenuated yellow fever (YF) vaccine is a highly effective human vaccine and induces long-term protective neutralizing antibodies directed against the viral envelope protein E. The generation of such antibodies requires the help of CD4 T cells which recognize peptides derived from proteins in virus particles internalized and processed by E-specific B cells. The CD4 T helper cell response is restricted to few immunodominant epitopes, but the mechanisms of their selection are largely unknown. Here, we report that CD4 T cell responses elicited by the YF-17D vaccine are focused to hotspots of two helices of the viral capsid protein and to exposed strands and loops of E. We found that the locations of immunodominant epitopes within three-dimensional protein structures exhibit a high degree of overlap between YF virus and the structurally homologous flavivirus tick-borne encephalitis virus, although amino acid sequence identity of the epitope regions is only 15-45%. The restriction of epitopes to exposed E protein surfaces and their strikingly similar positioning within proteins of distantly related flaviviruses are consistent with a strong influence of protein structure that shapes CD4 T cell responses and provide leads for a rational design of immunogens for vaccination.
Collapse
Affiliation(s)
| | - Maria S Mackroth
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Grutsch S, Fuchs JE, Ahammer L, Kamenik AS, Liedl KR, Tollinger M. Conformational Flexibility Differentiates Naturally Occurring Bet v 1 Isoforms. Int J Mol Sci 2017; 18:E1192. [PMID: 28587205 PMCID: PMC5486015 DOI: 10.3390/ijms18061192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
The protein Bet v 1 represents the main cause for allergic reactions to birch pollen in Europe and North America. Structurally homologous isoforms of Bet v 1 can have different properties regarding allergic sensitization and Th2 polarization, most likely due to differential susceptibility to proteolytic cleavage. Using NMR relaxation experiments and molecular dynamics simulations, we demonstrate that the initial proteolytic cleavage sites in two naturally occurring Bet v 1 isoforms, Bet v 1.0101 (Bet v 1a) and Bet v 1.0102 (Bet v 1d), are conformationally flexible. Inaccessible cleavage sites in helices and strands are highly flexible on the microsecond-millisecond time scale, whereas those located in loops display faster nanosecond-microsecond flexibility. The data consistently show that Bet v 1.0102 is more flexible and conformationally heterogeneous than Bet v 1.0101. Moreover, NMR hydrogen-deuterium exchange measurements reveal that the backbone amides in Bet v 1.0102 are significantly more solvent exposed, in agreement with this isoform's higher susceptibility to proteolytic cleavage. The differential conformational flexibility of Bet v 1 isoforms, along with the transient exposure of inaccessible sites to the protein surface, may be linked to proteolytic susceptibility, representing a potential structure-based rationale for the observed differences in Th2 polarization and allergic sensitization.
Collapse
Affiliation(s)
- Sarina Grutsch
- Institute of Organic Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Julian E Fuchs
- Institute of Inorganic and Theoretical Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Linda Ahammer
- Institute of Organic Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Anna S Kamenik
- Institute of Inorganic and Theoretical Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Klaus R Liedl
- Institute of Inorganic and Theoretical Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | - Martin Tollinger
- Institute of Organic Chemistry & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| |
Collapse
|
8
|
A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice. PLoS One 2016; 11:e0163080. [PMID: 27658047 PMCID: PMC5033357 DOI: 10.1371/journal.pone.0163080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/04/2016] [Indexed: 12/29/2022] Open
Abstract
The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases.
Collapse
|
9
|
Engineering virus-like particles as vaccine platforms. Curr Opin Virol 2016; 18:44-9. [PMID: 27039982 DOI: 10.1016/j.coviro.2016.03.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 03/08/2016] [Indexed: 02/03/2023]
Abstract
Virus-like particles (VLPs) have been utilized as vaccine platforms to increase the immunogenicity of heterologous antigens. A variety of diverse VLP types can serve as vaccine platforms, and research has focused on engineering VLPs to improve their efficacy as vaccines, enhance their stability, and allow for more versatile display of antigens. Here, we review selected VLP vaccine platforms, highlight efforts to improve these platforms through structure-informed rational design, and point to areas of future research that will assist in these efforts.
Collapse
|
10
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Ascough S, Ingram RJ, Chu KKY, Musson JA, Moore SJ, Gallagher T, Baillie L, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. CD4+ T Cells Targeting Dominant and Cryptic Epitopes from Bacillus anthracis Lethal Factor. Front Microbiol 2016; 6:1506. [PMID: 26779161 PMCID: PMC4700811 DOI: 10.3389/fmicb.2015.01506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.
Collapse
Affiliation(s)
| | - Rebecca J Ingram
- Centre for Infection and Immunity, Queen's University Belfast Belfast UK
| | - Karen K Y Chu
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London London, UK
| | - Julie A Musson
- Institute of Cellular Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Stephen J Moore
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Theresa Gallagher
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff, UK
| | | | - John H Robinson
- Institute of Cellular Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Bernard Maillere
- Service d'Ingénierie Moléculaire des Protéines, Insititut de Biologie et de Technologies de Saclay, Commiseriat à l'Energie Atomique, Gif Sur Yvette France
| | - Rosemary J Boyton
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London London, UK
| | - Daniel M Altmann
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London London, UK
| |
Collapse
|
12
|
Machado Y, Freier R, Scheiblhofer S, Thalhamer T, Mayr M, Briza P, Grutsch S, Ahammer L, Fuchs JE, Wallnoefer HG, Isakovic A, Kohlbauer V, Hinterholzer A, Steiner M, Danzer M, Horejs-Hoeck J, Ferreira F, Liedl KR, Tollinger M, Lackner P, Johnson CM, Brandstetter H, Thalhamer J, Weiss R. Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen. J Allergy Clin Immunol 2015; 137:1525-34. [PMID: 26559323 PMCID: PMC4877439 DOI: 10.1016/j.jaci.2015.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The search for intrinsic factors, which account for a protein's capability to act as an allergen, is ongoing. Fold stability has been identified as a molecular feature that affects processing and presentation, thereby influencing an antigen's immunologic properties. OBJECTIVE We assessed how changes in fold stability modulate the immunogenicity and sensitization capacity of the major birch pollen allergen Bet v 1. METHODS By exploiting an exhaustive virtual mutation screening, we generated mutants of the prototype allergen Bet v 1 with enhanced thermal and chemical stability and rigidity. Structural changes were analyzed by means of x-ray crystallography, nuclear magnetic resonance, and molecular dynamics simulations. Stability was monitored by using differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy. Endolysosomal degradation was simulated in vitro by using the microsomal fraction of JAWS II cells, followed by liquid chromatography coupled to mass spectrometry. Immunologic properties were characterized in vitro by using a human T-cell line specific for the immunodominant epitope of Bet v 1 and in vivo in an adjuvant-free BALB/c mouse model. RESULTS Fold stabilization of Bet v 1 was pH dependent and resulted in resistance to endosomal degradation at a pH of 5 or greater, affecting presentation of the immunodominant T-cell epitope in vitro. These properties translated in vivo into a strong allergy-promoting TH2-type immune response. Efficient TH2 cell activation required both an increased stability at the pH of the early endosome and efficient degradation at lower pH in the late endosomal/lysosomal compartment. CONCLUSIONS Our data indicate that differential pH-dependent fold stability along endosomal maturation is an essential protein-inherent determinant of allergenicity.
Collapse
Affiliation(s)
- Yoan Machado
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Regina Freier
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Theresa Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Melissa Mayr
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Sarina Grutsch
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Linda Ahammer
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Julian E Fuchs
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Hannes G Wallnoefer
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Almedina Isakovic
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Vera Kohlbauer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Markus Steiner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Danzer
- Austrian Red Cross, Blood Transfusion Service for Upper Austria, Linz, Austria
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Klaus R Liedl
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Martin Tollinger
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
13
|
Szabados H, Uray K, Majer Z, Silló P, Kárpáti S, Hudecz F, Bősze S. Characterization of desmoglein-3 epitope region peptides as synthetic antigens: analysis of their in vitro T cell stimulating efficacy, cytotoxicity, stability, and their conformational features. J Pept Sci 2015; 21:731-42. [PMID: 26250896 DOI: 10.1002/psc.2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/05/2015] [Accepted: 06/13/2015] [Indexed: 11/09/2022]
Abstract
Desmoglein-3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full-length peptide (Dsg3/189-205, Dsg3/206-222, Dsg3/342-358, and Dsg3/761-777) and its N-terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure-activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20 h of stimulation, the interferon (IFN)-γ content of the supernatants was measured by enzyme-linked immunosorbent assay. In the in vitro conditions, peptides were stable and non-cytotoxic. The in vitro IFN-γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342-358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192-205, Dsg3/763-777, and Dsg3/764-777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were the most capable to distinguish between healthy and PV donors.
Collapse
Affiliation(s)
- Hajnalka Szabados
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary
| | - Zsuzsa Majer
- Laboratory for Chiroptical Structure Analysis, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary.,Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary
| |
Collapse
|
14
|
Oyarzun P, Kobe B. Computer-aided design of T-cell epitope-based vaccines: addressing population coverage. Int J Immunogenet 2015. [PMID: 26211755 DOI: 10.1111/iji.12214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epitope-based vaccines (EVs) make use of short antigen-derived peptides corresponding to immune epitopes, which are administered to trigger a protective humoral and/or cellular immune response. EVs potentially allow for precise control over the immune response activation by focusing on the most relevant - immunogenic and conserved - antigen regions. Experimental screening of large sets of peptides is time-consuming and costly; therefore, in silico methods that facilitate T-cell epitope mapping of protein antigens are paramount for EV development. The prediction of T-cell epitopes focuses on the peptide presentation process by proteins encoded by the major histocompatibility complex (MHC). Because different MHCs have different specificities and T-cell epitope repertoires, individuals are likely to respond to a different set of peptides from a given pathogen in genetically heterogeneous human populations. In addition, protective immune responses are only expected if T-cell epitopes are restricted by MHC proteins expressed at high frequencies in the target population. Therefore, without careful consideration of the specificity and prevalence of the MHC proteins, EVs could fail to adequately cover the target population. This article reviews state-of-the-art algorithms and computational tools to guide EV design through all the stages of the process: epitope prediction, epitope selection and vaccine assembly, while optimizing vaccine immunogenicity and coping with genetic variation in humans and pathogens.
Collapse
Affiliation(s)
- P Oyarzun
- Biotechnology Centre, Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción, Chile
| | - B Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Nguyen HNP, Steede NK, Robinson JE, Landry SJ. Conformational instability governed by disulfide bonds partitions the dominant from subdominant helper T-cell responses specific for HIV-1 envelope glycoprotein gp120. Vaccine 2015; 33:2887-96. [PMID: 25944298 DOI: 10.1016/j.vaccine.2015.04.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) generate a CD4(+) T-cell response that is dominated by a few epitopes. Immunodominance may be counterproductive because a broad CD4(+) T-cell response is associated with reduced viral load. Previous studies indicated that antigen three-dimensional structure controls antigen processing and presentation and therefore CD4(+) T-cell epitope dominance. Dominant epitopes occur adjacent to the V1-V2, V3, and V4 loops because proteolytic antigen processing in the loops promotes presentation of adjacent sequences. In this study, three gp120 (strain JR-FL) variants were constructed, in which deletions of single outer-domain disulfide bonds were expected to introduce local conformational flexibility and promote presentation of additional CD4(+) T-cell epitopes. Following mucosal immunization of C57BL/6 mice with wild-type or variant gp120 lacking the V3-flanking disulfide bond, the typical pattern of dominant epitopes was observed, suggesting that the disulfide bond posed no barrier to antigen presentation. In mice that lacked gamma interferon-inducible lysosomal thioreductase (GILT), proliferative responses to the typically dominant epitopes of gp120 were selectively depressed, and the dominance pattern was rearranged. Deletion of the V3-flanking disulfide bond or one of the V4-flanking disulfide bonds partially restored highly proliferative responses to the typically dominant epitopes. These results reveal an acute dependence of dominant CD4(+) T-cell responses on the native gp120 conformation.
Collapse
Affiliation(s)
- Hong-Nam P Nguyen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - N Kalaya Steede
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
16
|
Ferreira de Lima Neto D, Bonafe CFS, Arns CW. Influence of high hydrostatic pressure on epitope mapping of tobacco mosaic virus coat protein. Viral Immunol 2014; 27:60-74. [PMID: 24605789 DOI: 10.1089/vim.2013.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP.
Collapse
Affiliation(s)
- Daniel Ferreira de Lima Neto
- 1 Laboratório de Virologia Animal, Departamentos de 1Genética, Evolução e Bioagentes, e Universidade Estadual de Campinas (UNICAMP) , Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | | | | |
Collapse
|
17
|
Pavlović MD, Jandrlić DR, Mitić NS. Epitope distribution in ordered and disordered protein regions. Part B — Ordered regions and disordered binding sites are targets of T- and B-cell immunity. J Immunol Methods 2014; 407:90-107. [DOI: 10.1016/j.jim.2014.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
|
18
|
Specificities of human CD4+ T cell responses to an inactivated flavivirus vaccine and infection: correlation with structure and epitope prediction. J Virol 2014; 88:7828-42. [PMID: 24789782 DOI: 10.1128/jvi.00196-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4(+) T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4(+) T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4(+) T cell epitopes. Importance: Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated vaccine can effectively prevent disease. Both vaccination and natural infection induce the formation of antibodies to a viral surface protein that neutralize the infectivity of the virus and mediate protection. B lymphocytes synthesizing these antibodies require help from other lymphocytes (helper T cells) which recognize small peptides derived from proteins contained in the viral particle. Which of these peptides dominate immune responses to vaccination and infection, however, was unknown. In our study we demonstrate which parts of the proteins contribute most strongly to the helper T cell response, highlight specific weaknesses of currently available approaches for their prediction, and demonstrate similarities and differences between vaccination and infection.
Collapse
|
19
|
Mitić NS, Pavlović MD, Jandrlić DR. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy. J Immunol Methods 2014; 406:83-103. [PMID: 24614036 DOI: 10.1016/j.jim.2014.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Highly disordered protein regions are prevalently hydrophilic, extremely sensitive to proteolysis in vitro, and are expected to be under-represented as T-cell epitopes. The aim of this research was to find out whether disorder and hydropathy prediction methods could help in understanding epitope processing and presentation. According to the pan-specific T-cell epitope predictors NetMHCpan and NetMHCIIpan and 9 publicly available disorder predictors, frequency of epitopes presented by human leukocyte antigens (HLA) class-I or -II was found to be more than 2.5 times higher in ordered than in disordered protein regions (depending on the disorder predictor). Both HLA class-I and HLA class-II binding epitopes are prevalently hydrophilic in disordered and prevalently hydrophobic in ordered protein regions, whereas epitopes recognized by HLA class-II alleles are more hydrophobic than those recognized by HLA class-I. As regards both classes of HLA molecules, high-affinity binding epitopes display more hydrophobicity than low affinity-binding epitopes (in both ordered and disordered regions). Epitopes belonging to disordered protein regions were not predicted to have poor affinity to HLA class-II molecules, as expected from disorder intrinsic proteolytic instability. The relation of epitope hydrophobicity and order/disorder location was also valid if alleles were grouped according to the HLA class-I and HLA class-II supertypes, except for the class-I supertype A3 in which the main part of recognized epitopes was prevalently hydrophilic. Regarding specific supertypes, the affinity of epitopes belonging to ordered regions varies only slightly (depending on the disorder predictor) compared to the affinity of epitopes in corresponding disordered regions. The distribution of epitopes in ordered and disordered protein regions has revealed that the curves of order-epitope distribution were convex-like while the curves of disorder-epitope distribution were concave-like. The percentage of prevalently hydrophobic epitopes increases with the enhancement of epitope promiscuity level and moving from disordered to ordered regions. These data suggests that reverse vaccinology, oriented towards promiscuous and high-affinity epitopes, is also oriented towards prevalently hydrophobic, ordered regions. The analysis of predicted and experimentally evaluated epitopes of cancer-testis antigen MAGE-A3 has confirmed that the majority of T-cell epitopes, particularly those that are promiscuous or naturally processed, was located in ordered and disorder/order boundary protein regions overlapping hydrophobic regions.
Collapse
Affiliation(s)
- Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| | - Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| |
Collapse
|
20
|
Sant AJ, Chaves FA, Krafcik FR, Lazarski CA, Menges P, Richards K, Weaver JM. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev Vaccines 2014; 6:357-68. [PMID: 17542751 DOI: 10.1586/14760584.6.3.357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4 T cells play a primary role in regulating immune responses to pathogenic organisms and to vaccines. Antigen-specific CD4 T cells provide cognate help to B cells, a requisite event for immunoglobulin switch and affinity maturation of B cells that produce neutralizing antibodies and also provide help to cytotoxic CD8 T cells, critical for their expansion and persistence as memory cells. Finally, CD4 T cells may participate directly in pathogen clearance via cell-mediated cytotoxicity or through production of cytokines. Understanding the role of CD4 T-cell immunity to viruses and other pathogens, as well as evaluation of the efficacy of vaccines, requires insight into the specificity of CD4 T cells. This review focuses on the events within antigen-presenting cells that focus CD4 T cells toward a limited number of peptide antigens within the pathogen or vaccine. The molecular events are discussed in light of the special challenges that the influenza virus poses, owing to the high degree of genetic variability, unpredictable pathogenicity and the repeated encounters that human populations face with this highly infectious pathogenic organism.
Collapse
Affiliation(s)
- Andrea J Sant
- David H Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther 2014; 21:225-32. [PMID: 24385146 DOI: 10.1038/gt.2013.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
Abstract
In DNA vaccination, CD4(+) T-cell help can be enhanced by fusion of a gene encoding an immunization protein with a foreign gene or its part providing T(h) epitopes. To study the effect of helper epitope localization in a protein molecule, the influence of the vicinity of the helper epitope, and the impact of chimeric protein cellular localization, we fused the helper epitope p30 from tetanus toxin (TT, aa 947-967) with the N- or C-terminus of the mutated E7 oncoprotein (E7GGG) of human papillomavirus type 16, enlarged the p30 epitope with the flanking residues containing potential protease-sensitive sites and altered the cellular localization of the fusion constructs by signal sequences. The p30 epitope enhanced the E7-specific response, but only in constructs without added signal sequences. After localization of the fusion proteins into the endoplasmic reticulum and endo/lysosomal compartment, the TT-specific T(h)2 response was increased. The synthetic Pan DR epitope (PADRE) induced a stronger E7-specific response than the p30 epitope and its stimulatory effect was not limited to nuclear/cytoplasmic localization of the E7 antigen. These results suggest that in the optimization of immune responses by adding helper epitopes to DNA vaccines delivered by the gene gun, the cellular localization of the antigen needs to be taken into account.
Collapse
|
22
|
Sant AJ, Chaves FA, Leddon SA, Tung J. The control of the specificity of CD4 T cell responses: thresholds, breakpoints, and ceilings. Front Immunol 2013; 4:340. [PMID: 24167504 PMCID: PMC3805957 DOI: 10.3389/fimmu.2013.00340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
It has been known for over 25 years that CD4 T cell responses are restricted to a finite number of peptide epitopes within pathogens or protein vaccines. These selected peptide epitopes are termed "immunodominant." Other peptides within the antigen that can bind to host MHC molecules and recruit CD4 T cells as single peptides are termed "cryptic" because they fail to induce responses when expressed in complex proteins or when in competition with other peptides during the immune response. In the last decade, our laboratory has evaluated the mechanisms that underlie the preferential specificity of CD4 T cells and have discovered that both intracellular events within antigen presenting cells, particular selective DM editing, and intercellular regulatory pathways, involving IFN-γ, indoleamine 2,3-dioxygenase, and regulatory T cells, play a role in selecting the final peptide specificity of CD4 T cells. In this review, we summarize our findings, discuss the implications of this work on responses to pathogens and vaccines and speculate on the logic of these regulatory events.
Collapse
Affiliation(s)
- Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A. Chaves
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline Tung
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
23
|
Ghosh M, Solanki AK, Roy K, Dhoke RR, Ashish, Roy S. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design. Vaccine 2013; 31:4682-8. [PMID: 23928464 DOI: 10.1016/j.vaccine.2013.06.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein.
Collapse
Affiliation(s)
- Moumita Ghosh
- Division of Infectious diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|
24
|
Oyarzún P, Ellis JJ, Bodén M, Kobe B. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC Bioinformatics 2013; 14:52. [PMID: 23409948 PMCID: PMC3598884 DOI: 10.1186/1471-2105-14-52] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022] Open
Abstract
Background CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge. Results We developed the computational tool Predivac to predict CD4+ T-cell epitopes. Predivac can make predictions for 95% of all MHC class II protein variants (allotypes), a substantial advance over other available methods. Predivac bases its prediction on the concept of specificity-determining residues. The performance of the method was assessed both for high-affinity HLA class II peptide binding and CD4+ T-cell epitope prediction. In terms of epitope prediction, Predivac outperformed three available pan-specific approaches (delivering the highest specificity). A central finding was the high accuracy delivered by the method in the identification of immunodominant and promiscuous CD4+ T-cell epitopes, which play an essential role in epitope-based vaccine design. Conclusions The comprehensive HLA class II allele coverage along with the high specificity in identifying immunodominant CD4+ T-cell epitopes makes Predivac a valuable tool to aid epitope-based vaccine design in the context of a genetically heterogeneous human population.The tool is available at: http://predivac.biosci.uq.edu.au/.
Collapse
Affiliation(s)
- Patricio Oyarzún
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
25
|
Cheong WS, Hyakumura M, Yuen L, Warner N, Locarnini S, Netter HJ. Modulation of the immunogenicity of virus-like particles composed of mutant hepatitis B virus envelope subunits. Antiviral Res 2012; 93:209-218. [DOI: 10.1016/j.antiviral.2011.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 01/05/2023]
|
26
|
Egger M, Jürets A, Wallner M, Briza P, Ruzek S, Hainzl S, Pichler U, Kitzmüller C, Bohle B, Huber CG, Ferreira F. Assessing protein immunogenicity with a dendritic cell line-derived endolysosomal degradome. PLoS One 2011; 6:e17278. [PMID: 21359181 PMCID: PMC3040223 DOI: 10.1371/journal.pone.0017278] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/27/2011] [Indexed: 12/17/2022] Open
Abstract
Background The growing number of novel candidate molecules for the treatment of allergic diseases imposed a dramatic increase in the demand for animal experiments to select immunogenic vaccines, a pre-requisite for efficacy. Because no in vitro methods to predict the immunogenicity of a protein are currently available, we developed an in vitro assay that exploits the link between a protein's immunogenicity and its susceptibility to endolysosomal proteolysis. Methodology We compared protein composition and proteolytic activity of endolysosomal fractions isolated from murine bone marrow- and human blood- derived dendritic cells, and from the dendritic cell line JAWS II. Three groups of structurally related antigen variants differing in their ability to elicit immune responses in vivo (Bet v 1.0101 and Bet v 1.0401, RNases A and S, holo- and apo-HRP) were subjected to in vitro simulated endolysosomal degradation. Kinetics and patterns of generated proteolytic peptides were evaluated by gel electrophoresis and mass spectrometry. Results Antigens displaying weak capacity of T cell priming in vivo were highly susceptible to endolysosomal proteases in vitro. As proteolytic composition, activity, and specificity of endolysosomal fractions derived from human and murine dendritic cells were comparable, the JAWS II cell line could be used as a substitute for freshly isolated human or murine cells in in vitro degradation assays. Conclusions Endolysosomal fractions prepared from the JAWS II cell line provide a reliable tool for in vitro estimation of protein immunogenicity. The rapid and simple assay described here is very useful to study the immunogenic properties of a protein, and can help to replace, reduce, and refine animal experiments in allergy research and vaccine development in general.
Collapse
Affiliation(s)
- Matthias Egger
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes. PLoS One 2010; 5:e15877. [PMID: 21209859 PMCID: PMC3012731 DOI: 10.1371/journal.pone.0015877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/25/2010] [Indexed: 11/23/2022] Open
Abstract
Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100–200 peptides per allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.
Collapse
|
28
|
Woehlbier U, Epp C, Hackett F, Blackman MJ, Bujard H. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion. Malar J 2010; 9:77. [PMID: 20298576 PMCID: PMC2847572 DOI: 10.1186/1475-2875-9-77] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum merozoites expose at their surface a large protein complex, which is composed of fragments of merozoite surface protein 1 (MSP-1; called MSP-183, MSP-130, MSP-138, and MSP-142) plus associated processing products of MSP-6 and MSP-7. During erythrocyte invasion this complex, as well as an integral membrane protein called apical membrane antigen-1 (AMA-1), is shed from the parasite surface following specific proteolysis. Components of the MSP-1/6/7 complex and AMA-1 are presently under development as malaria vaccines. METHODS The specificities and effects of antibodies directed against MSP-1, MSP-6, MSP-7 on the growth of blood stage parasites were studied using ELISA and the pLDH-assay. To understand the mode of action of these antibodies, their effects on processing of MSP-1 and AMA-1 on the surface of merozoites were investigated. RESULTS Antibodies targeting epitopes located throughout the MSP-1/6/7 complex interfere with shedding of MSP-1, and as a consequence prevent erythrocyte invasion. Antibodies targeting the MSP-1/6/7 complex have no effect on the processing and shedding of AMA-1 and, similarly, antibodies blocking the shedding of AMA-1 do not affect cleavage of MSP-1, suggesting completely independent functions of these proteins during invasion. Furthermore, some epitopes, although eliciting highly inhibitory antibodies, are only poorly recognized by the immune system when presented in the structural context of the intact antigen. CONCLUSIONS The findings reported provide further support for the development of vaccines based on MSP-1/6/7 and AMA-1, which would possibly include a combination of these antigens.
Collapse
Affiliation(s)
- Ute Woehlbier
- Zentrum für Molekulare Biologie (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Influence of disulfide-stabilized structure on the specificity of helper T-cell and antibody responses to HIV envelope glycoprotein gp120. J Virol 2010; 84:3303-11. [PMID: 20089653 DOI: 10.1128/jvi.02242-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4(+) helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4(+) T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this work, three disulfide bonds in the outer domain of gp120 were individually deleted in order to destabilize the local three-dimensional structure and enhance the presentation of nearby weakly immunogenic epitopes. However, upon immunization of groups of BALB/c mice, the CD4(+) T-cell response was broadly reduced for all three variants, and distinct epitope profiles emerged. For one variant, antibody titers were sharply increased, and the antibody exhibited significant CD4-blocking activity.
Collapse
|
30
|
He F, Joshi SB, Bosman F, Verhaeghe M, Middaugh CR. Structural stability of hepatitis C virus envelope glycoprotein E1: Effect of pH and dissociative detergents. J Pharm Sci 2009; 98:3340-57. [DOI: 10.1002/jps.21657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Weaver JM, Sant AJ. Understanding the focused CD4 T cell response to antigen and pathogenic organisms. Immunol Res 2009; 45:123-43. [PMID: 19198764 DOI: 10.1007/s12026-009-8095-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunodominance is a term that reflects the final, very limited peptide specificity of T cells that are elicited during an immune response. Recent experiments in our laboratory compel us to propose a new paradigm for the control of immunodominance in CD4 T cell responses, stating that immunodominance is peptide-intrinsic and is dictated by the off-rate of peptides from MHC class II molecules. Our studies have revealed that persistence of peptide:class II complexes both predicts and controls CD4 T cell immunodominance and that this parameter can be rationally manipulated to either promote or eliminate immune responses. Mechanistically, we have determined that DM editing in APC is a key event that is influenced by the kinetic stability of class II:peptide complexes and that differential persistence of complexes also impacts the expansion phase of the immune response. These studies have important implications for rational vaccine design and for understanding the immunological mechanisms that limit the specificity of CD4 T cell responses.
Collapse
Affiliation(s)
- Jason M Weaver
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, NY 14642, USA
| | | |
Collapse
|
32
|
Lymphocytic choriomeningitis virus infection yields overlapping CD4+ and CD8+ T-cell responses. J Virol 2008; 82:11734-41. [PMID: 18829752 DOI: 10.1128/jvi.00435-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Activation of CD4(+) T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4(+) T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2(d). This is quite disparate to the H-2(b) setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2(d) or whether additional CD4(+) T-cell epitopes could be identified in the setting of the H-2(b) background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4(+) T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4(+) epitopes, four of them also stimulate CD8(+) T cells in a statistically significant manner. Furthermore, we assessed these CD4(+) T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4(+) and CD8(+) T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.
Collapse
|
33
|
Weaver JM, Lazarski CA, Richards KA, Chaves FA, Jenks SA, Menges PR, Sant AJ. Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. THE JOURNAL OF IMMUNOLOGY 2008; 181:3039-48. [PMID: 18713974 DOI: 10.4049/jimmunol.181.5.3039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunodominance refers to the restricted peptide specificity of T cells that are detectable after an adaptive immune response. For CD4 T cells, many of the mechanisms used to explain this selectivity suggest that events related to Ag processing play a major role in determining a peptide's ability to recruit CD4 T cells. Implicit in these models is the prediction that the molecular context in which an antigenic peptide is contained will impact significantly on its immunodominance. In this study, we present evidence that the selectivity of CD4 T cell responses to peptides contained within protein Ags is not detectably influenced by the location of the peptide in a given protein or the primary sequence of the protein that bears the test peptide. We have used molecular approaches to change the location of peptides within complex protein Ags and to change the flanking sequences that border the peptide epitope to now include a protease site, and find that immunodominance or crypticity of a peptide observed in its native protein context is preserved. Collectively, these results suggest immunodominance of peptides contained in complex Ags is due to an intrinsic factor of the peptide, based upon the affinity of that peptide for MHC class II molecules. These findings are discussed with regard to implications for vaccine design.
Collapse
Affiliation(s)
- Jason M Weaver
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Mirano-Bascos D, Tary-Lehmann M, Landry SJ. Antigen structure influences helper T-cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120. Eur J Immunol 2008; 38:1231-7. [PMID: 18398933 DOI: 10.1002/eji.200738011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of an effective vaccine against HIV/AIDS has been hampered, in part, by a poor understanding of the rules governing helper T-cell epitope immunodominance. Studies in mice have shown that antigen structure modulates epitope immunodominance by affecting the processing and subsequent presentation of helper T-cell epitopes. Previous epitope mapping studies showed that the immunodominant helper T-cell epitopes in mice immunized with gp120 were found flanking flexible loops of the protein. In this report, we show that helper T-cell epitopes against gp120 in humans infected with HIV are also found flanking flexible loops. Immunodominant epitopes were found to be located primarily in the outer domain, an average of 12 residues C-terminal to flexible loops. In the less immunogenic inner domain, epitopes were found an average of five residues N-terminal to conserved regions of the protein, once again placing the epitopes C-terminal to flexible loops. These results show that antigen structure plays a significant role in the shaping of the helper T-cell response against HIV gp120 in humans. This relationship between antigen structure and helper T-cell epitope immunodominance may prove to be useful in the development of rationally designed vaccines against pathogens such as HIV.
Collapse
Affiliation(s)
- Denise Mirano-Bascos
- Interdisciplinary Program in the Biomedical Sciences, Tulane University, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
35
|
Abstract
The repertoire of known autoantigens is limited to a very small proportion of all human proteins, and the reason why only some proteins become autoantigens is unclear, but is likely associated with structural features. The 65kDa isoform of the enzyme glutamic acid decarboxylase (GAD65) is a major autoantigen in type I diabetes, and in various neurological diseases, whereas the closely related isoform, GAD67, is rarely antigenic. Conformational epitopes of GAD65 have been mapped using human monoclonal antibodies to GAD65 and GAD mutated by GAD65/67 sequence exchanges or point mutations, but these studies have been limited by a lack of structural information. The recent publication of crystal structures for the two isoforms has shown that the N-, C- and middle domains that have been identified previously as likely epitope regions are closely associated within the GAD dimer. Two major epitope regions, ctc1 and ctc2, have been identified in the C-terminal domain of GAD65, that encompass N- and C-terminal residues, and middle and C-terminal residues respectively. These regions are highly flexible compared with the equivalent regions in GAD67, and T cell epitopes have been localized to the same surface region of GAD65. Comparative analysis of these two structurally similar isoforms, GAD65 and GAD67, only one of which is autoantigenic should provide new insights into the provocations to autoimmunity.
Collapse
Affiliation(s)
- Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
36
|
Three-dimensional structure determines the pattern of CD4+ T-cell epitope dominance in influenza virus hemagglutinin. J Virol 2007; 82:1238-48. [PMID: 18057238 DOI: 10.1128/jvi.02026-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The structural context of a CD4(+) T-cell epitope is known to influence immunodominance at the level of antigen processing, but general rules have not emerged. Dominant epitopes of influenza virus hemagglutinin are found to be localized to the C-terminal flanks of conformationally stable segments identified by low crystallographic B-factors or high COREX residue stabilities. The bias toward C-terminal flanks is distinctive for antigens from the influenza virus. Dominant epitopes in antigens/allergens from other sources also localize to the flanks of stable segments but are found on either N- or C-terminal flanks. Thus, dominance arises from preferential endoproteolytic nicking between stable segments followed by loading of fragment terminal regions into antigen-presenting proteins. This mechanism probably arose in order to direct CD4(+) responses onto sequences that are conserved for structure and function. Structure-guided presentation could enhance protection against genetically drifting influenza virus variants but most likely reduces protection against new viral subtypes.
Collapse
|
37
|
Isoda R, Robinette RA, Pinder TL, McArthur WP, Brady LJ. Basis of beneficial immunomodulation by monoclonal antibodies against Streptococcus mutans adhesin P1. ACTA ACUST UNITED AC 2007; 51:102-11. [PMID: 17614961 DOI: 10.1111/j.1574-695x.2007.00279.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously identified five monoclonal antibodies (MAbs) against Streptococcus mutans adhesin P1 that modulate the humoral response when bound to whole bacteria and immune complexes (ICs) are administered to BALB/c mice. The two MAbs that redirected the response towards increased efficacy recognize discontinuous epitopes involving pre-alanine-rich domain sequence; therefore, to evaluate whether epitope specificity contributes to a desirable outcome a further MAb with this characteristic was tested. A beneficial immune response was promoted. None of the three MAbs that promoted a beneficial response was opsonic, suggesting that increased uptake of ICs by phagocytes does not mediate the improvement of the IC-elicited antibodies to inhibit bacterial adherence. Finally, two of the six anti-P1 MAbs activated complement but did not partition according to desirable vs. nondesirable effects.
Collapse
Affiliation(s)
- Ryutaro Isoda
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|