1
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
2
|
Friedrich B, Tietze R, Dümig M, Sover A, Boca MA, Schreiber E, Band J, Janko C, Krappmann S, Alexiou C, Lyer S. Magnetic Removal of Candida albicans Using Salivary Peptide-Functionalized SPIONs. Int J Nanomedicine 2023; 18:3231-3246. [PMID: 37337577 PMCID: PMC10276999 DOI: 10.2147/ijn.s409559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like Candida albicans. Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast. Materials and Methods In this study, we used SPIONs coated with 3-aminopropyltriethoxysilane (APTES) and functionalized with a peptide originating from GP340 (SPION-APTES-Pep). For the first time, we investigate whether this system is suitable for the separation and enrichment of Candida albicans, we investigated its physicochemical properties and by thermogravimetric analysis we determined the amount of peptide on the SPIONs. Further, the toxicological profile was evaluated by recording cell cycle and DNA degradation. The separation efficiency was investigated using Candida albicans in different experimental settings, and regrowth experiments were carried out to show the use of SPION-APTES-Pep as a sample preparation method for the identification of fungal infections. Conclusion SPION-APTES-Pep can magnetically remove more than 80% of the microorganism and with a high selective host-pathogen distinction Candida albicans from water-based media and about 55% in blood after 8 minutes processing without compromising effects on the cell cycle of human blood cells. Moreover, the separated fungal cells could be regrown without any restrictions.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michaela Dümig
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandru Sover
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Marius-Andrei Boca
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sven Krappmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Structure and proteomic analysis of the crown-of-thorns starfish (Acanthaster sp.) radial nerve cord. Sci Rep 2023; 13:3349. [PMID: 36849815 PMCID: PMC9971248 DOI: 10.1038/s41598-023-30425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 μm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.
Collapse
|
4
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Oskam N, Ooijevaar-de Heer P, Derksen NIL, Kruithof S, de Taeye SW, Vidarsson G, Reijm S, Kissel T, Toes REM, Rispens T. At Critically Low Antigen Densities, IgM Hexamers Outcompete Both IgM Pentamers and IgG1 for Human Complement Deposition and Complement-Dependent Cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:16-25. [PMID: 35705253 DOI: 10.4049/jimmunol.2101196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
IgM is secreted as a pentameric polymer containing a peptide called the joining chain (J chain). However, integration of the J chain is not required for IgM assembly and in its absence IgM predominantly forms hexamers. The conformations of pentameric and hexameric IgM are remarkably similar with a hexagonal arrangement in solution. Despite these similarities, hexameric IgM has been reported to be a more potent complement activator than pentameric IgM, but reported relative potencies vary across different studies. Because of these discrepancies, we systematically investigated human IgM-mediated complement activation. We recombinantly generated pentameric and hexameric human IgM (IgM+J and IgM-J, respectively) mAbs and measured their ability to induce complement deposition and complement-dependent cytotoxicity when bound to several Ags at varying densities. At high Ag densities, hexameric and pentameric IgM activate complement to a similar extent as IgG1. However, at low densities, hexameric IgM outcompeted pentameric IgM and even more so IgG1. These differences became progressively more pronounced as antigenic density became critically low. Our findings highlight that the differential potency of hexameric and pentameric IgM for complement activation is profoundly dependent on the nature of its interactions with Ag. Furthermore, it underscores the importance of IgM in immunity because it is a more potent complement activator than IgG1 at low Ag densities.
Collapse
Affiliation(s)
- Nienke Oskam
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands;
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Simone Kruithof
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Alharbi AF, Sheng N, Nicol K, Strömberg N, Hollox EJ. Balancing selection at the human salivary agglutinin gene (DMBT1) driven by host-microbe interactions. iScience 2022; 25:104189. [PMID: 35494225 PMCID: PMC9038570 DOI: 10.1016/j.isci.2022.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Discovering loci under balancing selection in humans can identify loci with alleles that affect response to the environment and disease. Genome variation data have identified the 5′ region of the DMBT1 gene as undergoing balancing selection in humans. DMBT1 encodes the pattern-recognition glycoprotein DMBT1, also known as SALSA, gp340, or salivary agglutinin. DMBT1 binds to a variety of pathogens through a tandemly arranged scavenger receptor cysteine-rich (SRCR) domain, with the number of domains polymorphic in humans. We show that the signal of balancing selection is driven by one haplotype usually carrying a shorter SRCR repeat and another usually carrying a longer SRCR repeat. DMBT1 encoded by a shorter SRCR repeat allele does not bind a cariogenic and invasive Streptococcus mutans strain, in contrast to the long SRCR allele that shows binding. Our results suggest that balancing selection at DMBT1 is due to host-microbe interactions of encoded SRCR tandem repeat alleles. Clear evidence from many analyses show balancing selection at DMBT1 Scavenger-receptor cysteine-rich domain array associated with balancing selection Genetic variation, not alternative splicing, responsible for protein isoforms Long, but not short, DMBT1 isoforms bind a cariogenic strain of Streptococcus mutans
Collapse
Affiliation(s)
- Adel F. Alharbi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Medina Regional Laboratory, General Directorate of Health Affairs, Ministry of Health, Medina, Saudi Arabia
| | - Nongfei Sheng
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Katie Nicol
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Corresponding author
| |
Collapse
|
8
|
Friedrich B, Lyer S, Janko C, Unterweger H, Brox R, Cunningham S, Dutz S, Taccardi N, Bikker FJ, Hurle K, Sebald H, Lenz M, Spiecker E, Fester L, Hackstein H, Strauß R, Boccaccini AR, Bogdan C, Alexiou C, Tietze R. Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomater 2022; 141:418-428. [PMID: 34999260 DOI: 10.1016/j.actbio.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1β, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), the Netherlands
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Heidi Sebald
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Malte Lenz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lars Fester
- Institute of Anatomy and Cell Biology Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Richard Strauß
- Department of Medicine 1, Universitätsklinikum Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christian Bogdan
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany.
| |
Collapse
|
9
|
Lee GKC, Kang H, Beeler-Marfisi J, Sears W, Lillie BN, Bienzle D. Effects of equine SALSA on neutrophil phagocytosis and macrophage cytokine production. PLoS One 2022; 17:e0264911. [PMID: 35286327 PMCID: PMC8920288 DOI: 10.1371/journal.pone.0264911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Salivary scavenger and agglutinin (SALSA) is a secreted protein with various immunomodulatory roles. In humans, the protein agglutinates and inactivates microorganisms, and inhibits the release of pro-inflammatory cytokines. Saliva, which is rich in SALSA, accelerates bacterial phagocytosis, but SALSA’s contribution is unclear. In horses, the functions of SALSA in inflammation remain undetermined, so they were investigated through phagocytosis and cytokine assays. Equine SALSA was purified from duodenal tissue, which contains abundant SALSA. To assess phagocytosis, fluorescently-labelled bacteria were incubated with 20, 10, 5, or 2.5 μg/mL of SALSA or phosphate buffered saline (PBS), and then incubated at 37°C or on ice with whole blood from seven healthy horses. Fluorescence was measured by gating on neutrophils using a flow cytometer, and compared between groups. To assess effects on cytokine production, alveolar macrophages were isolated from bronchoalveolar lavage fluid of five healthy horses and cultured in serum-free media for 24 hours with different concentrations of SALSA plus 1 μg/mL lipopolysaccharide (LPS), only LPS, or only media. Cytokines were measured in supernatant using an equine-specific multiplex bead immunoassay. There was significantly greater phagocytosis in samples incubated at 37°C compared to incubation on ice. Samples incubated with 20 μg/mL of SALSA at 37°C had less phagocytosis compared to samples with 10 or 2.5 μg/mL SALSA, or PBS. Alveolar macrophages incubated with SALSA plus LPS released significantly less CXC motif chemokine ligand 1, interleukin-8, interleukin-10, and tumor necrosis factor α, and more granulocyte colony stimulating factor (G-CSF), compared to macrophages incubated with LPS alone. These findings indicate anti-inflammatory effects, which may be due to interference with toll-like receptor 4 recognition of LPS or downstream signaling. Increase in G-CSF following incubation with SALSA suggests a novel mechanism for immunoregulation of alveolar macrophages by SALSA, addressing a knowledge gap regarding its functions in horses.
Collapse
Affiliation(s)
- Gary Kwok Cheong Lee
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Heng Kang
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | - William Sears
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N. Lillie
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
van Osch TLJ, Nouta J, Derksen NIL, van Mierlo G, van der Schoot CE, Wuhrer M, Rispens T, Vidarsson G. Fc Galactosylation Promotes Hexamerization of Human IgG1, Leading to Enhanced Classical Complement Activation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1545-1554. [PMID: 34408013 DOI: 10.4049/jimmunol.2100399] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023]
Abstract
Human IgG contains one evolutionarily conserved N-linked glycan in its Fc region at position 297. This glycan is crucial for Fc-mediated functions, including its induction of the classical complement cascade. This is induced after target recognition through the IgG-Fab regions, allowing neighboring IgG-Fc tails to associate through Fc:Fc interaction, ultimately leading to hexamer formation. This hexamerization seems crucial for IgG to enable efficient interaction with the globular heads of the first complement component C1q and subsequent complement activation. In this study, we show that galactose incorporated in the IgG1-Fc enhances C1q binding, C4, C3 deposition, and complement-dependent cellular cytotoxicity in human erythrocytes and Raji cells. IgG1-Fc sialylation slightly enhanced binding of C1q, but had little effect on downstream complement activation. Using various mutations that decrease or increase hexamerization capacity of IgG1, we show that IgG1-Fc galactosylation has no intrinsic effect on C1q binding to IgG1, but enhances IgG1 hexamerization potential and, thereby, complement activation. These data suggest that the therapeutic potential of Abs can be amplified without introducing immunogenic mutations, by relatively simple glycoengineering.
Collapse
Affiliation(s)
- Thijs L J van Osch
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands;
| |
Collapse
|
11
|
Brinkhaus M, Douwes RGJ, Bentlage AEH, Temming AR, de Taeye SW, Tammes Buirs M, Gerritsen J, Mok JY, Brasser G, Ligthart PC, van Esch WJE, Verheesen P, de Haard H, Rispens T, Vidarsson G. Glycine 236 in the Lower Hinge Region of Human IgG1 Differentiates FcγR from Complement Effector Function. THE JOURNAL OF IMMUNOLOGY 2020; 205:3456-3467. [PMID: 33188070 DOI: 10.4049/jimmunol.2000961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.
Collapse
Affiliation(s)
- Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Ruben G J Douwes
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Matthias Tammes Buirs
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Jacoline Gerritsen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Giso Brasser
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Peter C Ligthart
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, 1066 CX Amsterdam, the Netherlands; and
| | | | | | | | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands;
| |
Collapse
|
12
|
Connelly MT, McRae CJ, Liu PJ, Traylor-Knowles N. Lipopolysaccharide treatment stimulates Pocillopora coral genotype-specific immune responses but does not alter coral-associated bacteria communities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103717. [PMID: 32348787 DOI: 10.1016/j.dci.2020.103717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Corals are comprised of a coral host and associated microbes whose interactions are mediated by the coral innate immune system. The diversity of immune factors identified in the Pocillopora damicornis genome suggests that immunity is linked to maintaining microbial symbioses while also being able to detect pathogens. However, it is unclear which immune factors respond to specific microbe-associated molecular patterns and how these immune reactions simultaneously affect coral-associated bacteria. To investigate this, fragments of P. damicornis and P. acuta colonies from Taiwan were subjected to lipopolysaccharide (LPS) treatment to stimulate immune responses and measure bacteria community shifts. RNA-seq revealed genotype-specific immune responses to LPS involving the upregulation of immune receptors, transcription factors, and pore-forming toxins. Bacteria 16S sequencing revealed significantly different bacteria communities between coral genotypes but no differences in bacteria communities were caused by LPS. Our findings confirm that Pocillopora corals activate conserved immune factors in response to LPS and identify transcription factors coordinating Pocillopora corals' immune responses. Additionally, the strong effect of coral genotype on gene expression and bacteria communities highlights the importance of coral genotype in the investigation of coral host-microbe interactions.
Collapse
Affiliation(s)
- Michael T Connelly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33145, USA
| | - Crystal J McRae
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 974, Taiwan
| | - Pi-Jen Liu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33145, USA.
| |
Collapse
|
13
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
14
|
Reichhardt MP, Loimaranta V, Lea SM, Johnson S. Structures of SALSA/DMBT1 SRCR domains reveal the conserved ligand-binding mechanism of the ancient SRCR fold. Life Sci Alliance 2020; 3:3/4/e201900502. [PMID: 32098784 PMCID: PMC7043408 DOI: 10.26508/lsa.201900502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
The structures of SALSA SRCR domains 1 and 8 reveal a cation-dependent mechanism for ligand recognition, contributing to important roles in the immune system and cellular signalling. The cation-binding sites are conserved across all SRCR domains, suggesting conserved functional mechanisms. The scavenger receptor cysteine-rich (SRCR) family of proteins comprises more than 20 membrane-associated and secreted molecules. Characterised by the presence of one or more copies of the ∼110 amino-acid SRCR domain, this class of proteins have widespread functions as antimicrobial molecules, scavenger receptors, and signalling receptors. Despite the high level of structural conservation of SRCR domains, no unifying mechanism for ligand interaction has been described. The SRCR protein SALSA, also known as DMBT1/gp340, is a key player in mucosal immunology. Based on detailed structural data of SALSA SRCR domains 1 and 8, we here reveal a novel universal ligand-binding mechanism for SALSA ligands. The binding interface incorporates a dual cation-binding site, which is highly conserved across the SRCR superfamily. Along with the well-described cation dependency on most SRCR domain–ligand interactions, our data suggest that the binding mechanism described for the SALSA SRCR domains is applicable to all SRCR domains. We thus propose to have identified in SALSA a conserved functional mechanism for the SRCR class of proteins.
Collapse
Affiliation(s)
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Jiménez JM, Salazar ML, Arancibia S, Villar J, Salazar F, Brown GD, Lavelle EC, Martínez-Pomares L, Ortiz-Quintero J, Lavandero S, Manubens A, Becker MI. TLR4, but Neither Dectin-1 nor Dectin-2, Participates in the Mollusk Hemocyanin-Induced Proinflammatory Effects in Antigen-Presenting Cells From Mammals. Front Immunol 2019; 10:1136. [PMID: 31214162 PMCID: PMC6554540 DOI: 10.3389/fimmu.2019.01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Mollusk hemocyanins have biomedical uses as carriers/adjuvants and nonspecific immunostimulants with beneficial clinical outcomes by triggering the production of proinflammatory cytokines in antigen-presenting cells (APCs) and driving immune responses toward type 1 T helper (Th1) polarization. Significant structural features of hemocyanins as a model antigen are their glycosylation patterns. Indeed, hemocyanins have a multivalent nature as highly mannosylated antigens. We have previously shown that hemocyanins are internalized by APCs through receptor-mediated endocytosis with proteins that contain C-type lectin domains, such as mannose receptor (MR). However, the contribution of other innate immune receptors to the proinflammatory signaling pathway triggered by hemocyanins is unknown. Thus, we studied the roles of Dectin-1, Dectin-2, and Toll-like receptor 4 (TLR4) in the hemocyanin activation of murine APCs, both in dendritic cells (DCs) and macrophages, using hemocyanins from Megathura crenulata (KLH), Concholepas concholepas (CCH) and Fissurella latimarginata (FLH). The results showed that these hemocyanins bound to chimeric Dectin-1 and Dectin-2 receptors in vitro; which significantly decreased when the glycoproteins were deglycosylated. However, hemocyanin-induced proinflammatory effects in APCs from Dectin-1 knock-out (KO) and Dectin-2 KO mice were independent of both receptors. Moreover, when wild-type APCs were cultured in the presence of hemocyanins, phosphorylation of Syk kinase was not detected. We further showed that KLH and FLH induced ERK1/2 phosphorylation, a key event involved in the TLR signaling pathway. We confirmed a glycan-dependent binding of hemocyanins to chimeric TLR4 in vitro. Moreover, DCs from mice deficient for MyD88-adapter-like (Mal), a downstream adapter molecule of TLR4, were partially activated by FLH, suggesting a role of the TLR pathway in hemocyanin recognition to activate APCs. The participation of TLR4 was confirmed through a decrease in IL-12p40 and IL-6 secretion induced by FLH when a TLR4 blocking antibody was used; a reduction was also observed in DCs from C3H/HeJ mice, a mouse strain with a nonfunctional mutation for this receptor. Moreover, IL-6 secretion induced by FLH was abolished in macrophages deficient for TLR4. Our data showed the involvement of TLR4 in the hemocyanin-mediated proinflammatory response in APCs, which could cooperate with MR in innate immune recognition of these glycoproteins.
Collapse
Affiliation(s)
- José M. Jiménez
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Sergio Arancibia
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Javiera Villar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Ed C. Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Jafet Ortiz-Quintero
- Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
- Biosonda Corporation, Santiago, Chile
| |
Collapse
|
16
|
Pombinho R, Sousa S, Cabanes D. Scavenger Receptors: Promiscuous Players during Microbial Pathogenesis. Crit Rev Microbiol 2018; 44:685-700. [PMID: 30318962 DOI: 10.1080/1040841x.2018.1493716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immunity is the most broadly effective host defense, being essential to clear the majority of microbial infections. Scavenger Receptors comprise a family of sensors expressed in a multitude of host cells, whose dual role during microbial pathogenesis gained importance over recent years. SRs regulate the recruitment of immune cells and control both host inflammatory response and bacterial load. In turn, pathogens have evolved different strategies to overcome immune response, avoid recognition by SRs and exploit them to favor infection. Here, we discuss the most relevant findings regarding the interplay between SRs and pathogens, discussing how these multifunctional proteins recognize a panoply of ligands and act as bacterial phagocytic receptors.
Collapse
Affiliation(s)
- Rita Pombinho
- a Instituto de Investigação e Inovação em Saúde (i3S), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal.,b Instituto de Biologia Molecular e Celular (IBMC), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal
| | - Sandra Sousa
- a Instituto de Investigação e Inovação em Saúde (i3S), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal.,b Instituto de Biologia Molecular e Celular (IBMC), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal
| | - Didier Cabanes
- a Instituto de Investigação e Inovação em Saúde (i3S), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal.,b Instituto de Biologia Molecular e Celular (IBMC), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal
| |
Collapse
|
17
|
Tuttolomondo M, Hansen PL, Mollenhauer J, Ditzel HJ. One-step FPLC-size-exclusion chromatography procedure for purification of rDMBT1 6 kb with increased biological activity. Anal Biochem 2017; 542:16-19. [PMID: 29169777 DOI: 10.1016/j.ab.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
Deleted in Malignant Brain Tumor 1 (DMBT1, alias SAG or gp340) is a pattern recognition receptor involved in immune defense, cell polarization, differentiation and regeneration. To investigate the role of the protein in physiological and pathological processes, the protein has often been isolated from saliva or produced in vitro and purified by a multistep affinity purification procedure using bacteria, followed by FPLC. Here, we compared a simple, one-step FPLC-SEC protocol for purification of recombinant DMBT1 6 kb, with that of the standard bacteria affinity purification-based protocol. Our data suggest that our FPLC-SEC protocol yields DMBT1 in a more native conformation.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Pernille Lund Hansen
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
18
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
19
|
Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY, Matlung H, van den Berg TK, van Esch WJE, Kuijpers TW, Wouters D, Rispens T, Wuhrer M, Vidarsson G. Decoding the Human Immunoglobulin G-Glycan Repertoire Reveals a Spectrum of Fc-Receptor- and Complement-Mediated-Effector Activities. Front Immunol 2017; 8:877. [PMID: 28824618 PMCID: PMC5539844 DOI: 10.3389/fimmu.2017.00877] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Glycosylation of the immunoglobulin G (IgG)-Fc tail is required for binding to Fc-gamma receptors (FcγRs) and complement-component C1q. A variety of IgG1-glycoforms is detected in human sera. Several groups have found global or antigen-specific skewing of IgG glycosylation, for example in autoimmune diseases, viral infections, and alloimmune reactions. The IgG glycoprofiles seem to correlate with disease outcome. Additionally, IgG-glycan composition contributes significantly to Ig-based therapies, as for example IVIg in autoimmune diseases and therapeutic antibodies for cancer treatment. The effect of the different glycan modifications, especially of fucosylation, has been studied before. However, the contribution of the 20 individual IgG glycoforms, in which the combined effect of all 4 modifications, to the IgG function has never been investigated. Here, we combined six glyco-engineering methods to generate all 20 major human IgG1-glycoforms and screened their functional capacity for FcγR and complement activity. Bisection had no effect on FcγR or C1q-binding, and sialylation had no- or little effect on FcγR binding. We confirmed that hypo-fucosylation of IgG1 increased binding to FcγRIIIa and FcγRIIIb by ~17-fold, but in addition we showed that this effect could be further increased to ~40-fold for FcγRIIIa upon simultaneous hypo-fucosylation and hyper-galactosylation, resulting in enhanced NK cell-mediated antibody-dependent cellular cytotoxicity. Moreover, elevated galactosylation and sialylation significantly increased (independent of fucosylation) C1q-binding, downstream complement deposition, and cytotoxicity. In conclusion, fucosylation and galactosylation are primary mediators of functional changes in IgG for FcγR- and complement-mediated effector functions, respectively, with galactose having an auxiliary role for FcγRIII-mediated functions. This knowledge could be used not only for glycan profiling of clinically important (antigen-specific) IgG but also to optimize therapeutic antibody applications.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Louise Treffers
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Arthur E H Bentlage
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Marcella de Boer
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Mieke Brouwer
- Sanquin Research and Landsteiner Laboratory, Department Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Hanke Matlung
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department Blood Cell Research, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Sanquin Research and Landsteiner Laboratory, Department Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Abstract
The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership.
Collapse
|
21
|
Itzek A, Chen Z, Merritt J, Kreth J. Effect of salivary agglutination on oral streptococcal clearance by human polymorphonuclear neutrophil granulocytes. Mol Oral Microbiol 2017; 32:197-210. [PMID: 27194631 PMCID: PMC5116291 DOI: 10.1111/omi.12164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/20/2022]
Abstract
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared with single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination on phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe how salivary aggregates of S. gordonii are readily cleared through phagocytosis, whereas single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, before phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The data presented suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes, so preventing collateral damage to nearby tissue.
Collapse
Affiliation(s)
- Andreas Itzek
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhiyun Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
22
|
Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathog 2017; 13:e1006392. [PMID: 28489917 PMCID: PMC5440049 DOI: 10.1371/journal.ppat.1006392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/22/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa infection. This study also advances our understanding of how mucosal fluids protect against infection, and suggests directions for novel biocompatible strategies to protect our surface epithelia against a major opportunistic pathogen.
Collapse
|
23
|
Antić-Stanković J, Stanković S. THE COMPLEMENT SYSTEM: PATHWAYS OF ACTIVATIONS AND FUNCTION. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Pizarro-Bauerle J, Maldonado I, Sosoniuk-Roche E, Vallejos G, López MN, Salazar-Onfray F, Aguilar-Guzmán L, Valck C, Ferreira A, Becker MI. Molluskan Hemocyanins Activate the Classical Pathway of the Human Complement System through Natural Antibodies. Front Immunol 2017; 8:188. [PMID: 28286504 PMCID: PMC5323374 DOI: 10.3389/fimmu.2017.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2017] [Indexed: 11/18/2022] Open
Abstract
Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting, glycosylation status had a limited effect. Finally, our data open possibilities for further studies leading to the design of improved hemocyanin-based research tools for diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Javier Pizarro-Bauerle
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Ismael Maldonado
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Eduardo Sosoniuk-Roche
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Gerardo Vallejos
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Mercedes N López
- Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, ICBM, Universidad de Chile, Santiago, Chile; Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, ICBM, Universidad de Chile, Santiago, Chile; Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile , Santiago , Chile
| | - Carolina Valck
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Arturo Ferreira
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - María Inés Becker
- Biosonda Corporation, Santiago, Chile; Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| |
Collapse
|
25
|
|
26
|
Meri S. Self-nonself discrimination by the complement system. FEBS Lett 2016; 590:2418-34. [PMID: 27393384 DOI: 10.1002/1873-3468.12284] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
The alternative pathway (AP) of complement can recognize nonself structures by only two molecules, C3b and factor H. The AP deposits C3b covalently on nonself structures via an amplification system. The actual discrimination is performed by factor H, which has binding sites for polyanions (sialic acids, glycosaminoglycans, phospholipids). This robust recognition of 'self' protects our own intact viable cells and tissues, while activating structures are recognized by default. Foreign targets are opsonized for phagocytosis or killed. Mutations in factor H predispose to severe diseases. In hemolytic uremic syndrome, they promote complement attack against blood cells and vascular endothelial cells and lead, for example, to kidney and brain damage. Even pathogens can exploit factor H. In fact, the ability to bind factor H discriminates most pathogenic microbes from nonpathogenic ones.
Collapse
Affiliation(s)
- Seppo Meri
- Immunobiology, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Finland.,Humanitas University, Milan, Italy
| |
Collapse
|
27
|
Polley S, Cipriani V, Khan JC, Shahid H, Moore AT, Yates JRW, Hollox EJ. Analysis of copy number variation at DMBT1 and age-related macular degeneration. BMC MEDICAL GENETICS 2016; 17:44. [PMID: 27416785 PMCID: PMC4946147 DOI: 10.1186/s12881-016-0311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND DMBT1 is a gene that shows extensive copy number variation (CNV) that alters the number of bacteria-binding domains in the protein and has been shown to activate the complement pathway. It lies next to the ARMS2/HTRA1 genes in a region of chromosome 10q26, where single nucleotide variants have been strongly associated with age-related macular degeneration (AMD), the commonest cause of blindness in Western populations. Complement activation is thought to be a key factor in the pathogenesis of this condition. We sought to investigate whether DMBT1 CNV plays any role in the susceptibility to AMD. METHODS We analysed long-range linkage disequilibrium of DMBT1 CNV1 and CNV2 with flanking single nucleotide polymorphisms (SNPs) using our previously published CNV and HapMap Phase 3 SNP data in the CEPH Europeans from Utah (CEU). We then typed a large cohort of 860 AMD patients and 419 examined age-matched controls for copy number at DMBT1 CNV1 and CNV2 and combined these data with copy numbers from a further 480 unexamined controls. RESULTS We found weak linkage disequilibrium between DMBT1 CNV1 and CNV2 with the SNPs rs1474526 and rs714816 in the HTRA1/ARMS2 region. By directly analysing copy number variation, we found no evidence of association of CNV1 or CNV2 with AMD. CONCLUSIONS We have shown that copy number variation at DMBT1 does not affect risk of developing age-related macular degeneration and can therefore be ruled out from future studies investigating the association of structural variation at 10q26 with AMD.
Collapse
Affiliation(s)
- Shamik Polley
- Department of Genetics, University of Leicester, Leicester, UK
| | - Valentina Cipriani
- UCL Institute of Ophthalmology, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jane C Khan
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Australia
| | - Humma Shahid
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- Department of Ophthamology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
- Department of Ophthalmology UCSF Medical School, San Francisco, USA
| | - John R W Yates
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Edward J Hollox
- Department of Genetics, University of Leicester, Leicester, UK.
| |
Collapse
|
28
|
Boks MA, Gunput STG, Kosten I, Gibbs S, van Vliet SJ, Ligtenberg AJM, van Kooyk Y. The Human Glycoprotein Salivary Agglutinin Inhibits the Interaction of DC-SIGN and Langerin with Oral Micro-Organisms. J Innate Immun 2016; 8:350-61. [PMID: 27082983 DOI: 10.1159/000443016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Salivary agglutinin (SAG), also known as gp340 or SALSA, is a glycoprotein encoded by the Deleted in Malignant Brain Tumours 1 gene and is abundantly present in human saliva. SAG aggregates bacteria and viruses, thereby promoting their clearance from the oral cavity. The mucosa lining the oral cavity contains dendritic cells (DC) and Langerhans cells (LC), which express the C-type lectin receptors (CLR) DC-SIGN and Langerin, respectively. Both DC-SIGN and Langerin recognise mannose and fucose carbohydrate structures on pathogens and self-glycoproteins to regulate immunity and homeostasis. The purpose of this study was to investigate whether SAG interacts with these CLR and whether this interferes with the binding to oral pathogens. We show that whole parotid saliva and SAG, when coated to microplates, strongly interact with DC-SIGN and Langerin, probably via mannose and fucose structures. Also, primary human DC and LC bind parotid saliva and SAG via DC-SIGN and Langerin, respectively. Furthermore, SAG binding to DC-SIGN or Langerin prevented binding to the micro-organisms Candida albicans and Escherichia coli which express mannose and fucose-containing glycan structures. Thus, binding of saliva glycoprotein SAG to DC-SIGN and Langerin may inhibit pathogen-DC/LC interactions, and could prove to be a new immunomodulatory mechanism of SAG.
Collapse
Affiliation(s)
- Martine A Boks
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Gunput STG, Wouters D, Nazmi K, Cukkemane N, Brouwer M, Veerman ECI, Ligtenberg AJM. Salivary agglutinin is the major component in human saliva that modulates the lectin pathway of the complement system. Innate Immun 2016; 22:257-65. [DOI: 10.1177/1753425916642614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Saliva interacts with blood after mucosal damage or leakage of gingival crevicular fluid. Surface-adsorbed salivary agglutinin (SAG) activates the lectin pathway (LP) of the complement system via mannose-binding lectin, while SAG in solution inhibits complement activation. In the present study we investigated if, next to SAG, whole and glandular saliva itself and other salivary glycoproteins activate or inhibit the LP. Complement activation was measured by detecting C4 deposition on microtiter plates coated with saliva or purified proteins. Complement inhibition was measured after incubating serum with saliva or proteins in microtiter plates coated with mannan, an LP activator. Adsorbed whole, sublingual and submandibular saliva showed LP-dependent complement activation. Blood group secretors, but not non-secretors, activated the LP. Saliva of both secretors and non-secretors inhibited C4 deposition on mannan. After depletion of SAG, saliva no longer inhibited the LP. Other salivary proteins, including amylase, MUC5B and histatin 2, did not activate or inhibit the LP. Surface-adsorbed whole saliva and glandular saliva samples activate the LP of complement, depending on the presence of SAG and the secretor status of the donor. In solution, saliva inhibits the LP, depending on the presence of SAG, but independent of the secretor status.
Collapse
Affiliation(s)
- Sabrina TG Gunput
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Enno CI Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Antoon JM Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Reichhardt MP, Meri S. SALSA: A Regulator of the Early Steps of Complement Activation on Mucosal Surfaces. Front Immunol 2016; 7:85. [PMID: 27014265 PMCID: PMC4781872 DOI: 10.3389/fimmu.2016.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn's disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.
Collapse
Affiliation(s)
- Martin Parnov Reichhardt
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Seppo Meri
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| |
Collapse
|
31
|
Reichhardt MP, Jarva H, Lokki AI, Laivuori H, Vuorela P, Loimaranta V, Glasner A, Siwetz M, Huppertz B, Meri S. The Salivary Scavenger and Agglutinin (SALSA) in Healthy and Complicated Pregnancy. PLoS One 2016; 11:e0147867. [PMID: 26828433 PMCID: PMC4734712 DOI: 10.1371/journal.pone.0147867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
Pre-eclampsia is a leading cause of maternal and perinatal morbidity and mortality worldwide. The etiology is not clear, but an immune attack towards components of placenta or fetus has been indicated. This involves activation of the complement system in the placenta. We have previously described the presence of the complement-regulating protein salivary scavenger and agglutinin (SALSA) in amniotic fluid. In this study we investigated the potential role of SALSA in pregnancy by analyzing its presence in amniotic fluid and placental tissue during healthy and complicated pregnancies. SALSA levels in amniotic fluid increased during pregnancy. Before 20 weeks of gestation the levels were slightly higher in patients who later developed pre-eclampsia than in gestation age-matched controls. In the placenta of pre-eclamptic patients syncytial damage is often followed by the formation of fibrinoid structures. SALSA was found clustered into these fibrinoid structures in partial co-localization with complement C1q and fibronectin. In vitro analysis showed direct protein binding of SALSA to fibronectin. SALSA binds also to fibrin/fibrinogen but did not interfere with the blood clotting process in vitro. Thus, in addition to antimicrobial defense and epithelial differentiation, the data presented here suggest that SALSA, together with fibronectin and C1q, may be involved in the containment of injured placental structures into fibrinoids.
Collapse
Affiliation(s)
- Martin Parnov Reichhardt
- Immunobiology Research Program, Research Programs Unit, and Department of Bacteriology & Immunology, Medical Faculty, University of Helsinki, Helsinki, Finland
- * E-mail: (MPR); (SM)
| | - Hanna Jarva
- Immunobiology Research Program, Research Programs Unit, and Department of Bacteriology & Immunology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland
| | - Anna Inkeri Lokki
- Immunobiology Research Program, Research Programs Unit, and Department of Bacteriology & Immunology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Medical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Laivuori
- Medical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | - Piia Vuorela
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Obstetrics and Gynecology, Porvoo Hospital, Porvoo, Finland
| | - Vuokko Loimaranta
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | | | - Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Biobank Graz, Organizational Unit of Research Infrastructure, Medical University of Graz, Graz, Austria
| | - Seppo Meri
- Immunobiology Research Program, Research Programs Unit, and Department of Bacteriology & Immunology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland
- * E-mail: (MPR); (SM)
| |
Collapse
|
32
|
Alterations in Salivary Proteome following Single Twenty-Minute Session of Yogic Breathing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:376029. [PMID: 25873979 PMCID: PMC4383272 DOI: 10.1155/2015/376029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022]
Abstract
Yogic breathing (YB) has been suggested to reduce stress and blood pressure and increase cognitive processes. However, alterations after YB at the molecular level are not well established. Twenty healthy volunteers were randomized into two groups (N = 10 per group): YB or attention controls (AC). The YB group performed two YB exercises, each for ten minutes, for a total of twenty minutes in a single session. AC group read a text of their choice for 20 minutes. Saliva was collected at baseline and at 5, 10, 15, and 20 minutes. Using Mass Spectrometry (MS), we initially found that 22 proteins were differentially expressed and then validated deleted in malignant brain tumor-1 (DMBT1) and Ig lambda-2 chain C region (IGLC2) using Western Blotting. DMBT1 was elevated in 7 of YB group by 10-fold and 11-fold at 10 and 15 minutes, respectively, whereas it was undetectable in the time-matched AC group (P < 0.05). There was a significant interaction between groups and time assessed by two-way ANOVA (P < 0.001). IGLC2 also showed a significant increase in YB group as measured by Western Blotting. These data are the first to demonstrate the feasibility of stimulating and detecting salivary protein biomarkers in response to an acute Yoga exercise. This trial is registered with ClincalTrials.gov NCT02108769.
Collapse
|
33
|
Purushotham S, Deivanayagam C. The calcium-induced conformation and glycosylation of scavenger-rich cysteine repeat (SRCR) domains of glycoprotein 340 influence the high affinity interaction with antigen I/II homologs. J Biol Chem 2014; 289:21877-87. [PMID: 24923446 PMCID: PMC4139206 DOI: 10.1074/jbc.m114.565507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.
Collapse
Affiliation(s)
- Sangeetha Purushotham
- From the Department of Vision Sciences/Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400
| | - Champion Deivanayagam
- From the Department of Vision Sciences/Center for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400
| |
Collapse
|
34
|
Barber C, Weissman D, Barnhart K, Dalvi M, Abrams WR, Malamud D. An electrochemiluminescence assay for gp340 (DMBT1). Anal Biochem 2013; 440:78-80. [PMID: 23727557 DOI: 10.1016/j.ab.2013.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022]
Abstract
Gp340 is a member of the scavenger receptor cysteine-rich family of innate immune molecules and also functions as a tumor suppressor. This study describes a picogram-level assay using electrochemiluminescence technology on the MesoScale Discovery platform. Antibodies were evaluated and the best pair was used to assay whole-mouth stimulated saliva and cervical/vaginal lavage. The assay was tested using specimens obtained from healthy volunteers to determine if gp340 concentration in saliva correlates with levels in vaginal lavage fluid. Interestingly, no correlation was determined between gp340 content in these two fluids.
Collapse
Affiliation(s)
- Cheryl Barber
- Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
35
|
Chen G, Wang C, Zhang C, Wang Y, Xu Z, Wang C. A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1619-1627. [PMID: 23507337 DOI: 10.1016/j.fsi.2013.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
The scallop Chlamys farreri is one of the most important aquaculture species in northern coastal provinces. However, the sustainable development of scallop industry is currently threatened by a notorious pathogen named as acute viral necrobiotic virus (AVNV), which often causes mass mortality of the animals. Despite that great attention has been focused on this novel pathogen, little knowledge about the host-virus interactions is available. In this study, suppression subtractive hybridization (SSH) was employed to identify the up-regulated differentially expressed genes in the hemocytes of C. farreri challenged by AVNV. A forward subtracted cDNA library was finally constructed and 288 positive colonies representing differentially genes were screened to perform sequencing. A total of 275 ESTs were used for further analysis using bioinformatics tools after vector screening, among which 167 ESTs could be finally identified, with significant match (E values <1 × 10(-3)) to the deposited genes (proteins) in the corresponding databases. These genes could be classified into ten categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cell defense and homeostasis (13.82%), cellular protein metabolic process (14.90), cellular metabolism (13.09%), cytoskeletal or cellular component (5.82%), transcription regulation or RNA processing (2.18%), cell division (meiosis)/apoptosis (2.18%), DNA metabolic process and repair (1.45%), cell adhesion/signaling (1.09%), microsatellite (0.73%), and ungrouped or unknown functions (6.88). The possible biological significance of some novel genes (mainly immune and homeostasis related genes) in the host response to AVNV were discussed. This study is the first global analysis of differentially expressed genes in hemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated scallop disease, the results presented here should provide new insights into the molecular basis of host-pathogen interactions in C. farreri.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Madsen J, Sorensen GL, Nielsen O, Tornøe I, Thim L, Fenger C, Mollenhauer J, Holmskov U. A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLoS One 2013; 8:e64441. [PMID: 23691218 PMCID: PMC3654909 DOI: 10.1371/journal.pone.0064441] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/15/2013] [Indexed: 12/27/2022] Open
Abstract
The protein deleted in malignant brain tumors (DMBT1) and the trefoil factor (TFF) proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human DMBT1gp340. Analysis of lung washings and colon tissue extracts by Western blotting in the unreduced state, two antibodies (Hyb213-1 and Hyb213-6) reacted with a double band of 290 kDa in lung lavage. Hyb213-6, in addition, reacted against a double band of 270 kDa in colon extract while Hyb213-1 showed no reaction. Hyb213-6 showed strong cytoplasmic staining in epithelial cells of both the small and large intestine whereas no staining was seen with Hyb213-1. The number of DMBT1gp340 positive epithelial cells, stained with Hyb213-6, was significantly up regulated in inflammatory colon tissue sections from patients with ulcerative colitis (p<0.0001) and Crohn’s disease (p = 0.006) compared to normal colon tissue. Immunohistochemical analysis of trefoil factor TFF1, 2 and 3 showed that TFF1 and 3 localized to goblet cells in both normal colon tissue and in tissue from patients with ulcerative colitis or Crohn’s disease. No staining for TFF2 was seen in goblet cells in normal colon tissue whereas the majority of tissue sections in ulcerative colitis and Crohn’s disease showed sparse and scattered TFF2 positive goblet cells. DMBT1 and TFF proteins did therefore not co-localize in the same cells but localized in adjacent cells in the colon. The interaction between DMBT1gp340 and trefoil TFFs proteins was investigated using an ELISA assay. DMBT1gp340 bound to solid-phase bound recombinant dimeric TFF3 in a calcium dependent manner (p<0.0001) but did not bind to recombinant forms of monomeric TFF3, TFF2 or glycosylated TFF2. This implies a role for DMBT1 and TFF3 together in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jens Madsen
- Sir Henry Wellcome Laboratories, Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cardiac amyloidosis induces up-regulation of Deleted in Malignant Brain Tumors 1 (DMBT1). Cardiovasc Pathol 2013; 22:195-202. [DOI: 10.1016/j.carpath.2012.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/26/2012] [Accepted: 10/28/2012] [Indexed: 01/20/2023] Open
|
38
|
Reichhardt MP, Loimaranta V, Thiel S, Finne J, Meri S, Jarva H. The salivary scavenger and agglutinin binds MBL and regulates the lectin pathway of complement in solution and on surfaces. Front Immunol 2012; 3:205. [PMID: 22811680 PMCID: PMC3397308 DOI: 10.3389/fimmu.2012.00205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/29/2012] [Indexed: 01/04/2023] Open
Abstract
The salivary scavenger and agglutinin (SALSA), also known as gp340, salivary agglutinin and deleted in malignant brain tumor 1, is a 340-kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A, and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan-binding lectin (MBL) as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit Candida albicans-induced complement activation. Thus, SALSA has a dual complement activation modifying function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid phase. These activities are mediated via a direct interaction with MBL. This suggests that SALSA could target the innate immune responses to certain microorganisms and simultaneously limit complement activation in the fluid phase.
Collapse
Affiliation(s)
- Martin P Reichhardt
- Infection Biology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|