1
|
He J, Xiu F, Chen Y, Yang Y, Liu H, Xi Y, Liu L, Li X, Wu Y, Luo H, Chen L, Ding N, Hu J, Chen E, You X. Aerobic glycolysis of bronchial epithelial cells rewires Mycoplasma pneumoniae pneumonia and promotes bacterial elimination. Infect Immun 2024; 92:e0024823. [PMID: 38205952 PMCID: PMC10863416 DOI: 10.1128/iai.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The immune response to Mycoplasma pneumoniae infection plays a key role in clinical symptoms. Previous investigations focused on the pro-inflammatory effects of leukocytes and the pivotal role of epithelial cell metabolic status in finely modulating the inflammatory response have been neglected. Herein, we examined how glycolysis in airway epithelial cells is affected by M. pneumoniae infection in an in vitro model. Additionally, we investigated the contribution of ATP to pulmonary inflammation. Metabolic analysis revealed a marked metabolic shift in bronchial epithelial cells during M. pneumoniae infection, characterized by increased glucose uptake, enhanced aerobic glycolysis, and augmented ATP synthesis. Notably, these metabolic alterations are orchestrated by adaptor proteins, MyD88 and TRAM. The resulting synthesized ATP is released into the extracellular milieu via vesicular exocytosis and pannexin protein channels, leading to a substantial increase in extracellular ATP levels. The conditioned medium supernatant from M. pneumoniae-infected epithelial cells enhances the secretion of both interleukin (IL)-1β and IL-18 by peripheral blood mononuclear cells, partially mediated by the P2X7 purine receptor (P2X7R). In vivo experiments confirm that addition of a conditioned medium exacerbates pulmonary inflammation, which can be attenuated by pre-treatment with a P2X7R inhibitor. Collectively, these findings highlight the significance of airway epithelial aerobic glycolysis in enhancing the pulmonary inflammatory response and aiding pathogen clearance.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yan Yang
- Department of Clinical Laboratory, Shanghai Putuo People's Hospital, Tongji University, Shanghai, China
| | - Hongwei Liu
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, China
| | - Yixuan Xi
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jun Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoxing You
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
2
|
Iannuzo N, Welfley H, Li NC, Johnson MDL, Rojas-Quintero J, Polverino F, Guerra S, Li X, Cusanovich DA, Langlais PR, Ledford JG. CC16 drives VLA-2-dependent SPLUNC1 expression. Front Immunol 2023; 14:1277582. [PMID: 38053993 PMCID: PMC10694244 DOI: 10.3389/fimmu.2023.1277582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale CC16 (Club Cell Secretory Protein) is a protein produced by club cells and other non-ciliated epithelial cells within the lungs. CC16 has been shown to protect against the development of obstructive lung diseases and attenuate pulmonary pathogen burden. Despite recent advances in understanding CC16 effects in circulation, the biological mechanisms of CC16 in pulmonary epithelial responses have not been elucidated. Objectives We sought to determine if CC16 deficiency impairs epithelial-driven host responses and identify novel receptors expressed within the pulmonary epithelium through which CC16 imparts activity. Methods We utilized mass spectrometry and quantitative proteomics to investigate how CC16 deficiency impacts apically secreted pulmonary epithelial proteins. Mouse tracheal epithelial cells (MTECS), human nasal epithelial cells (HNECs) and mice were studied in naïve conditions and after Mp challenge. Measurements and main results We identified 8 antimicrobial proteins significantly decreased by CC16-/- MTECS, 6 of which were validated by mRNA expression in Severe Asthma Research Program (SARP) cohorts. Short Palate Lung and Nasal Epithelial Clone 1 (SPLUNC1) was the most differentially expressed protein (66-fold) and was the focus of this study. Using a combination of MTECs and HNECs, we found that CC16 enhances pulmonary epithelial-driven SPLUNC1 expression via signaling through the receptor complex Very Late Antigen-2 (VLA-2) and that rCC16 given to mice enhances pulmonary SPLUNC1 production and decreases Mycoplasma pneumoniae (Mp) burden. Likewise, rSPLUNC1 results in decreased Mp burden in mice lacking CC16 mice. The VLA-2 integrin binding site within rCC16 is necessary for induction of SPLUNC1 and the reduction in Mp burden. Conclusion Our findings demonstrate a novel role for CC16 in epithelial-driven host defense by up-regulating antimicrobials and define a novel epithelial receptor for CC16, VLA-2, through which signaling is necessary for enhanced SPLUNC1 production.
Collapse
Affiliation(s)
- Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Holly Welfley
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| | | | | | | | | | - Stefano Guerra
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | - Xingnan Li
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, United States
| | - Darren A. Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| |
Collapse
|
3
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
4
|
Ma C, Hao X, Gao L, Wang Y, Shi J, Luo H, Li M. Extracellular Vesicles Released from Macrophages Infected with Mycoplasma pneumoniae Stimulate Proinflammatory Response via the TLR2-NF-κB/JNK Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108588. [PMID: 37239946 DOI: 10.3390/ijms24108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae, Mp) is an intracellular pathogen that causes pneumonia, tracheobronchitis, pharyngitis, and asthma in humans and can infect and survive in the host cells leading to excessive immune responses. Extracellular vesicles (EVs) from host cells carry components of pathogens to recipient cells and play a role in intercellular communication during infection. However, there is limited knowledge on whether EVs derived from M. pneumoniae-infected macrophages play as intercellular messengers and functional mechanisms. In this study, we establish a cell model of M. pneumoniae-infected macrophages that continuously secrete EVs to further asses their role as intercellular messengers and their functional mechanisms. Based on this model, we determined a method for isolating the pure EVs from M. pneumoniae-infected macrophages, which employs a sequence of operations, including differential centrifugation, filtering, and ultracentrifugation. We identified EVs and their purity using multiple methods, including electron microscopy, nanoparticle tracking analysis, Western blot, bacteria culture, and nucleic acid detection. EVs from M. pneumoniae-infected macrophages are pure, with a 30-200 nm diameter. These EVs can be taken up by uninfected macrophages and induce the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 through the nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) signals pathway. Moreover, the expression of inflammatory cytokines induced by EVs relies on TLR2-NF-κB/JNK signal pathways. These findings will help us better understand a persistent inflammatory response and cell-to-cell immune modulation in the context of M. pneumoniae infection.
Collapse
Affiliation(s)
- Chunji Ma
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Xiujing Hao
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Liyang Gao
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Yongyu Wang
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Juan Shi
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Haixia Luo
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Min Li
- Life Science School, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Raj S, Alizadeh M, Shoojadoost B, Hodgins D, Nagy É, Mubareka S, Karimi K, Behboudi S, Sharif S. Determining the Protective Efficacy of Toll-Like Receptor Ligands to Minimize H9N2 Avian Influenza Virus Transmission in Chickens. Viruses 2023; 15:238. [PMID: 36680279 PMCID: PMC9861619 DOI: 10.3390/v15010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Low-pathogenicity avian influenza viruses (AIV) of the H9N2 subtype can infect and cause disease in chickens. Little is known about the efficacy of immune-based strategies for reducing the transmission of these viruses. The present study investigated the efficacy of Toll-like receptor (TLR) ligands (CpG ODN 2007 and poly(I:C)) to reduce H9N2 AIV transmission from TLR-treated seeder (trial 1) or inoculated chickens (trial 2) to naive chickens. The results from trial 1 revealed that a low dose of CpG ODN 2007 led to the highest reduction in oral shedding, and a high dose of poly(I:C) was effective at reducing oral and cloacal shedding. Regarding transmission, the recipient chickens exposed to CpG ODN 2007 low-dose-treated seeder chickens showed a maximum reduction in shedding with the lowest number of AIV+ chickens. The results from trial 2 revealed a maximum reduction in oral and cloacal shedding in the poly(I:C) high-dose-treated chickens (recipients), followed by the low-dose CpG ODN 2007 group. In these two groups, the expression of type I interferons (IFNs), protein kinase R (PKR), interferon-induced transmembrane protein 3 (IFITM3), viperin, and (interleukin) IL-1β, IL-8, and 1L-18 was upregulated in the spleen, cecal tonsils and lungs. Hence, TLR ligands can reduce AIV transmission in chickens.
Collapse
Affiliation(s)
- Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Douglas Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Li J, Liu H, Zhao N, Wang J, Yang Y, Sun Y. Therapeutic effects of recombinant SPLUNC1 on Mycoplasma ovipneumoniae-infected Argali hybrid sheep. Res Vet Sci 2020; 133:174-179. [PMID: 32992128 DOI: 10.1016/j.rvsc.2020.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022]
Abstract
Clinical therapeutic and immunoregulatory effects of recombinant SPLUNC1 protein (rSPLUNC1) were evaluated in Mycoplasma ovipneumoniae (Mo)-infected Argali hybrid sheep (AHS). Group A contained six Bashibai sheep (BS) and groups B-D contained six AHS each. All sheep were manually infected with Mo. Five days post-infection, rSPLUNC1 from BS and AHS was injected intratracheally into group C and D animals; physiological saline was administered to groups A and B. Serum IL-5, IL-6, and IL-9 were quantified by ELISA. After sacrificing the sheep, lung tissues were extracted for pathological examination. The qPCR was used to quantify Mo load in the lungs and evaluate therapeutic efficacy. Serum IL-5, IL-6, and IL-9 concentrations increased during early infection stages in all groups but were significantly lower in groups A, C, and D than in group B on days 14 and 21. On day 21, IL-5 concentrations were lower in group A than in groups C and D. IL-6 concentration in groups A, C, and D was significantly lower than that in group B, and that in groups C and D was significantly lower than that in group A. Mean mycoplasma pneumonia histopathology scores were significantly lower in groups C and D than in group B, and Mo load in group C and D lung tissue decreased significantly compared to that in group B. Intratracheal injection of rSPLUNC1 into Mo-infected sheep decreased the cytokine levels and alleviated clinical symptoms with no mortality. rSPLUNC1 had significant therapeutic effects on Mo-infected AHS and can regulate pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Haiyan Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ning Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jixue Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yi Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yanming Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
7
|
Comprehensive RNA-Seq profiling of the lung transcriptome of Bashbay sheep in response to experimental Mycoplasma ovipneumoniae infection. PLoS One 2020; 15:e0214497. [PMID: 32639963 PMCID: PMC7343132 DOI: 10.1371/journal.pone.0214497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/14/2019] [Indexed: 01/01/2023] Open
Abstract
The Bashbay sheep (Ovis aries), an indigenous breed of Xinjiang, China, has many excellent characteristics. It is resistant to Mycoplasma ovipneumoniae infection, the causative agent of mycoplasma ovipneumonia, a chronic respiratory disease that is harmful to the sheep industry. To date, knowledge regarding the mechanisms responsible for M. ovipneumoniae pathogenesis in scant. Herein, we report the results of transcriptome profiling of lung tissues from Bashbay sheep experimentally infected with an M. ovipneumoniae strain at 4 and 14 days post-infection, in comparison to mock-infected animals (0 d). Transcriptome profiling was performed by deep RNA sequencing, using the Illumina platform. The analysis of differentially expressed genes was performed to determine concomitant gene-specific temporal patterns of mRNA expression in the lungs after M. ovipneumoniae infection. We found 1048 differentially expressed genes (575 up-regulated, 473 down-regulated) when comparing transcriptomic data at 4 and 0 days post-infection, and 2823 (1362 up-regulated, 1461 down-regulated) when comparing 14 versus 0 days post-infection. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed genes at 4 and 14 versus 0 days post-infection were enriched in 245 and 287 pathways, respectively, and the Toll-like receptor (TLR) signaling pathway was considered most closely related to MO infection (p < 0.01). Two pathways (LAMP-TLR2/TLR6-MyD88-MKK6-AP1-IL1B and LAMP-TLR8MyD88-IRF5-RANTES) were identified based on the TLR signaling pathway from differentially expressed genes related M. ovipneumoniae infection. Gene Ontology analysis showed that differentially expressed genes in different groups were enriched for 1580 and 4561 terms, where those most closely related to M. ovipneumoniae infection are positive regulators of inflammatory responses (p < 0.01). These results could aid in understanding how M. ovipneumoniae infection progresses in the lungs and may provide useful information regarding key regulatory pathways.
Collapse
|
8
|
Fang R, Uchiyama R, Sakai S, Hara H, Tsutsui H, Suda T, Mitsuyama M, Kawamura I, Tsuchiya K. ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism. Mucosal Immunol 2019; 12:1092-1103. [PMID: 31278375 DOI: 10.1038/s41385-019-0181-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
It is widely accepted that inflammasomes protect the host from microbial pathogens by inducing inflammatory responses through caspase-1 activation. Here, we show that the inflammasome components ASC and NLRP3 are required for resistance to pneumococcal pneumonia, whereas caspase-1 and caspase-11 are dispensable. In the lung of S. pneumoniae-infected mice, ASC and NLRP3, but not caspase-1/11, were required for optimal expression of several mucosal innate immune proteins. Among them, TFF2 and intelectin-1 appeared to be protective against pneumococcal pneumonia. During infection, ASC and NLRP3 maintained the expression of the transcription factor SPDEF, which can facilitate the expression of the mucosal defense factor genes. Moreover, activation of STAT6, a key regulator of Spdef expression, depended on ASC and NLRP3. Overexpression of these inflammasome proteins sustained STAT6 phosphorylation induced by type 2 cytokines. Collectively, this study suggests that ASC and NLRP3 promote airway mucosal innate immunity by an inflammasome-independent mechanism involving the STAT6-SPDEF pathway.
Collapse
Affiliation(s)
- Rendong Fang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.,Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Ryosuke Uchiyama
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, 663-8179, Japan
| | - Shunsuke Sakai
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hideki Hara
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Masao Mitsuyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Hakubi Center, Kyoto University, Kyoto, 606-8501, Japan
| | - Ikuo Kawamura
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan. .,Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
9
|
The Role of BPIFA1 in Upper Airway Microbial Infections and Correlated Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2021890. [PMID: 30255091 PMCID: PMC6140130 DOI: 10.1155/2018/2021890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/04/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The mucosa is part of the first line of immune defense against pathogen exposure in humans and prevents viral and bacterial infection of the soft palate, lungs, uvula, and nasal cavity that comprise the ear-nose-throat (ENT) region. Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is a secretory protein found in human upper aerodigestive tract mucosa. This innate material is secreted in mucosal fluid or found in submucosal tissue in the human soft palate, lung, uvula, and nasal cavity. BPIFA1 is a critical component of the innate immune response that prevents upper airway diseases. This review will provide a brief introduction of the roles of BPIFA1 in the upper airway (with a focus on the nasal cavity, sinus, and middle ear), specifically its history, identification, distribution in various human tissues, function, and diagnostic value in various upper airway infectious diseases.
Collapse
|
10
|
Mycoplasma pneumoniae and toll-like receptors: A mutual avenue. Allergol Immunopathol (Madr) 2018; 46:508-513. [PMID: 29331619 DOI: 10.1016/j.aller.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma pneumoniae is an intracellular bacterium leading to several complications in humans. M. pneumoniae is cleared in some cases and induces complications in others. The main responsible mechanisms regarding the controversy are yet to be cleared. Toll-like receptors (TLRs) are the important cell membrane and intracellular receptors which recognize a wide range of microbial macromolecules. The roles of TLRs in the eradication of several pathogens and also induction of their related complications have been demonstrated. This review article presents recent data about the roles of TLRs in the induction of immune responses which lead to M. pneumoniae eradication and related complications.
Collapse
|
11
|
Erickson NA, Dietert K, Enders J, Glauben R, Nouailles G, Gruber AD, Mundhenk L. Soluble mucus component CLCA1 modulates expression of leukotactic cytokines and BPIFA1 in murine alveolar macrophages but not in bone marrow-derived macrophages. Histochem Cell Biol 2018; 149:619-633. [PMID: 29610986 PMCID: PMC5999134 DOI: 10.1007/s00418-018-1664-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jana Enders
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany.
| |
Collapse
|
12
|
Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol 2018; 11:21-34. [PMID: 28812547 PMCID: PMC5738267 DOI: 10.1038/mi.2017.71] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Lung epithelial cells are increasingly recognized to be active effectors of microbial defense, contributing to both innate and adaptive immune function in the lower respiratory tract. As immune sentinels, lung epithelial cells detect diverse pathogens through an ample repertoire of membrane-bound, endosomal, and cytosolic pattern-recognition receptors (PRRs). The highly plastic epithelial barrier responds to detected threats via modulation of paracellular flux, intercellular communications, mucin production, and periciliary fluid composition. Epithelial PRR stimulation also induces production of cytokines that recruit and sculpt leukocyte-mediated responses, and promotes epithelial generation of antimicrobial effector molecules that are directly microbicidal. The epithelium can alternately enhance tolerance to pathogens, preventing tissue damage through PRR-induced inhibitory signals, opsonization of pathogen-associated molecular patterns, and attenuation of injurious leukocyte responses. The inducibility of these protective responses has prompted attempts to therapeutically harness epithelial defense mechanisms to protect against pneumonias. Recent reports describe successful strategies for manipulation of epithelial defenses to protect against a wide range of respiratory pathogens. The lung epithelium is capable of both significant antimicrobial responses that reduce pathogen burdens and tolerance mechanisms that attenuate immunopathology. This manuscript reviews inducible lung epithelial defense mechanisms that offer opportunities for therapeutic manipulation to protect vulnerable populations against pneumonia.
Collapse
Affiliation(s)
- Miguel M. Leiva-Juárez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
13
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Recuperating Lung Decoction Attenuates the Oxidative Stress State of Chronic Obstructive Pulmonary Disease by Inhibiting the MAPK/AP-1 Signal Pathway and Regulating γ-GCS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9264914. [PMID: 28408945 PMCID: PMC5376952 DOI: 10.1155/2017/9264914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 02/26/2017] [Indexed: 11/18/2022]
Abstract
Purpose/Objective. To evaluate the effects of Recuperating Lung Decoction (RLD) on the indices of oxidative stress in a rat model of COPD and detect the indices of the MAPK/AP-1/γ-GCS signal pathway for a further survey of the possible targeting site of RLD. Methods/Materials. The rats of COPD were treated with RLD. The protein levels of glutathione (GSH), oxidized glutathione (GSSG), 8-hydroxy-2-deoxyguanosine (8-OHdG), and 4-hydroxynonenal (4-HNE) were measured. In addition, the levels of key signaling molecules (extracellular signal-regulated kinases [ERK], the c-jun N-terminal kinase [JNKs signal pathway], and p38 MAP kinase [p38MAPK], AP-1 proteins [C-fos, C-jun], and γ-glutamyl-cysteine synthetase [γ-GCS-h]) of the MAPK/AP-1/γ-GCS-h signal pathway were assessed. Results. After treatment, the protein level of GSH and the ratio of GSH/GSSG were increased and the amounts of 8-OHdG and 4-HNE were decreased significantly in lung tissues when compared with the nontreated COPD group. Further results showed that the RLD could effectively inhibit the MAPK pathway by inactivation of p38MAPK and ERK and could also downregulate the AP-1 and the γ-GCS-h genes expressions in both protein and mRNA levels. Conclusion. RLD might improve the state of oxidative stress by downregulation of the expression of γ-GCS-h gene by inhibition of the MAPK/AP-1 pathway, thereafter enhancing the ability of antioxidation in COPD.
Collapse
|
15
|
Liu SC, Lin CS, Chen SG, Chu YH, Lee FP, Lu HH, Wang HW. Effect of budesonide and azelastine on histamine signaling regulation in human nasal epithelial cells. Eur Arch Otorhinolaryngol 2016; 274:845-853. [PMID: 27623823 DOI: 10.1007/s00405-016-4295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022]
Abstract
Both glucocorticoids and H1-antihistamines are widely used on patients with airway diseases. However, their direct effects on airway epithelial cells are not fully explored. Therefore, we use the primary culture of human nasal epithelial cells (HNEpC) to delineate in vitro mucosal responses to above two drugs. HNEpC cells were cultured with/without budesonide and azelastine. The growth rate at each group was recorded and measured as population double time (PDT). The histamine1-receptor (H1R), muscarinic1-receptor (M1R) and M3R were measured using immunocytochemistry and western blotting after 7-days treatment. Then, we used histamine and methacholine to stimulate the mucus secretion from HNEpC and observed the MUC5AC expression in culture supernatants. Concentration-dependent treatment-induced inhibition of HNEpC growth rate was observed. Cells incubated with azelastine proliferated significantly slower than that with budesonide and the combined use of those drugs led to significant PDT prolong. The immunocytochemistry showed the H1R, M1R and M3R were obviously located in the cell membrane without apparent difference after treatment. However, western blotting showed that budesonide can significantly up-regulate the H1R, M1R and M3R level while azelastine had opposite effects. Histamine and methacholine stimulated MUC5AC secretion was greater in cells treated with budesonide but was lesser in those treated with azelastine, as compared to controls. Our data suggest that both budesonide and azelastine can significantly inhibit HNEpC proliferation, and therefore, be helpful in against airway remodeling. Long-term use of budesonide might amplify histamine signaling and result in airway hyperreactivity to stimulants by enhancing H1R, M1R and M3R expression while azelastine can oppose this effect. Therefore, combined use of those two drugs in patients with chronic inflammatory airway diseases may be an ideal option.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Shu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Radiation Oncology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shyi-Gen Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yueng-Hsiang Chu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fei-Peng Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsuan-Hsuan Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsing-Won Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC. .,Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, No. 291, Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan, ROC.
| |
Collapse
|
16
|
Liu H, Zhang X, Wu J, French SW, He Z. New insights on the palate, lung, and nasal epithelium clone (PLUNC) proteins: Based on molecular and functional analysis of its homolog of YH1/SPLUNC1. Exp Mol Pathol 2015; 100:363-9. [PMID: 26654795 DOI: 10.1016/j.yexmp.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
The palate, lung, and nasal epithelium clone (PLUNC) proteins are intricate immune molecules and arisen questions from them are still unresolved. In order to identify the role of PLUNC family proteins, we had analyzed its homolog protein YH1/SPLUNC1, which highly expresses in nontumor nasopharyngeal epithelium while expresses weakly in nasopharyngeal carcinoma (NPC) tissues. It is found that YH1/SPLUNC1 protein expression level was higher in chronic normal nasopharynx inflammatory cells compared to NPC tissue cells. An approach to produce active YH1/SPLUNC1 protein had been established and recombinant YH1/SPLUNC1 protein could bind to all four Gram-positive and four Gram-negative bacteria we tested, and triggered the aggregation of those bacteria. Interestingly, YH1/SPLUNC1 protein has antimicrobial activity, and it can directly kill Escherichia coli and Acinetobacter haemolyticus. The microorganism cell showed morphological changes in cell wall such as cell damage and cytoplasmic leakage after exposure to YH1/SPLUNC1 protein, indicating that YH1/SPLUNC1 directly killed the microorganisms by cell wall permeabilization. All these results indicated that YH1/SPLUNC1 might be an important antimicrobial protein involved in innate immunity defense.
Collapse
Affiliation(s)
- Hui Liu
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China; Department of Pathology, University of California, Harbor UCLA Medical Center, Torrance, CA 90509, United States
| | - Xiangning Zhang
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China
| | - Jingjing Wu
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China
| | - Samuel W French
- Department of Pathology, University of California, Harbor UCLA Medical Center, Torrance, CA 90509, United States
| | - Zhiwei He
- China-America Cancer Research Institute, Guangdong Medical College, No. 1 New City Ave, Songshan Lake High-Tech. Area, Dongguan 523808, China.
| |
Collapse
|
17
|
Reduction of avian influenza virus shedding by administration of Toll-like receptor ligands to chickens. Vaccine 2015; 33:4843-9. [PMID: 26238721 DOI: 10.1016/j.vaccine.2015.07.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/23/2022]
Abstract
Avian influenza viruses (AIV) are of concern to the poultry industry. Outbreaks of AIV highlight the urgent need for effective control measures. Prophylactic strategies should be explored that rapidly elicit immunity against the virus. Toll-like receptors (TLRs) are innate immune molecules that can induce anti-viral responses, therefore the application of TLR ligands as prophylactic agents in chickens is gaining more attention. We hypothesized that treatment of chickens with TLR ligands reduces the shedding of AIV from infected birds. In addition, the effects of TLR ligand dose and route of administration on the efficiency of TLR ligands to reduce AIV shedding were examined. Chickens were treated with TLR2, 4, 7 and 21 ligands using different doses and routes of administration, 18h before AIV infection. Moreover, the expression of several candidate genes, such as type I interferons, PKR, OAS, viperin and IFITM3 was quantified at 3, 8 and 18h post-treatment with TLR ligands. The results revealed that route of administration and dosage affect the efficacy of TLR ligands to reduce virus shedding. Furthermore, varying effects were observed when different ligands were applied. Our results demonstrated that all TLR ligand treatments reduced AIV shedding, with the CpG-ODN 1826 being the most efficacious to reduce oral virus shedding, whereas LPS from Escherichia coli 026:B6 resulted in the largest reduction in cloacal virus shedding. Moreover, TLR ligands induced the expression of genes involved in antiviral responses such as type I interferons and interferon-stimulated genes in chicken trachea and cecal tonsils. These results raise the possibility of treatment of chickens with TLR ligands as anti-viral agents.
Collapse
|
18
|
Britto CJ, Cohn L. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease. Am J Respir Cell Mol Biol 2015; 52:525-34. [PMID: 25265466 DOI: 10.1165/rcmb.2014-0297rt] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
19
|
Ou C, Sun Z, Zhang H, Xiong W, Ma J, Zhou M, Lu J, Zeng Z, Bo X, Chen P, Li G, Li X, Li X. SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-κB pathway. Oncol Rep 2015; 33:2779-88. [PMID: 25891128 DOI: 10.3892/or.2015.3913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
Abstract
Studies indicate that the natural immune-related protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) plays an antitumor role in nasopharyngeal epithelial tissue. However, the detailed mechanism of the tumor-suppressor effect of SPLUNC1 in the inflammatory microenvironment of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) remains elusive. The aim of the present study was to explore how SPLUNC1 reduces the inflammatory response of NPC cells infected with EBV by regulating the Toll-like receptor (TLR)9/NF-κB signaling pathway. As detected by immunohistochemistry and western blotting, SPLUNC1 protein expression exhibited low or negative expression in the NPC epithelial samples/cells, while it demonstrated positive expression in normal nasopharyngeal epithelial tissues/cells; this pattern of expression was the contrary to that of TLR9. The poorly differentiated HNE2 cell line had the highest efficiency of transfer of infection with EBV by 'cell-to-cell' contact method. The group of EBV-infected HNE2 cells showed significantly higher activation of the expression of TLR9/NF-κB signaling pathway-associated factors (TLR9, CD14, MyD88, IKK, P-IKβα, P-NF-κB and NF-κB). The levels of inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α in the HNE2 cell group after EBV infection were higher than these levels in the uninfected cell group (P<0.05); Meanwhile, after EBV infection, the expression levels of TLR9/NF-κB pathway associated-protein and inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α in the HNE2/SPLUNC1 cell group were lower than these levels in the HNE2/Vector cell group (P<0.05). After EBV-DNA direct transfection, cytokine mRNA expression levels of TLR9, IL-6, IL-8, IL-1β and TNF-α in the HNE2 cell group were significantly higher than these levels in the NP69 cell group (P<0.05). The expression levels of these cytokines in the HNE2/SPLUNC1 cell group were obviously lower than these levels in the HNE2/Vector cell group (P<0.05). These results suggest that EBV infection of NPC cells can activate the TLR9/NF-κB signaling pathway, promote the release of inflammatory cytokines and consequently enhance the inflammatory response, while SPLUNC1 can weaken the inflammatory response induced by EBV infection in NPC cells through the regulation of the TLR9/NF-κB signaling pathway and control of the tumor inflammatory microenvironment.
Collapse
Affiliation(s)
- Chunlin Ou
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhenqiang Sun
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Han Zhang
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jian Ma
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Jianhong Lu
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiang Bo
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Pan Chen
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
20
|
Jiang D, Nelson ML, Gally F, Smith S, Wu Q, Minor M, Case S, Thaikoottathil J, Chu HW. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice. PLoS One 2012; 7:e52969. [PMID: 23285237 PMCID: PMC3532414 DOI: 10.1371/journal.pone.0052969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/OBJECTIVE Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp) contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD). Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB). We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1) serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression. METHODOLOGY/MAIN RESULTS Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB) was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CA)IKKβ) with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+), but not transgene negative (Tg-) mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice. CONCLUSION By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.
Collapse
Affiliation(s)
- Di Jiang
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Mark L. Nelson
- Department of Immunology, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Fabienne Gally
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Sean Smith
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Qun Wu
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Maisha Minor
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Stephanie Case
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Jyoti Thaikoottathil
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health and the University of Colorado Denver, Denver, Colorado, United States of America
- Business and Science Development, Echelon Biosciences Inc., Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
21
|
GUO XF, CHEN P, LI XY, LI XL, LI GY. The Structure and Function of SPLUNC1:Novel Class of Innate Immune Protective Molecules*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|