1
|
Zhang N, Wu J, Gao S, Peng H, Li H, Gibson C, Wu S, Zhu J, Zheng Q. pH-Controlled Chemoselective Rapid Azo-Coupling Reaction (CRACR) Enables Global Profiling of Serotonylation Proteome in Cancer Cells. J Proteome Res 2024; 23:4457-4466. [PMID: 39208062 DOI: 10.1021/acs.jproteome.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Serotonylation has been identified as a novel protein posttranslational modification for decades, where an isopeptide bond is formed between the glutamine residue and serotonin through transamination. Transglutaminase 2 (also known as TGM2 or TGase2) was proven to act as the main "writer" enzyme for this PTM, and a number of key regulatory proteins (including small GTPases, fibronectin, fibrinogen, serotonin transporter, and histone H3) have been characterized as the substrates of serotonylation. However, due to the lack of pan-specific antibodies for serotonylated glutamine, the precise enrichment and proteomic profiling of serotonylation still remain challenging. In our previous research, we developed an aryldiazonium probe to specifically label protein serotonylation in a bioorthogonal manner, which depended on a pH-controlled chemoselective rapid azo-coupling reaction. Here, we report the application of a photoactive aryldiazonium-biotin probe for the global profiling of serotonylation proteome in cancer cells. Thus, over 1,000 serotonylated proteins were identified from HCT 116 cells, many of which are highly related to carcinogenesis. Moreover, a number of modification sites of these serotonylated proteins were determined, attributed to the successful application of our chemical proteomic approach. Overall, these findings provided new insights into the significant association between cellular protein serotonylation and cancer development, further suggesting that to target TGM2-mediated monoaminylation may serve as a promising strategy for cancer therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Yerramilli VS, Lin G, Reisinger JL, Hemmerlin RM, Lindberg SK, Plante K, Ross AH, Gericke A, Scarlata S. The scaffolding protein IQGAP1 enhances EGFR signaling by promoting oligomerization and preventing degradation. J Biol Chem 2024; 300:107844. [PMID: 39357822 PMCID: PMC11555339 DOI: 10.1016/j.jbc.2024.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
IQGAP1 is a large, multi-domain scaffold that connects and modulates different signaling networks including the one initiated by epidermal growth factor (EGF). In this study, we have used live cell fluorescence imaging methods along with other biochemical techniques to follow the mechanisms used by IQGAP1 to enhance EGF signaling. We show that IQGAP1 enhances EGF signaling by promoting the oligomerization of its receptor, EGFR, upon EGF addition along with concurrent IQGAP oligomerization. Using cellular markers, we find that IQGAP1 promotes the plasma membrane localization of EGFR and promotes association to one of its phosphoinositide lipid pathway ligands, PI(3,4,5)P3. Additionally, we find that binding of EGFR to IQGAP1 protects EGFR from lysosomal degradation. Taken together, our results show that IQGAP1 enhances EGF-mediated pathway progression through mechanisms that augment simple scaffolding activities.
Collapse
Affiliation(s)
- V Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jessica L Reisinger
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rachel M Hemmerlin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Samantha K Lindberg
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Karin Plante
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Alonzo H Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
5
|
Zhao X, Zhao Y, Zhang Y, Fan Q, Ke H, Chen X, Jin L, Tang H, Jiang Y, Ma J. Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation. J Biol Eng 2024; 18:42. [PMID: 39061076 PMCID: PMC11282767 DOI: 10.1186/s13036-024-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive. This study aims to thoroughly explore the key disulfidptosis genes involved in EMs, and probe novel diagnostic markers and candidate therapeutic compounds from the aspect of disulfidptosis based on bioinformatics analysis, machine learning, and animal experiments. RESULTS Enrichment analysis on key module genes and differentially expressed genes (DEGs) of eutopic and ectopic endometrial tissues in EMs suggested that EMs was closely related to disulfidptosis. And then, we obtained 20 and 16 disulfidptosis-related DEGs in eutopic and ectopic endometrial tissue, respectively. The protein-protein interaction (PPI) network revealed complex interactions between genes, and screened nine and ten hub genes in eutopic and ectopic endometrial tissue, respectively. Furthermore, immune infiltration analysis uncovered distinct differences in the immunocyte, human leukocyte antigen (HLA) gene set, and immune checkpoints in the eutopic and ectopic endometrial tissues when compared with health control. Besides, the hub genes mentioned above showed a close correlation with the immune microenvironment of EMs. Furthermore, four machine learning algorithms were applied to screen signature genes in eutopic and ectopic endometrial tissue, including the binary logistic regression (BLR), the least absolute shrinkage and selection operator (LASSO), the support vector machine-recursive feature elimination (SVM-RFE), and the extreme gradient boosting (XGBoost). Model training and hyperparameter tuning were implemented on 80% of the data using a ten-fold cross-validation method, and tested in the testing sets which determined the excellent diagnostic performance of these models by six indicators (Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Accuracy, and Area Under Curve). And seven eutopic signature genes (ACTB, GYS1, IQGAP1, MYH10, NUBPL, SLC7A11, TLN1) and five ectopic signature genes (CAPZB, CD2AP, MYH10, OXSM, PDLIM1) were finally identified based on machine learning. The independent validation dataset also showed high accuracy of the signature genes (IQGAP1, SLC7A11, CD2AP, MYH10, PDLIM1) in predicting EMs. Moreover, we screened 12 specific compounds for EMs based on ectopic signature genes and the pharmacological impact of tretinoin on signature genes was further verified in the ectopic lesion in the EMs murine model. CONCLUSION This study verified a close association between disulfidptosis and EMs based on bioinformatics analysis, machine learning, and animal experiments. Further investigation on the biological mechanism of disulfidptosis in EMs is anticipated to yield novel advancements for searching for potential diagnostic biomarkers and revolutionary therapeutic approaches in EMs.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingnan Fan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huanxiao Ke
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linxi Jin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongying Tang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Zhang H, Ma J, Gao X. Identifying molecular subgroups of patients with preeclampsia through bioinformatics. Front Cardiovasc Med 2024; 11:1367578. [PMID: 38887449 PMCID: PMC11180819 DOI: 10.3389/fcvm.2024.1367578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Preeclampsia (PE) is a pregnancy-related disorder associated with serious complications. Its molecular mechanisms remain undefined; hence, we aimed to identify molecular subgroups of patients with PE using bioinformatics to aid treatment strategies. R software was used to analyze gene expression data of 130 patients with PE and 138 healthy individuals from the Gene Expression Omnibus database. Patients with PE were divided into two molecular subgroups using the unsupervised clustering learning method. Clinical feature analysis of subgroups using weighted gene co-expression network analysis showed that the patients in subgroup I were primarily characterized by early onset of PE, severe symptoms at disease onset, and induced labor as the main delivery method. Patients in subgroup II primarily exhibited late PE onset, relatively mild symptoms, and natural delivery as the main delivery method. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the significant enrichment of calcium ion channels in subgroup II indicated the potential efficacy of calcium antagonists and magnesium sulfate therapy. In conclusion, the establishment of PE molecular subgroups can aid in diagnosing and treating PE.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianglei Ma
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Xueli Gao
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
7
|
Akter T, Atanelishvili I, Silver RM, Bogatkevich GS. IQGAP1 Regulates Actin Polymerization and Contributes to Bleomycin-Induced Lung Fibrosis. Int J Mol Sci 2024; 25:5244. [PMID: 38791282 PMCID: PMC11121427 DOI: 10.3390/ijms25105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
We previously found IQ motif containing GTPase activating protein (IQGAP1) to be consistently elevated in lung fibroblasts (LF) isolated from patients with scleroderma (systemic sclerosis, SSc)-associated interstitial lung disease (ILD) and reported that IQGAP1 contributed to SSc by regulating expression and organization of α-smooth muscle actin (SMA) in LF. The aim of this study was to compare the development of ILD in the presence and absence of IQGAP1. Pulmonary fibrosis was induced in IQGAP1 knockout (KO) and wild-type (WT) mice by a single-intratracheal instillation of bleomycin. Two and three weeks later, mice were euthanized and investigated. We observed that the IQGAP1 KO mouse was characterized by a reduced rate of actin polymerization with reduced accumulation of actin in the lung compared to the WT mouse. After exposure to bleomycin, the IQGAP1 KO mouse demonstrated decreased contractile activity of LF, reduced expression of SMA, TGFβ, and collagen, and lowered overall fibrosis scores compared to the WT mouse. The numbers of inflammatory cells and expression of pro-inflammatory cytokines in lung tissue were not significantly different between IQGAP1 KO and WT mice. We conclude that IQGAP1 plays an important role in the development of lung fibrosis induced by bleomycin, and the absence of IQGAP1 reduces the contractile activity of lung fibroblast and bleomycin-induced pulmonary fibrosis. Thus, IQGAP1 may be a potential target for novel anti-fibrotic therapies for lung fibrosis.
Collapse
Affiliation(s)
| | | | | | - Galina S. Bogatkevich
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 912, Charleston, SC 29425, USA; (T.A.); (I.A.); (R.M.S.)
| |
Collapse
|
8
|
Ding H, Liu Y, Lu X, Liu A, Xu Q, Yuan Y. Pepsinogen C Interacts with IQGAP1 to Inhibit the Metastasis of Gastric Cancer Cells by Suppressing Rho-GTPase Pathway. Cancers (Basel) 2024; 16:1796. [PMID: 38791874 PMCID: PMC11120368 DOI: 10.3390/cancers16101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
AIM This study systematically explored the biological effects and mechanisms of PGC on gastric cancer (GC) cells in vitro and in vivo. METHOD The critical biological roles of PGC in GC were assessed via EdU staining, Hoechst staining, flow cytometry, mouse models, CCK-8, wound healing, transwell, and sphere-forming assays. The interaction study with IQ-domain GTPase-activating protein 1 (IQGAP1) was used by Liquid chromatography-mass spectrometry co-immunoprecipitation, immunofluorescence staining, CHX-chase assay, MG132 assay, and qRT-PCR. RESULTS PGC inhibited the proliferation, viability, epithelial-mesenchymal transition, migration, invasion, and stemness of GC cells and promoted GC cell differentiation. PGC suppressed subcutaneous tumor growth and peritoneal dissemination in vivo. The interaction study found PGC inhibits GC cell migration and invasion by downregulating IQGAP1 protein and IQGAP1-mediated Rho-GTPase signaling suppression. In addition, PGC disrupts the stability of the IQGAP1 protein, promoting its degradation and significantly shortening its half-life. Moreover, the expression levels of PGC and IQGAP1 in GC tissues were significantly negatively correlated. CONCLUSION PGC may act as a tumor suppressor in the development and metastasis of GC. PGC can downregulate its interacting protein IQGAP1 and inhibit the Rho-GTPase pathway, thereby participating in the inhibition of GC cell migration and invasion.
Collapse
Affiliation(s)
- Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaodong Lu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Aoran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Mader MMD, Napole A, Wu D, Atkins M, Scavetti A, Shibuya Y, Foltz A, Hahn O, Yoo Y, Danziger R, Tan C, Wyss-Coray T, Steinman L, Wernig M. Myeloid cell replacement is neuroprotective in chronic experimental autoimmune encephalomyelitis. Nat Neurosci 2024; 27:901-912. [PMID: 38514857 DOI: 10.1038/s41593-024-01609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan Napole
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Danwei Wu
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurosciences, Division of Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Scavetti
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aulden Foltz
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ron Danziger
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Tan
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurosciences, Division of Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Zhang F, Lv M, He Y. Identification of a novel disulfideptosis-related gene signature for prognostic implication in lower-grade gliomas. Aging (Albany NY) 2024; 16:6054-6067. [PMID: 38546389 PMCID: PMC11042955 DOI: 10.18632/aging.205688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Lower-grade gliomas (GBMLGG) are common, fatal, and difficult-to-treat cancers. The current treatment choices have impressive efficacy constraints. As a result, the development of effective treatments and the identification of new therapeutic targets are urgent requirements. Disulfide metabolism is the cause of the non-apoptotic programmed cell death known as disulfideptosis, which was only recently discovered. The mRNA expression data and related clinical information of GBMLGG patients downloaded from public databases were used in this study to investigate the prognostic significance of genes involved in disulfideptosis. In the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohort, our findings showed that many disulfidptosis-related genes were expressed differently in normal and GBMLGG tissues. It was discovered that IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a key gene that influences the outcome of GBMLGG. Besides, a nomogram model was built to foresee the visualization of GBMLGG patients. In addition, in vivo and in vitro validation of IQGAP1's cancer-promoting function was done. In conclusion, we discovered a gene signature associated with disulfideptosis that can effectively predict OS in GBMLGG patients. As a result, treating disulfideptosis may be a viable alternative for GBMLGG patients.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meihong Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Dai YC, Yeh SY, Cheng YY, Huang WH, Liou GG, Yang TY, Chang CY, Fang TF, Chang CW, Su MT, Lee CP, Chen MR. BGLF4 kinase regulates the formation of the EBV cytoplasmic assembly compartment and the recruitment of cellular IQGAP1 for virion release. J Virol 2024; 98:e0189923. [PMID: 38294245 PMCID: PMC10878254 DOI: 10.1128/jvi.01899-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.
Collapse
Affiliation(s)
- Yu-Ching Dai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yun Yeh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Han Huang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Yang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chou-Wei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
13
|
Qin R, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Identification of disulfidptosis-related genes and analysis of immune infiltration characteristics in ischemic strokes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18939-18959. [PMID: 38052584 DOI: 10.3934/mbe.2023838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Immune infiltration plays a pivotal role in the pathogenesis of ischemic stroke. A novel form of cell death known as disulfidptosis has emerged in recent studies. However, there is currently a lack of research investigating the regulatory mechanism of disulfidptosis-related genes in immune infiltration during ischemic stroke. Using machine learning methods, we identified candidate key disulfidptosis-related genes (DRGs). Subsequently, we performed an analysis of immune cell infiltration to investigate the dysregulation of immune cells in the context of ischemic stroke. We assessed their diagnostic value by employing receiver operating characteristic (ROC) curves. To gain further insights, we conducted functional enrichment analyses to elucidate the signaling pathways associated with these seven DRGs. We identified two distinct subclusters based on the expression patterns of these seven DRGs. The unique roles of these subclusters were further evaluated through KEGG analysis and immune infiltration studies. Furthermore, we validated the expression profiles of these seven DRGs using both single-cell datasets and external datasets. Lastly, molecular docking was performed to explore potential drugs for the treatment of ischemic stroke. We identified seven DRGs. The seven DRGs are related to immune cells. Additionally, these seven DRGs also demonstrate potential diagnostic value in ischemic stroke. Functional enrichment analysis highlighted pathways such as platelet aggregation and platelet activation. Two subclusters related to disulfidptosis were defined, and functional enrichment analysis of their differentially expressed genes (DEGs) primarily involved pathways like cytokine-cytokine receptor interaction. Single-cell analysis indicated that these seven DRGs were primarily distributed among immune cell types. Molecular docking results suggested that genistein might be a potential therapeutic drug. This study has opened up new avenues for exploring the causes of ischemic stroke and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman DA, Bardwell L. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Biochem J 2023; 480:BCJ20220493. [PMID: 37145016 PMCID: PMC10625650 DOI: 10.1042/bcj20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
Collapse
Affiliation(s)
- A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Kiku C. Yoneda
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | | | - Oanh T. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
15
|
Zhao N, Chen C, Guo Y, Liu T, Che N, Zhang D, Liang X, Zhang Y, Zhao X. LOXL2 serves as a prognostic biomarker for hepatocellular carcinoma by mediating immune infiltration and vasculogenic mimicry. Dig Liver Dis 2023; 55:661-672. [PMID: 36192339 DOI: 10.1016/j.dld.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/13/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The development of human hepatocellular carcinoma (HCC) is a multistep process that is accompanied by progressive changes in the liver microenvironment, including immune evasion and angiogenesis. Lysyl oxidase-like 2 (LOXL2) has been suggested to contribute to tumour progression and metastasis; however, the underlying mechanism remains unclear. The purpose of the present study was to explore the relationship between LOXL2 and immune infiltration and vasculogenic mimicry (VM) and to identify the role of LOXL2 in HCC diagnosis prognosis evaluation. METHODS The Cancer Genome Atlas (TCGA), UALCAN, GEPIA and Kaplan-Meier plotter databases were used to analyse LOXL2 expression and perform survival analysis. The Tumour Immune Estimation Resource (TIMER) was used to analyse immune cell infiltration, immune cell biomarkers and immune checkpoints. Immunohistochemistry (IHC) of 201 HCC samples was used to confirm the expression of LOXL2 and its relationship with VM. Coimmunoprecipitation (co-IP) and gain- and loss-of-function studies were performed to confirm the molecular mechanism of LOXL2 in VM. RESULTS The expression of LOXL2 in HCC was higher than that in normal tissues at both the mRNA and protein levels. High expression of LOXL2 was associated with a poorer prognosis of HCC. The genetic alteration rate of LOXL2 was 5%. LOXL2 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. Co-IP showed that LOXL2 can interact directly with IQGAP1. Both gain- and loss-of-function studies showed that LOXL2 significantly induced cell migration, invasion and VM formation when IQGAP1 was upregulated. CONCLUSIONS LOXL2 is involved in immune cell infiltration and promotes VM by upregulating IQGAP1. LOXL2 can be used as a novel biomarker for HCC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
16
|
Ren F, Guo Q, Zhou H. Menin represses the proliferation of gastric cancer cells by interacting with IQGAP1. Biomed Rep 2023; 18:27. [PMID: 36909940 PMCID: PMC9996331 DOI: 10.3892/br.2023.1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
The multiple endocrine neoplasia type 1 gene coding the protein menin was originally identified in patients with multiple endocrine tumors, and is mainly expressed in the cell nucleus. Multiple lines of evidence have indicated that menin acts as a tumor suppressor protein interacting with other various proteins. The mechanism of menin inhibiting tumorigenesis remains unclear. The present study analyzed the expression of menin and IQ motif-containing GTPase-activating protein 1 (IQGAP1) proteins in gastric cancer tissues and cell lines, and investigated the association between these two molecules. Western blotting was used to determine the quantity of target proteins. Cell proliferation was measured using MTT assay. It was found that the protein expression of menin was lower in gastric cancer tissues and AGS cells, while the protein expression of IQGAP1 was higher, compared with the levels observed in normal tissues and GES-1 cells. Ectopic expression of IQGAP1 stimulated the proliferation of gastric cancer cells, but did not affect the expression of menin. However, overexpression of menin inhibited the proliferation of gastric cancer cells. The inhibition was partly achieved through inhibiting the expression of IQGAP1, which was accompanied by inhibition of PI3K and NF-κB expression. Taken together, the present results suggest a novel function for menin and IQGAP1 contributing to suppress the proliferation of gastric cancer cells.
Collapse
Affiliation(s)
- Feng Ren
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Qin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Huan Zhou
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Department of Blood Transfusion, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
17
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
18
|
Mohapatra T, Dixit M. IQ Motif Containing GTPase Activating Proteins (IQGAPs), A-Kinase Anchoring Proteins (AKAPs) and Kinase Suppressor of Ras Proteins (KSRs) in Scaffolding Oncogenic Pathways and Their Therapeutic Potential. ACS OMEGA 2022; 7:45837-45848. [PMID: 36570181 PMCID: PMC9773950 DOI: 10.1021/acsomega.2c05505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Scaffolding proteins colocalize interacting partners on their surface and facilitate complex formation. They have multiple domains and motifs, which provide binding sites for various molecules. This property of scaffolding proteins helps in the orderly transduction of signals. Abnormal signal transduction is frequently observed in cancers, which can also be attributed to the altered functionality of scaffolding proteins. IQ motif containing GTPase activating proteins (IQGAPs), kinase suppressor of Ras (KSR), and A-kinase anchoring proteins (AKAPs) tether oncogenic pathways RAS/RAF/MEK/ERK, PI3K/AKT, Hippo, Wnt, and CDC42/RAC to them. Scaffolding proteins are attractive drug targets as they are the controlling hub for multiple pathways and regulate crosstalk between them. The first part of this review describes the human scaffolding proteins known to play a role in oncogenesis, pathways altered by them, and the impact on oncogenic processes. The second part provides information on the therapeutic potential of scaffolding proteins and future possibilities. The information on the explored and unexplored areas of the therapeutic potential of scaffolding proteins will be equally helpful for biologists and chemists.
Collapse
Affiliation(s)
- Talina Mohapatra
- National
Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| | - Manjusha Dixit
- National
Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
19
|
N-Linked Glycosylation in Chinese Hamster Ovary Cells Is Critical for Insulin-like Growth Factor 1 Signaling. Int J Mol Sci 2022; 23:ijms232314952. [PMID: 36499281 PMCID: PMC9735751 DOI: 10.3390/ijms232314952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022] Open
Abstract
Cell surface proteins carrying N-glycans play important roles in inter- and intracellular processes including cell adhesion, development, and cellular recognition. Dysregulation of the glycosylation machinery has been implicated in various diseases, and investigation of global differential cell surface proteome effects due to the loss of N-glycosylation will provide comprehensive insights into their pathogenesis. Cell surface proteins isolated from Parent Pro-5 CHO cells (W5 cells), two CHO mutants with loss of N-glycosylation function derived from Pro-5 CHO (Lec1 and Lec4 cells), were subjected to proteome analysis via high-resolution LCMS. We identified 44 and 43 differentially expressed membrane proteins in Lec1 and Lec4 cells, respectively, as compared to W5 cells. The defective N-glycosylation mutants showed increased abundance of integrin subunits in Lec1 and Lec4 cells at the cell surface. We also found significantly reduced levels of IGF-1R (Insulin like growth factor-1 receptor); a receptor tyrosine kinase; and the GTPase activating protein IQGAP1 (IQ motif-containing GTPase activating protein), a highly conserved cytoplasmic scaffold protein) in Lec1 and Lec4 cells. In silico docking studies showed that the IQ domain of IQGAP1 interacts with the kinase domain of IGF-1R. The integrin signaling and insulin growth factor receptor signaling were also enriched according to GSEA analysis and pathway analysis of differentially expressed proteins. Significant reductions of phosphorylation of ERK1 and ERK2 in Lec1 and Lec4 cells were observed upon IGF-1R ligand (IGF-1 LR3) stimulation. IGF-1 LR3, known as Long arginine3-IGF-1, is a synthetic protein and lengthened analog of insulin-like growth factor 1. The work suggests a novel mechanism for the activation of IGF-1 dependent ERK signaling in CHO cells, wherein IQGAP1 plausibly functions as an IGF-1R-associated scaffold protein. Appropriate glycosylation by the enzymes MGAT1 and MGAT5 is thus essential for processing of cell surface receptor IGF-1R, a potential binding partner in IQGAP1 and ERK signaling, the integral components of the IGF pathway.
Collapse
|
20
|
CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain. Int J Mol Sci 2022; 23:ijms23168842. [PMID: 36012107 PMCID: PMC9408373 DOI: 10.3390/ijms23168842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The IQ motif-containing GTPase-activating protein (IQGAP) family composes of three highly-related and evolutionarily conserved paralogs (IQGAP1, IQGAP2 and IQGAP3), which fine tune as scaffolding proteins numerous fundamental cellular processes. IQGAP1 is described as an effector of CDC42, although its effector function yet re-mains unclear. Biophysical, biochemical and molecular dynamic simulation studies have proposed that IQGAP RASGAP-related domains (GRDs) bind to the switch regions and the insert helix of CDC42 in a GTP-dependent manner. Our kinetic and equilibrium studies have shown that IQGAP1 GRD binds, in contrast to its C-terminal 794 amino acids (called C794), CDC42 in a nucleotide-independent manner indicating a binding outside the switch regions. To resolve this discrepancy and move beyond the one-sided view of GRD, we carried out affinity measurements and a systematic mutational analysis of the interfacing residues between GRD and CDC42 based on the crystal structure of the IQGAP2 GRD-CDC42Q61L GTP complex. We determined a 100-fold lower affinity of the GRD1 of IQGAP1 and of GRD2 of IQGAP2 for CDC42 mGppNHp in comparison to C794/C795 proteins. Moreover, partial and major mutation of CDC42 switch regions substantially affected C794/C795 binding but only a little GRD1 and remarkably not at all the GRD2 binding. However, we clearly showed that GRD2 contributes to the overall affinity of C795 by using a 11 amino acid mutated GRD variant. Furthermore, the GRD1 binding to the CDC42 was abolished using specific point mutations within the insert helix of CDC42 clearly supporting the notion that CDC42 binding site(s) of IQGAP GRD lies outside the switch regions among others in the insert helix. Collectively, this study provides further evidence for a mechanistic framework model that is based on a multi-step binding process, in which IQGAP GRD might act as a ‘scaffolding domain’ by binding CDC42 irrespective of its nucleotide-bound forms, followed by other IQGAP domains downstream of GRD that act as an effector domain and is in charge for a GTP-dependent interaction with CDC42.
Collapse
|
21
|
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ Motif-Containing GTPase-Activating Proteins in Hepatocellular Carcinoma. Front Oncol 2022; 12:920652. [PMID: 35785216 PMCID: PMC9243542 DOI: 10.3389/fonc.2022.920652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role of IQGAPs in cancer initiation and progression has received increasing attention in recent years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor suppressor. This review details the three IQGAP isoforms and their respective structures. The expression and role of each protein in different liver diseases and mainly in HCC, as well as the underlying mechanisms, are also presented. This review also provides a reference for further studies on IQGAPs in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students “Jena School for Ageing Medicine (JSAM)”, Jena University Hospital, Jena, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- *Correspondence: Alexander Zipprich,
| |
Collapse
|
22
|
Zhang Z, Wei Y, Li X, Zhao R, Wang X, Yang Z, Li T, Wang X, Li X, Wang X. IQGAP1 enhances cell invasion and matrix metalloproteinase-2 expression through upregulating NF-κB activity in esophageal squamous cell carcinoma cells. Gene 2022; 824:146406. [PMID: 35276237 DOI: 10.1016/j.gene.2022.146406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one type of the most common malignancies, yet the overall survival rate is still not ideal. IQ motif containing GTPase activating protein 1 (IQGAP1) participates in cell biological functions of various tumors as an oncogene. However, the mechanisms of IQGAP1 affecting malignant development of ESCC are still unclear. In this study, the expression and correlation of IQGAP1 and MMP2 in esophageal cancer tissues were evaluated by online databases and immunohistochemistry. Stably transfected cell lines with IQGAP1 overexpression and knockdown were constructed. Cell growth, migration and invasion ability, the expression of MMP2 and NF-κB expression were examined in ESCC cells. Furthermore, the cellular malignant phenotypes of ESCC and MMP2 expression in IQGAP1 overexpressing cells after treatment with the NF-κB inhibitor pyrrolidinecarbodithioic acid (PDTC) or JSH-23 were detected. We found that the expression of IQGAP1 and MMP2 were up-regulated and positively correlated in ESCC tissues. IQGAP1 overexpression promoted the growth, migration and invasion of ESCC cells, and up-regulated the expression of MMP2, and increased the expression and the nuclear localization level of NF-κB. Treating with PDTC or JSH-23 reversed IQGAP1-mediated cell migration and invasion ability, as well as the expression of MMP2. In summary, IQGAP1 plays a tumor promotion role to regulate the migration and invasion of ESCC cells and the expression of MMP2 through upregulating NF-κB activity, supporting a promising therapeutic target against ESCC.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Yuan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xinting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Ziyi Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xuewei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xiaozhong Li
- Department of Infection, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
23
|
Liu A, Manuel AM, Dai Y, Zhao Z. Prioritization of risk genes in multiple sclerosis by a refined Bayesian framework followed by tissue-specificity and cell type feature assessment. BMC Genomics 2022; 23:362. [PMID: 35545758 PMCID: PMC9092676 DOI: 10.1186/s12864-022-08580-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating immune-mediated disease of the central nervous system that affects over 2 million people worldwide, resulting in a heavy burden to families and entire communities. Understanding the genetic basis underlying MS could help decipher the pathogenesis and shed light on MS treatment. We refined a recently developed Bayesian framework, Integrative Risk Gene Selector (iRIGS), to prioritize risk genes associated with MS by integrating the summary statistics from the largest GWAS to date (n = 115,803), various genomic features, and gene-gene closeness. RESULTS We identified 163 MS-associated prioritized risk genes (MS-PRGenes) through the Bayesian framework. We replicated 35 MS-PRGenes through two-sample Mendelian randomization (2SMR) approach by integrating data from GWAS and Genotype-Tissue Expression (GTEx) expression quantitative trait loci (eQTL) of 19 tissues. We demonstrated that MS-PRGenes had more substantial deleterious effects and disease risk. Moreover, single-cell enrichment analysis indicated MS-PRGenes were more enriched in activated macrophages and microglia macrophages than non-activated ones in control samples. Biological and drug enrichment analyses highlighted inflammatory signaling pathways. CONCLUSIONS In summary, we predicted and validated a high-confidence MS risk gene set from diverse genomic, epigenomic, eQTL, single-cell, and drug data. The MS-PRGenes could further serve as a benchmark of MS GWAS risk genes for future validation or genetic studies.
Collapse
Affiliation(s)
- Andi Liu
- grid.267308.80000 0000 9206 2401Department of Epidemiology, School of Public Health, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Astrid M. Manuel
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yulin Dai
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Zhongming Zhao
- grid.267308.80000 0000 9206 2401Department of Epidemiology, School of Public Health, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
24
|
González-Fernández R, González-Nicolás MÁ, Morales M, Ávila J, Lázaro A, Martín-Vasallo P. FKBP51, AmotL2 and IQGAP1 Involvement in Cilastatin Prevention of Cisplatin-Induced Tubular Nephrotoxicity in Rats. Cells 2022; 11:cells11091585. [PMID: 35563891 PMCID: PMC9099571 DOI: 10.3390/cells11091585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
The immunophilin FKBP51, the angiomotin AmotL2, and the scaffoldin IQGAP1 are overexpressed in many types of cancer, with the highest increase in leucocytes from patients undergoing oxaliplatin chemotherapy. Inflammation is involved in the pathogenesis of nephrotoxicity induced by platinum analogs. Cilastatin prevents renal damage caused by cisplatin. This functional and confocal microscopy study shows the renal focal-segmental expression of TNFα after cisplatin administration in rats, predominantly of tubular localization and mostly prevented by co-administration of cilastatin. FKBP51, AmotL2 and IQGAP1 protein expression increases slightly with cilastatin administration and to a much higher extent with cisplatin, in a cellular- and subcellular-specific manner. Kidney tubule cells expressing FKBP51 show either very low or no expression of TNFα, while cells expressing TNFα have low levels of FKBP51. AmotL2 and TNFα seem to colocalize and their expression is increased in tubular cells. IQGAP1 fluorescence increases with cilastatin, cisplatin and joint cilastatin-cisplatin treatment, and does not correlate with TNFα expression or localization. These data suggest a role for FKBP51, AmotL2 and IQGAP1 in cisplatin toxicity in kidney tubules and in the protective effect of cilastatin through inhibition of dehydropeptidase-I.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Manuel Morales
- Department of Medical Oncology, Nuestra Señora de Candelaria University Hospital, 38010 Santa Cruz de Tenerife, Spain;
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (A.L.); (P.M.-V.); Tel.: +34-922-318358 (P.M.-V.)
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
- Correspondence: (A.L.); (P.M.-V.); Tel.: +34-922-318358 (P.M.-V.)
| |
Collapse
|
25
|
Huang X, Zhao L, Jin Y, Wang Z, Li T, Xu H, Wang Q, Wang L. Up-Regulated MISP Is Associated With Poor Prognosis and Immune Infiltration in Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:827051. [PMID: 35433491 PMCID: PMC9005831 DOI: 10.3389/fonc.2022.827051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a poor prognosis. More effective biomarkers and treatment options remain to be discovered. Mitotic Spindle Positioning (MISP), also called C19orf21, has been reported to be upregulated in several malignancies. However, the effects of MISP on PDAC have yet to be investigated. Materials and Methods The differential expression of MISP at the mRNA and protein levels were evaluated using Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) databases, and was further verified by quantitative real-time PCR and western blotting in PDAC cell lines. Correlations between MISP expression and clinical characteristics were explored using Kaplan-Meier Plotter Database and clinical data from The Cancer Genome Atlas (TCGA). CCK-8 assays, Transwell assays, and immunoblotting were used to determine the role of MISP in PDAC proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were executed by the R package ‘clusterProfiler’. Correlations between MISP expression and immune cell infiltration, immune checkpoints, immunophenoscore (IPS) and the tumor mutational burden (TMB) in PDAC were explored using the R package ‘CIBERSORT’, the Tumor Immune Estimation Resource 2.0 (TIMER2.0), and The Cancer Immunome Atlas (TCIA) database based on TCGA data. Result MISP expression was significantly higher in pancreatic cancer tissues compared to normal pancreas tissues, which was associated with a poor prognosis. Increased expression of MISP was related to the proliferation, migration and invasion of PDAC cell lines. GO and KEGG pathway analyses determined that MISP is involved in the Ras signaling pathway and immune regulation. Higher expression of MISP was associated with decreased infiltration levels of activated CD4+ memory T cells, CD8+ T cells, M2 macrophages and neutrophils. Furthermore, increased MISP was associated with lower expression of immune checkpoint molecules, higher gene mutation burden and IPS. Conclusions This study reveals that MISP, which is associated with the progression and prognosis of PDAC, may exert a potential regulatory effect on immune infiltration and predict the response to immunotherapy in PDAC.
Collapse
Affiliation(s)
- Xinyang Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangchao Zhao
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixun Jin
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoxin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Li
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
27
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
28
|
NEAT1 in bone marrow mesenchymal stem cell-derived extracellular vesicles promotes melanoma by inducing M2 macrophage polarization. Cancer Gene Ther 2022; 29:1228-1239. [PMID: 35115683 DOI: 10.1038/s41417-021-00392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) reportedly play an important role in melanoma pathogenesis. This study aimed to explore the mechanisms of EVs-carried long non-coding RNA (lncRNA) NEAT1 involvement in melanoma. Gain- and loss-of-function experiments were performed to determine biological characteristics of A-375 melanoma cells. Bioinfomatic prediction, RNA immunoprecipitation (RIP), and dual luciferase reporter gene experiments were applied to investigate the roles of NEAT1 and microRNA-374a-5p (miR-374a-5p), and leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4). A subcutaneous tumor model was constructed using nude mice, and in vivo fluorescence imaging was used to observe the effect of NEAT1 on the growth and metastasis of melanoma cells in vivo. The results indicated that BMSC-EVs could be internalized by macrophages to promote the expression of macrophages M2 markers. M2 type macrophages promoted malignancy of melanoma cells. NEAT1 derived from BMSC-EVs promoted the progression of melanoma by promoting M2 polarization of macrophages. NEAT1 inhibits miR-374 expression, while miR-374 could upregulate LGR4-dependent IQGAP1 expression. The tumor-inhibiting effect of NEAT1 silencing was validated in the nude mouse xenograft model. Collectively, the results demonstrated that BMSC-EVs carrying NEAT1 can promote the progression of melanoma by inducing M2 polarization of macrophages, and thus may be considered as a potential target for melanoma therapeutics.
Collapse
|
29
|
Rotoli D, Díaz-Flores L, Gutiérrez R, Morales M, Ávila J, Martín-Vasallo P. AmotL2, IQGAP1, and FKBP51 Scaffold Proteins in Glioblastoma Stem Cell Niches. J Histochem Cytochem 2022; 70:9-16. [PMID: 34165350 PMCID: PMC8721575 DOI: 10.1369/00221554211025480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioma stem cells (GSCs) live in a continuous process of stemness reprogramming to achieve specific cell commitment within the so-called GSC niches, specifically located in periarteriolar regions. In this review, we analyze the expression levels, cellular and subcellular location, and role of three scaffold proteins (IQGAP1, FKBP51, and AmotL2) in GSC niches. Scaffold proteins contribute to cell differentiation, migration, and angiogenesis in glioblastoma. It could be of diagnostic interest for establishing stages, for therapeutic targets, and for improving glioblastoma prognosis, which is still at the experimental level.
Collapse
Affiliation(s)
- Deborah Rotoli
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Istituto per l’Endocrinologia e l’Oncologia Gaetano Salvatore, Naples, Italy
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Pablo Martín-Vasallo, UD Bioquímica y Biología Molecular, Universidad de La Laguna, Av/Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain. E-mail:
| |
Collapse
|
30
|
Mosaddeghzadeh N, Nouri K, Krumbach OHF, Amin E, Dvorsky R, Ahmadian MR. Selectivity Determinants of RHO GTPase Binding to IQGAPs. Int J Mol Sci 2021; 22:12596. [PMID: 34830479 PMCID: PMC8625570 DOI: 10.3390/ijms222212596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) modulate a wide range of cellular processes by acting as scaffolds and driving protein components into distinct signaling networks. Their functional states have been proposed to be controlled by members of the RHO family of GTPases, among other regulators. In this study, we show that IQGAP1 and IQGAP2 can associate with CDC42 and RAC1-like proteins but not with RIF, RHOD, or RHO-like proteins, including RHOA. This seems to be based on the distribution of charged surface residues, which varies significantly among RHO GTPases despite their high sequence homology. Although effector proteins bind first to the highly flexible switch regions of RHO GTPases, additional contacts outside are required for effector activation. Sequence alignment and structural, mutational, and competitive biochemical analyses revealed that RHO GTPases possess paralog-specific residues outside the two highly conserved switch regions that essentially determine the selectivity of RHO GTPase binding to IQGAPs. Amino acid substitution of these specific residues in RHOA to the corresponding residues in RAC1 resulted in RHOA association with IQGAP1. Thus, electrostatics most likely plays a decisive role in these interactions.
Collapse
Affiliation(s)
- Niloufar Mosaddeghzadeh
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| | - Kazem Nouri
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Oliver H. F. Krumbach
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| | - Ehsan Amin
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
- Medical Faculty, Institute of Neural and Sensory Physiology, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Radovan Dvorsky
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| | - Mohammad R. Ahmadian
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| |
Collapse
|
31
|
Electrostatic Forces Mediate the Specificity of RHO GTPase-GDI Interactions. Int J Mol Sci 2021; 22:ijms222212493. [PMID: 34830380 PMCID: PMC8622166 DOI: 10.3390/ijms222212493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.
Collapse
|
32
|
Hoeprich GJ, Sinclair AN, Shekhar S, Goode BL. Single-molecule imaging of IQGAP1 regulating actin filament dynamics. Mol Biol Cell 2021; 33:ar2. [PMID: 34731043 PMCID: PMC8886817 DOI: 10.1091/mbc.e21-04-0211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
IQGAP is a conserved family of actin-binding proteins with essential roles in cell motility, cytokinesis, and cell adhesion, yet there remains a limited understanding of how IQGAP proteins directly influence actin filament dynamics. To close this gap, we used single-molecule and single-filament total internal reflection fluorescence microscopy to observe IQGAP regulating actin dynamics in real time. To our knowledge, this is the first study to do so. Our results demonstrate that full-length human IQGAP1 forms dimers that stably bind to actin filament sides and transiently cap barbed ends. These interactions organize filaments into thin bundles, suppress barbed end growth, and inhibit filament disassembly. Surprisingly, each activity depends on distinct combinations of IQGAP1 domains and/or dimerization, suggesting that different mechanisms underlie each functional effect on actin. These observations have important implications for how IQGAP functions as an actin regulator in vivo and how it may be regulated in different biological settings.
Collapse
Affiliation(s)
- Gregory J Hoeprich
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Amy N Sinclair
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Shashank Shekhar
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA.,Present address: Departments of Physics and Cell Biology, Emory University, Atlanta, GA 30322
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
33
|
Regulation of Rac1 Activation in Choroidal Endothelial Cells: Insights into Mechanisms in Age-Related Macular Degeneration. Cells 2021; 10:cells10092414. [PMID: 34572063 PMCID: PMC8469925 DOI: 10.3390/cells10092414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide. Vision loss from the neovascular form is associated with the invasion of choroidal endothelial cells into the neural retina to form vision-threatening macular neovascularization (MNV). Anti-angiogenic agents are the current standard of care but are effective in only ~50% of AMD cases. The molecular mechanisms involved in invasive MNV point to the importance of regulating signaling pathways that lead to pathologic biologic outcomes. In studies testing the effects of AMD-related stresses, activation of the Rho GTPase, Rac1, was found to be important for the choroidal endothelial cell invasion into the neural retina. However, current approaches to prevent Rac1 activation are inefficient and less effective. We summarize active Rac1-mediated mechanisms that regulate choroidal endothelial cell migration. Specifically, we discuss our work regarding the role of a multidomain protein, IQ motif containing GTPase activating protein 1 (IQGAP1), in sustaining pathologic Rac1 activation and a mechanism by which active Rap1, a Ras-like GTPase, may prevent active Rac1-mediated choroidal endothelial cell migration.
Collapse
|
34
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
35
|
Zhang N, Wang G, Sun G. Actin-binding protein, IQGAP1, regulates LPS-induced RPMVECs hyperpermeability and ICAM-1 upregulation via Rap1/Src signalling pathway. Cell Signal 2021; 85:110067. [PMID: 34147590 DOI: 10.1016/j.cellsig.2021.110067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
Pulmonary microvascular barrier dysfunction is a hallmark feature of acute lung injury (ALI). IQGAP1 is a ubiquitously expressed scaffolding protein known to regulate cancer metastasis, angiogenesis, and barrier stability. However, the function of IQGAP1 in lipopolysaccharide (LPS)-induced microvascular endothelial hyperpermeability remains poorly understood. In the present study, we demonstrated that IQGAP1 was markedly upregulated in LPS-induced ALI models and rat pulmonary microvascular endothelial cells (RPMVECs). Lentivirus-mediated knockdown of IQGAP1 significantly attenuated the formation of actin stress fibers, phosphorylation of myosin light chain (MLC), and disruption of VE-cadherin, thereby protecting the RPMVECs barrier failure from LPS damage. In addition, IQGAP1 depletion reduced the reactive oxygen species (ROS)-mediated increase in intracellular adhesion molecule-1 (ICAM-1) in RPMVECs stimulated with LPS. Mechanistically, we found that the upregulation of IQGAP1 affected the activity of Rap1 and the downstream phosphorylation of Src. In conclusion, these findings reveal an essential mechanism by which increased IQGAP1 in LPS-treated RPMVECs promotes barrier dysfunction and ICAM-1 upregulation, at least in part by regulating Rap1/Src signalling, indicating that IQGAP1 may be a potential therapeutic target to prevent endothelial hyperpermeability and inflammation in ALI.
Collapse
Affiliation(s)
- Na Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.
| |
Collapse
|
36
|
Yang J, Xu C, Wu M, Wu Y, Jia X, Zhou C, Zhang X, Ge S, Li Z, Zhang L. MicroRNA-124 inhibits hepatic stellate cells inflammatory cytokines secretion by targeting IQGAP1 through NF-κB pathway. Int Immunopharmacol 2021; 95:107520. [PMID: 33743313 DOI: 10.1016/j.intimp.2021.107520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is a health concern that leads to organ failure mediated via production of inflammatory cytokines and fibrotic biomarkers. To date, there was no direct approved antifibrotic therapy, and current treatment was mainly the removal of the causative factor. Recent studies demonstrated that aberrant expression of miR-124 was involved in the progression of various liver diseases including hepatocellular carcinoma (HCC). However, whether miR-124 could function as a transcriptional regulator in the inflammatory cytokines secretion of liver fibrosis remains unclear. In this study, we demonstrated that the expression of miR-124 was downregulated in liver fibrosis tissues and TNF-α-induced LX-2 cells, concomitant with the upregulated expression of IQGAP1, suggesting that miR-124 and IQGAP1 might be associated with the development of inflammation in liver fibrosis. Therefore, we demonstrated that the overexpression of miR-124 and knockdown of IQGAP1 could lead to the downregulation of TNF-α, IL-1β and IL-6. While knockdown of miR-124 or overexpression of IQGAP1 showed reversed results. Moreover, dual luciferase reporter assays demonstrated that miR-124 specifically targeted the 3'-UTR of IQGAP1, and thus inhibited the expression of IQGAP1. Mechanistically, we found that the expression changes of miR-124 and IQGAP1 could be involved in inhibition or activation of NF-κB signaling pathway in response to TNF-α. In conclusion, these results indicated that miR-124 plays a crucial role in TNF-α-induced LX-2 cells via regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Changqing Xu
- The Third People's Hospital of Hefei (Hefei Third Clinical College of Anhui Medical University), Hefei, Anhui Province, China
| | - Maomao Wu
- Department of Pharmacy, Anhui Chest Hospital, Hefei, Anhui Province, China
| | - Ying Wu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaodi Jia
- Fujian Normal University, Fuzhou 350007, China
| | - Chang Zhou
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Xianzheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shenglin Ge
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Sabo Y, de Los Santos K, Goff SP. IQGAP1 Negatively Regulates HIV-1 Gag Trafficking and Virion Production. Cell Rep 2021; 30:4065-4081.e4. [PMID: 32209469 PMCID: PMC7199802 DOI: 10.1016/j.celrep.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
IQGAP1 is a master regulator of many cellular processes, including intracellular vesicle trafficking and endocytosis. We show that depletion of IQGAP1 in a variety of cell types increases the release of HIV-1 infectious virions and that overexpression diminishes virion production, with neither affecting the early stages of infection. IQGAP1 negatively regulates the steady-state levels of HIV-1 Gag at the plasma membrane, the site of assembly. We establish that IQGAP1 interacts with both the nucleocapsid and p6 domains of Gag, and interaction with either domain is sufficient for its regulatory function. Finally, we demonstrate that IQGAP1 regulation is independent of HIV-1 Gag “late-domains” sequences required by the virus to recruit the cellular ESCRT machinery. Thus, we provide evidence that IQGAP1 is a negative regulatory factor inhibiting efficient budding of HIV-1 by reducing Gag accumulation at the plasma membrane. IQGAP1 is a ubiquitously expressed master regulator of many cellular processes, including intracellular trafficking. Sabo et al. demonstrate that in a variety of cell types, IQGAP1 acts as a negative regulator of HIV-1 viral particle release by reducing accumulation of the Gag viral structural protein at the plasma membrane.
Collapse
Affiliation(s)
- Yosef Sabo
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Infectious Diseases, Columbia University, New York, NY 10032, USA
| | - Kenia de Los Santos
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Stephen P Goff
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
38
|
Zhang B, Cheng X, Zhan S, Jin X, Liu T. MIB1 upregulates IQGAP1 and promotes pancreatic cancer progression by inducing ST7 degradation. Mol Oncol 2021; 15:3062-3075. [PMID: 33793053 PMCID: PMC8564634 DOI: 10.1002/1878-0261.12955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Despite recent progress in cancer treatment, the prognosis of patients with pancreatic cancer still remains poor. Pancreatic tumors are reported to display high molecular heterogeneity. Elucidating the molecular mechanisms underlying pancreatic cancer progression is essential for improving patient treatment and survival. The overexpression of E3 ubiquitin ligase mind bomb 1 (MIB1) was previously described in pancreatic cancer cells, where it enhanced tumor cell proliferation. However, the role of MIB1 in pancreatic cancer progression remains elusive. In the present study, we confirmed that MIB1 expression is elevated in pancreatic cancer tissues and that high levels of MIB associate with unfavorable prognosis. Overexpression of MIB1 enhanced proliferation and invasion of pancreatic cancer cells both in vitro and in vivo. We further investigated the molecular mechanisms downstream of MIB1 and observed for the first time that MIB1 targets suppressor of tumorigenicity 7 protein (ST7), previously described as suppressor of tumorigenicity, for proteasomal degradation. Furthermore, we found that ST7 suppressed tumor growth by downregulating IQ motif containing GTPase activating protein 1 (IQGAP1) in pancreatic tumor cells. Thus, these data show that MIB1 promotes pancreatic cancer progression by inducing ST7 degradation followed by downregulation of IQGAP1 in pancreatic cancer cells. In conclusion, our research shows that the MIB1/ST7/IQGAP1 axis is essential for pancreatic cancer progression, and MIB1 inhibition may serve as a novel therapeutic strategy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sudong Zhan
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Zhang B, Xiao J, Cheng X, Liu T. MAL2 interacts with IQGAP1 to promote pancreatic cancer progression by increasing ERK1/2 phosphorylation. Biochem Biophys Res Commun 2021; 554:63-70. [PMID: 33780861 DOI: 10.1016/j.bbrc.2021.02.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a digestive tract malignancy characterized by an occult onset and rapid progression. The genetic heterogeneity of pancreatic cancer is closely related to its highly malignant biological behavior. The myelin and lymphocyte protein 2 (MAL2) is upregulated in multiple cancers at the transcriptional level. However, the exact role of MAL2 in pancreatic cancer remains elusive. In this study, we demonstrated that MAL2 protein and mRNA levels were upregulated in pancreatic cancer. MAL2 overexpression was significantly associated with poor prognosis in patients with pancreatic cancer. We further showed that MAL2 interacted with IQGAP1 to increase ERK1/2 phosphorylation levels, which promoted pancreatic cancer progression. Therefore, these results suggest that MAL2 could be a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Xiao
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Cheng
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
40
|
Lim C, Berk JM, Blaise A, Bircher J, Koleske AJ, Hochstrasser M, Xiong Y. Crystal structure of a guanine nucleotide exchange factor encoded by the scrub typhus pathogen Orientia tsutsugamushi. Proc Natl Acad Sci U S A 2020; 117:30380-30390. [PMID: 33184172 PMCID: PMC7720168 DOI: 10.1073/pnas.2018163117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacterium Orientia tsutsugamushi A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho GTPases Rac1 and Cdc42. We discovered a domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEF alone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a unique topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEF alone alters cell morphology. Cumulatively, this work reveals a bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to induce changes in cytoskeletal structure.
Collapse
Affiliation(s)
- Christopher Lim
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Jason M Berk
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Alyssa Blaise
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Josie Bircher
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Anthony J Koleske
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Yong Xiong
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
41
|
Malarkannan S. Molecular mechanisms of FasL-mediated 'reverse-signaling'. Mol Immunol 2020; 127:31-37. [PMID: 32905906 DOI: 10.1016/j.molimm.2020.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Effector lymphocytes, including NK and T cells, express FasL. Expression of Fas, the receptor for FasL in tumor cells, renders them susceptible to NK and T cell-mediated killing. The functional relevance of FasL in initiating death signals in tumor cells is well-characterized. However, the cytoplasmic interacting partners and the potential signaling pathways downstream of FasL are far from fully defined. FasL possesses an 81 amino acid long cytoplasmic tail with multiple unique recruitment motifs. We predict multiple interdependent signaling complexes form the core of the 'reverse signaling' downstream of FasL. A direct interaction between the proline-rich domain of FasL and the SH3 domain of PI(3)K-p85α initiates the first pathway. This cascade helps FasL to link to PLC-γ2 via PIP3 or the Akt-dependent activation of mTOR complexes. Independently, a GRB2/GADs-binding PXXP cytoplasmic motif of FasL can initiate a Ras-GTP-dependent PAK1→C-Raf→MEK1/2→ERK1/2 activation. FasL can recruit Fyn via the proline-rich domain leading to the recruitment of ADAP. Through its ability to directly interact with Carma1 and TAK1, ADAP initiates the formation of the Carma1/Bcl10/Malt1-based CBM signalosome that is primarily responsible for inflammatory cytokine production. Here, we explore the conserved cytoplasmic domains of FasL, the potential signaling molecules that interact, and the functional downstream consequences within the effector lymphocytes to define the FasL-mediated 'reverse signaling'.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
42
|
Hill TW, Wendt KE, Jones DA, Williamson MH, Ugwu UJ, Rowland LB, Jackson-Hayes L. The Aspergillus nidulans IQGAP orthologue SepG is required for constriction of the contractile actomyosin ring. Fungal Genet Biol 2020; 144:103439. [PMID: 32768603 DOI: 10.1016/j.fgb.2020.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
In this research we report that the sepG1 mutation in Aspergillus nidulans resides in gene AN9463, which is predicted to encode an IQGAP orthologue. The genetic lesion is predicted to result in a G-to-R substitution at residue 1637 of the 1737-residue protein in a highly conserved region of the RasGAP-C-terminal (RGCT) domain. When grown at restrictive temperature, strains expressing the sepGG1637R (sepG1) allele are aseptate, with reduced colony growth and aberrantly formed conidiophores. The aseptate condition can be replicated by deletion of AN9463 or by downregulating its expression via introduced promoters. The mutation does not prevent assembly of a cortical contractile actomyosin ring (CAR) at putative septation sites, but tight compaction of the rings is impaired and the rings fail to constrict. Both GFP::SepG wild type and the GFP-tagged product of the sepG1 allele localize to the CAR at both permissive and restrictive temperatures. Downregulation of myoB (encoding the A. nidulans type-II myosin heavy chain) does not prevent formation of SepG rings at septation sites, but filamentous actin is required for CAR localization of SepG and MyoB. We identify fourteen probable IQ-motifs (EF-hand protein binding sites) in the predicted SepG sequence. Two of the A. nidulans EF-hand proteins, myosin essential light chain (AnCdc4) and myosin regulatory light chain (MrlC), colocalize with SepG and MyoB at all stages of CAR formation and constriction. However, calmodulin (CamA) appears at septation sites only after the CAR has become fully compacted. When expression of sepG is downregulated, leaving MyoB as the sole IQ-motif protein in the pre-compaction CAR, both MrlC and AnCdc4 continue to associate with the forming CAR. When myoB expression is downregulated, leaving SepG as the sole IQ-motif protein in the CAR, AnCdc4 association with the forming CAR continues but MrlC fails to associate. This supports a model in which the IQ motifs of MyoB bind both MrlC and AnCdc4, while the IQ motifs of SepG bind only AnCdc4. Downregulation of either mrlC or Ancdc4 results in an aseptate phenotype, but has no effect on association of either SepG or MyoB with the CAR.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA.
| | - Kristen E Wendt
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - David A Jones
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - McLean H Williamson
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Uchenna J Ugwu
- Division of Natural & Mathematic Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA
| | - Lauren B Rowland
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Loretta Jackson-Hayes
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
43
|
Grabowska W, Achtabowska N, Klejman A, Skowronek K, Calka M, Bielak-Zmijewska A. IQGAP1-dysfunction leads to induction of senescence in human vascular smooth muscle cells. Mech Ageing Dev 2020; 190:111295. [PMID: 32592713 DOI: 10.1016/j.mad.2020.111295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
Cell senescence - an irreversible proliferation arrest - is one of the possible cellular responses to stress. There is a vast variety of stimuli, extrinsic and intrinsic, known to induce senescence, and several molecular pathways involved in the process; yet much still remains to be explained. Senescent cells can communicate with neighboring cells through secreted factors such as cytokines and chemokines. Several years ago it was shown that cells can also communicate in a more direct manner by an exchange of proteins via cellular bridges (CBs). Recent studies show that in senescent cells the intensity of such transfer increases. The research also revealed that Cdc42 and actin polymerization are indispensable for this process to occur. Here, we evaluate the hypothesis that, apart from actin and Cdc42, also IQGAP1 could be involved in direct intercellular communication. Our results showed that direct transfer occurred preferentially between senescent cells and that IQGAP1 was not essential for this process. Interestingly, cells harboring mutated IQGAP1 had altered morphology and were characterized by decreased proliferation, increased time of division and appearance of some senescence markers (increased activity of senescence-associated β-galactosidase and induction of senescence-associated secretory phenotype). Our findings suggest that IQGAP1 dysfunction can induce senescence.
Collapse
Affiliation(s)
- Wioleta Grabowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Natalia Achtabowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland; Warsaw University of Technology, Faculty of Chemistry, Poland
| | - Agata Klejman
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Krzysztof Skowronek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland; International Institute of Molecular and Cell Biology in Warsaw, Core Facility, Poland
| | - Malgorzata Calka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
44
|
Kosol S, Contreras-Martos S, Piai A, Varadi M, Lazar T, Bekesi A, Lebrun P, Felli IC, Pierattelli R, Tompa P. Interaction between the scaffold proteins CBP by IQGAP1 provides an interface between gene expression and cytoskeletal activity. Sci Rep 2020; 10:5753. [PMID: 32238831 PMCID: PMC7113243 DOI: 10.1038/s41598-020-62069-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
Crosstalk between cellular pathways is often mediated through scaffold proteins that function as platforms for the assembly of signaling complexes. Based on yeast two-hybrid analysis, we report here the interaction between two complex scaffold proteins, CREB-binding protein (CBP) and the Ras GTPase-activating-like protein 1 (IQGAP1). Dissection of the interaction between the two proteins reveals that the central, thus far uncharacterized, region of IQGAP1 interacts with the HAT domain and the C-terminal intrinsically disordered region of CBP (termed ID5). Structural analysis of ID5 by solution NMR spectroscopy and SAXS reveals the presence of two regions with pronounced helical propensity. The ID5 region(s) involved in the interaction of nanomolar affinity were delineated by solution NMR titrations and pull-down assays. Moreover, we found that IQGAP1 acts as an inhibitor of the histone acetyltransferase (HAT) activity of CBP. In in vitro assays, the CBP-binding region of IQGAP1 positively and negatively regulates the function of HAT proteins of different families including CBP, KAT5 and PCAF. As many signaling pathways converge on CBP and IQGAP1, their interaction provides an interface between transcription regulation and the coordination of cytoskeleton. Disruption or alteration of the interaction between these scaffold proteins may lead to cancer development or metastatic processes, highlighting the importance of this interaction.
Collapse
Affiliation(s)
- Simone Kosol
- VIB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sara Contreras-Martos
- VIB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alessandro Piai
- Magnetic Resonance Center, University of Florence, Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Mihaly Varadi
- VIB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Tamas Lazar
- VIB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Angela Bekesi
- VIB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre Lebrun
- VIB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Isabella C Felli
- Magnetic Resonance Center, University of Florence, Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Roberta Pierattelli
- Magnetic Resonance Center, University of Florence, Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Peter Tompa
- VIB Center for Structural Biology (CSB), Brussels, Belgium.
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
45
|
Gong CC, Li TT, Pei DS. PAK6: a potential anti-cancer target. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Dong-Sheng Pei
- Xuzhou Medical University, China; Xuzhou Medical University, China
| |
Collapse
|
46
|
Characterization of pUL5, an HCMV protein interacting with the cellular protein IQGAP1. Virology 2019; 540:57-65. [PMID: 31739185 DOI: 10.1016/j.virol.2019.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023]
Abstract
Among the Herpesviridae, human cytomegalovirus (HCMV) owns the largest genome and displays a huge coding potential. Here, we characterized the UL5 gene product (pUL5) of the clinical isolate TR strain. The protein was predicted as a 166-amino-acid membrane protein with a theoretical mass of 19 kDa. Recombinant virus expressing pUL5 with a tag allowed the identification of two pUL5 non-glycosylated species of approximately 19 and 9 kDa, expressed with early and late kinetic respectively. Experiments in infection confirmed that the lower molecular weight species was translated from an internal ATG in the UL5 open reading frame. Confocal microscopy analysis showed that pUL5 localized within the assembly compartment, but is not incorporated in the virion, as shown by Western blot on purified viral particles. Finally, pull-down experiments coupled with mass spectrometry analysis identified IQGAP1 as a pUL5 interactor, giving new hints on possible roles of pUL5 during HCMV infection.
Collapse
|
47
|
Sullivan DP, Dalal PJ, Jaulin F, Sacks DB, Kreitzer G, Muller WA. Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. J Exp Med 2019; 216:2582-2601. [PMID: 31395618 PMCID: PMC6829592 DOI: 10.1084/jem.20190008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
The function of endothelial cell IQGAP1 during diapedesis requires its actin-binding domain and IQ motifs to recruit the lateral border recycling compartment. Genetic ablation of endothelial cell IQGAP1 expression in vivo causes significant disruption of diapedesis in two models of inflammation. Transendothelial migration (TEM) of leukocytes across the endothelium is critical for inflammation. In the endothelium, TEM requires the coordination of membrane movements and cytoskeletal interactions, including, prominently, recruitment of the lateral border recycling compartment (LBRC). The scaffold protein IQGAP1 was recently identified in a screen for LBRC-interacting proteins. Knockdown of endothelial IQGAP1 disrupted the directed movement of the LBRC and substantially reduced leukocyte TEM. Expression of truncated IQGAP1 constructs demonstrated that the calponin homology domain is required for IQGAP1 localization to endothelial borders and that the IQ domain, on the same IQGAP1 polypeptide, is required for its function in TEM. This is the first reported function of IQGAP1 requiring two domains to be present on the same polypeptide. Additionally, we show for the first time that IQGAP1 in the endothelium is required for efficient TEM in vivo. These findings reveal a novel function for IQGAP1 and demonstrate that IQGAP1 in endothelial cells facilitates TEM by directing the LBRC to the site of TEM.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Prarthana J Dalal
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Geri Kreitzer
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, The City College of New York, New York, NY
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
48
|
Rotoli D, Morales M, Maeso MDC, Ávila J, Pérez-Rodríguez ND, Mobasheri A, van Noorden CJF, Martín-Vasallo P. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem 2019; 67:481-494. [PMID: 30794467 DOI: 10.1369/0022155419833334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GB) is the most frequently occurring and aggressive primary brain tumor. Glioma stem cells (GSCs) and astrocytoma cells are the predominant malignant cells occurring in GB besides a highly heterogeneous population of migrating, neovascularizing and infiltrating myeloid cells that forms a complex tumor microenvironment (TME). Cross talk between the TME cells is pivotal in the biology of this tumor and, consequently, adaptor proteins at critical junctions of signaling pathways may be crucial. Scaffold proteins (scaffolins or scaffoldins) integrate external and internal stimuli to regulate various signaling pathways, interacting simultaneously with multiple proteins involved. We investigated by double and triple immunofluorescence the localization of IQGAP1, AmotL2, and FKBP51, three closely related scaffoldins, in malignant cells and TME of human GB tumors. We found that IQGAP1 is preferentially expressed in astrocytoma cells, AmotL2 in GSCs, and FKBP51 in white blood cells in human GB tumors. As GSCs are specially the target for novel therapies, we will investigate in further studies whether AmotL2 inhibition is effective in the treatment of GB.
Collapse
Affiliation(s)
- Deborah Rotoli
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale Gaetano Salvatore, Naples, Italy.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain
| | - Manuel Morales
- Oncología Médica.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain.,Oncología Médica, Hospiten Rambla, Santa Cruz, Spain
| | - María-Del-C Maeso
- Servicio de Anatomía Patológica.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain
| | - Julio Ávila
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pablo Martín-Vasallo
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
49
|
Fan J, Zhang W, Wu Y, Wan P, Guo Q, Zhang Y. miR‑124 inhibits cell growth through targeting IQGAP1 in colorectal cancer. Mol Med Rep 2018; 18:5270-5278. [PMID: 30272357 DOI: 10.3892/mmr.2018.9518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/31/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/miR)-124 is a miRNA, which exerts tumor suppressive effects but is frequently absent in tumors. Although it has been validated to target oncogenic genes such as signal transducer and activator of transcription 3, forkhead box Q1, and Slug, the mechanistic link between miR‑124 and potential target genes that contribute to tumor progression, is yet to be investigated. IQ motif containing GTPase activating protein 1 (IQGAP1) is a scaffold protein that participates in protein‑protein interactions and integrating diverse signaling pathways. Previous studies suggest that overexpression of IQGAP1 enhances activity of mitogen activated protein kinase 1 and β‑catenin signaling cascades to facilitate tumor progression. The present study aimed to identify the regulative link between miR‑124 and IQGAP1 in colorectal cancer (CRC). It was demonstrated that IQGAP1 was aberrantly overexpressed in CRC tissues and cell lines. Knockdown of IQGPA1 by introducing short hairpin‑IQGAP1 lentivirus inhibited CRC cell growth and colony formation ability, and simultaneously suppressed phosphorylation of extracellular signal‑regulated kinase (ERK)1/2 and β‑catenin expression. Furthermore, it was demonstrated that miR‑124 was silenced in CRC. Restoration of miR‑124 in CRC cells impeded cell growth and colony formation ability. The direct binding of miR‑124 to the 3'untranslated region of IQGAP1 mRNA was confirmed using a luciferase reporter gene assay. Importantly, downregulation of IQGAP1 expression was observed in miR‑124‑restoration cells with simultaneous reduction of phosphorylated‑ERK1/2 and β‑catenin. In conclusion, the present study describes a potential mechanism underlying the miR‑124/IQGAP1 link in CRC progression. Silencing of miR‑124 may depress IQGAP1 expression, leading to increased activity of ERK1/2 and β‑catenin signaling.
Collapse
Affiliation(s)
- Jianyu Fan
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Wenjing Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yanting Wu
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Ping Wan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
50
|
Wu CC, Li H, Xiao Y, Yang LL, Chen L, Deng WW, Wu L, Zhang WF, Sun ZJ. Over-expression of IQGAP1 indicates poor prognosis in head and neck squamous cell carcinoma. J Mol Histol 2018; 49:389-398. [DOI: 10.1007/s10735-018-9779-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
|