1
|
Zeng Y, Jiang R, Deng J, Cheng D, Wang W, Ye J, He C, Zhang C, Zhang H, Zheng H. Characterization of MKK family genes and their responses to temperature stress and Vibrio parahaemolyticus infection in noble scallop Chlamys nobilis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106695. [PMID: 39205359 DOI: 10.1016/j.marenvres.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mitogen-activated protein kinase kinase (MKK), the key element of the Mitogen-activated protein kinase (MAPK) signaling pathway, is crucial for the immune response to adverse environments in aquatic animals. Nevertheless, there is limited information regarding the role of the MKK gene family in mollusks. In our study, genome data and transcriptome were used to identify four MKK genes (CnMKK4, CnMKK5, CnMKK6, and CnMKK7) in the noble scallop. The result of the gene structure, motif analysis, and phylogenetic tree revealed that MKK genes are relatively conserved in bivalves. Moreover, four CnMKK genes were significantly highly expressed in immune-related tissues, suggesting that CnMKKs may related to bivalve immunity. Furthermore, CnMKK6 and CgMKK4 were significantly differentially expressed (P < 0.05) under 24 h of temperature stress, and all CnMKKs were significantly differentially expressed (P < 0.05) under 24 h of Vibrio parahaemolyticus infection. These results showed that the CnMKKs may have a significant impact under biotic and abiotic stresses. In conclusion, the result of the CnMKKs provides valuable insights into comprehending the function of MKK genes in mollusks.
Collapse
Affiliation(s)
- Yetao Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Ruolin Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jingwen Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Dewei Cheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Beihai, 536009, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jianming Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Cheng He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Chuanxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| |
Collapse
|
2
|
Zhang X, Shen G, Guo Y, Zhang X, Zhao Y, Li W, Wang Q, Zhao Y. Genome-wide identification and analysis of the MAPKK gene family in Chinese mitten crab (Eriocheir sinensis) and its response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109132. [PMID: 37797870 DOI: 10.1016/j.fsi.2023.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Protein kinases of the MAPK cascade family (MAPKKK-MAPKK-MAPK) play an important role in the growth and development of organisms and their response to environmental stress. The MAPKK gene families in the Chinese mitten crab Eriocheir sinensis have never been systematically analyzed. We identified four MAPKK family genes, EsMEK, EsMAPKK4, EsMAPKK6, and EsMAPKK7, in E. sinensis and analyzed their molecular features and expression patterns. All four MAPKK genes are composed of multiple exons and introns, all have a conserved domain, and all have 10 conserved motifs (except EsMEK and EsMAPKK7 which are missing motif 10). The four MAPKK genes are on four different chromosomes and have no gene duplications, and the results of phylogenetic tree analysis indicate that the ESMAPKK gene family is highly conserved evolutionarily. The EsMAPKK genes were widely expressed in all the examined tissues with higher expression in hemocytes, hepatopancreas, and gills. Notably, EsMAPKK6 was also highly expressed in the ovary. Vibrio parahaemolyticus infection significantly increased the mRNA levels of the EsMAPKK genes in hemocytes. Further disruption of the EsMAPKK gene family expression affects the expression levels of multiple antimicrobial peptides in hemocytes. Our experimental results provide a starting point for a more in-depth study of the innate immunity functional roles of members of the MAPKK gene families in E. sinensis.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuehong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qun Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yunlong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Yin B, Wang H, Weng S, Li S, He J, Li C. A simple sequence repeats marker of disease resistance in shrimp Litopenaeus vannamei and its application in selective breeding. Front Genet 2023; 14:1144361. [PMID: 37576558 PMCID: PMC10415038 DOI: 10.3389/fgene.2023.1144361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 08/15/2023] Open
Abstract
The polymorphism of the simple sequence repeat (SSR) in the 5' untranslated coding region (5'-UTR) of the antiviral gene IRF (LvIRF) has been shown to be implicated in the resistance to viral pathogens in shrimp Litopenaeus vannamei (L. vannamei). In this study, we explored the potential of this (CT)n-SSR marker in disease resistance breeding and the hereditary property of disease resistance traits in offspring. From 2018 to 2021, eight populations were generated through crossbreeding by selecting individuals according to microsatellite genotyping. Our results demonstrated that shrimp with the shorter (CT)n repeat exhibited higher resistance to white spot syndrome virus (WSSV) or Decapod iridescent virus 1 (DIV1); meanwhile, these resistance traits could be inherited in offspring. Interestingly, we observed that the longer (CT)n repeats were associated with bacterial resistance traits. Accordingly, shrimp with longer (CT)n repeats exhibited higher tolerance to Vibrio parahaemolyticus infection. Taken together, these results indicate that the single (CT)n-SSR marker could be used to selective breeding for both resistance to virus and bacteria in shrimps.
Collapse
Affiliation(s)
- Bin Yin
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Haiyang Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd., Zhanjiang, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
4
|
Qu F, Li J, She Q, Zeng X, Li Z, Lin Q, Tang J, Yan Y, Lu J, Li Y, Li X. Identification and characterization of MKK6 and AP-1 in Anodonta woodiana reveal their potential roles in the host defense response against bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 124:261-272. [PMID: 35427776 DOI: 10.1016/j.fsi.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase kinase 6 (MKK6) and activator protein-1 (AP-1) are two of the essential regulatory proteins in the p38 mitogen-activated protein kinase (MAPK) pathway, which participates in the innate immune response to bacterial infections. In this study, molluscan MKK6 (AwMKK6) and AP-1 (AwAP-1) genes were cloned and identified from Anodonta woodiana. The open reading frame (ORF) of AwMKK6 encodes for a putative polypeptide sequence of 345 amino acids containing a conserved serine/threonine protein kinase (S_TKc) domain, a SVAKT motif and a DVD domain. AwAP-1 consists of 294 amino acids including a typical nuclear localization signal (NLS), a Jun domain and a basic region leucine zipper (BRLZ) domain. Quantitative real-time PCR analysis showed that both AwMKK6 and AwAP-1 were widely expressed in all selected tissues of A. woodiana and their transcript levels in hemocytes were significantly upregulated when challenged with Aeromonas hydrophila and lipopolysaccharide (LPS). Additionally, the signaling molecules of the AwMKK6/AwAP-1 pathway including AwTLR4, AwMyD88, AwTRAF6, AwMEKK1, AwMEKK4, AwASK1, AwTAK1 and Awp38 mRNA expression showed a stronger responsiveness to LPS challenge in hemocytes of A. woodiana. RNA interference (RNAi) experiments indicated that the silencing of AwMKK6 or AwAP-1 could decrease the mRNA expression levels of immune effectors (AwTNF, AwLYZ and AwDefense). Subcellular localization studies suggested that AwMKK6 and AwAP-1 were distributed throughout the cells and nucleus, respectively, and their overexpression could significantly enhance the transcriptional activities of AP-1-Luc in HEK293T cells. These findings suggest that MKK6 and AP-1 play a major role in the host defense response to bacterial injection, which may make contributions to a better understanding of the immune function of the p38 MAPK pathway in mollusks.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhenpeng Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qiang Lin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jie Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yuye Yan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jieming Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yumiao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xiaojie Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
5
|
Wang S, Li H, Chen R, Jiang X, He J, Li C. TAK1 confers antibacterial protection through mediating the activation of MAPK and NF-κB pathways in shrimp. FISH & SHELLFISH IMMUNOLOGY 2022; 123:248-256. [PMID: 35301113 DOI: 10.1016/j.fsi.2022.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
MAPK and NF-κB pathways are important components of innate immune system in multicellular animals. In some model organisms, the MAP3-kinase TGF-beta-activated kinase 1 (TAK1) have been shown to regulate both MAPK and NF-κB pathways activation to tailor immune responses to pathogens or infections. However, this process is not fully understood in shrimp. In this study, we investigated the effect of TAK1 on MAPK and NF-κB activation in shrimp Litopenaeus vannamei following Vibrio parahaemolyticus infection. We found that shrimp TAK1 could activate c-Jun and Relish, the transcription factors of MAPK pathway and NF-κB pathway, respectively. Specifically, over-expression of shrimp TAK1 was able to strongly induce the activities of both AP-1 and NF-κB reporters. TAK1 was shown to bind several MAP2-kinases, including MKK4, MKK6 and MKK7, and induced their phosphorylations, the hallmarks for MAPK pathways activation. TAK1 knockdown in vivo also inhibited the nuclear translocation of c-Jun and Relish during V. parahaemolyticus infection. Accordingly, ectopic expression of shrimp TAK1 in Drosophila S2 cells increased the cleavage of co-expressed shrimp Relish, and induced the promoter activity of Relish targeted gene Diptericin (Dpt). Furthermore, knockdown of c-Jun and Relish enhanced the sensitivity of shrimp to V. parahaemolyticus infection. These findings indicated that shrimp TAK1 conferred antibacterial protection through regulating the activation of both MAPK pathway and NF-κB pathway, and suggested that the TAK1-MAPK/NF-κB axis could be a potential therapeutic target for enhancing antibacterial responses in crustaceans.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Rongjian Chen
- Guangdong Hisenor Group Co., Ltd, Guangzhou, PR China
| | - Xiewu Jiang
- Guangdong Hisenor Group Co., Ltd, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China.
| |
Collapse
|
6
|
Aweya JJ, Zhuang K, Liu Y, Fan J, Yao D, Wang F, Chen X, Li S, Ma H, Zhang Y. The ARM repeat domain of hemocyanin interacts with MKK4 to modulate antimicrobial peptides expression. iScience 2022; 25:103958. [PMID: 35265821 PMCID: PMC8898971 DOI: 10.1016/j.isci.2022.103958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) intracellular signaling pathway mediates numerous biological processes, including antimicrobial immune response by inducing antimicrobial peptides (AMPs) production. Although MAPK signaling cascade proteins have been identified in penaeid shrimp, their modulation via the MKK4-p38-c-Jun cascade and effect on AMPs production is unknown. Here, we show that hemocyanin (PvHMC), antimicrobial peptides (anti-lipopolysaccharide factor, crustin, and penaeidins), and MKK4-p38-c-Jun cascade proteins are simultaneously induced by pathogens (Vibrio parahaemolyticus, Staphylococcus aureus, and white spot syndrome virus) in Penaeus vannamei. Intriguingly, knockdown of PvHMC with or without pathogen challenge attenuated the expression of MKK4-p38-c-Jun cascade proteins and their phosphorylation level, which consequently decreased AMPs expression. Further analysis revealed that PvHMC interacts via its armadillo (ARM) repeat domain with PvMKK4 to modulate the p38 MAPK signaling pathway. Thus, the ARM repeat domain enables penaeid shrimp hemocyanin to modulate AMPs expression during antimicrobial response by activating the p38 MAPK signaling pathway. Pathogens induce hemocyanin, MKK4-p38-c-Jun proteins, and antimicrobial peptide genes Hemocyanin modulates MKK4-p38-c-Jun cascade proteins to regulate AMPs gene expression Hemocyanin interacts with MKK4 to modulate p38 MAPK signaling in penaeid shrimp Deletion of the ARM repeat domain attenuates the interaction of hemocyanin with MKK4
Collapse
|
7
|
Tang X, Liu T, Li X, Sheng X, Xing J, Chi H, Zhan W. Protein phosphorylation in hemocytes of Fenneropenaeus chinensis in response to white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:106-114. [PMID: 35092807 DOI: 10.1016/j.fsi.2022.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation and dephosphorylation are the most common and important regulatory mechanisms in signal transduction, which play a vital role in immune defense response. Our previous study has found the level of tyrosine phosphorylation was significantly changed in the hemocytes of Fenneropenaeus chinensis upon white spot syndrome virus (WSSV) infection. In order to explore the relationship between protein phosphorylation and WSSV infection, the quantitative phosphoproteomics was employed to identify differential phosphorylated proteins in hemocytes of F. chinensis before and after WSSV infection, and elucidate the role of key differential phosphorylated proteins in WSSV infection process. The results showed that a total of 147 differential phosphorylated proteins were identified in the hemocytes, including 64 phosphorylated proteins and 83 dephosphorylated proteins, which were mostly enriched in pyruvate metabolism, TCA cycle, glycolysis, and ribosomal biosynthesis. Functional analysis of differential phosphorylated proteins showed that they were involved in cell apoptosis, cell phagocytosis, cell metabolism and antiviral infection. A total of 236 differential phosphorylation sites were found, including 91 modified sites in the phosphorylation proteins and 145 modified sites in the dephosphorylation proteins. Motif analysis showed that these phosphorylation sites could activate mitogen-activated protein kinase, P70 S6 kinase and other kinases in hemocytes. Moveover, the phosphorylation levels of eukaryotic protein initiation factor 4E binding proteins and histone H3 were further determined by ELISA and Western blotting, which both exhibited a significant increase post WSSV infection and reach their peak levels at 6 and 12 h, respectively. Moreover, we found that lactate, a metabolite closely related to pyruvate metabolism, TCA cycle and glycolysis, was significantly increased in the hemocytes after WSSV infection. This study revealed the protein phosphorylation response in hemocytes of F. chinensis to WSSV infection, which help to clarify the response characteristics and virus resistance mechanism of hemocytes in F. chinensis, and also facilitate further understanding of the interaction between WSSV and shrimp hemocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ting Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoai Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Zhang S, Zhu L, Hou C, Yuan H, Yang S, Dehwah MAS, Shi L. GSK3β Plays a Negative Role During White Spot Syndrome Virus (WSSV) Infection by Regulating NF-κB Activity in Shrimp Litopenaeus vannamei. Front Immunol 2020; 11:607543. [PMID: 33324423 PMCID: PMC7725904 DOI: 10.3389/fimmu.2020.607543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3), a cytoplasmic serine/threonine-protein kinase involved in a large number of key cellular processes, is a little-known signaling molecule in virus study. In this study, a GSK3 protein which was highly similar to GSK3β homologs from other species in Litopenaeus vannamei (designated as LvGSK3β) was obtained. LvGSK3β was expressed constitutively in the healthy L. vannamei, at the highest level in the intestine and the lowest level in the eyestalk. White spot syndrome virus (WSSV) reduced LvGSK3β expression was in immune tissues including the hemocyte, intestine, gill and hepatopancreas. The inhibition of LvGSK3β resulted in significantly higher survival rates of L. vannamei during WSSV infection than the control group, and significantly lower WSSV viral loads in LvGSK3β-inhibited L. vannamei were observed. Knockdown of LvGSK3β by RNAi resulted in increases in the expression of LvDorsal and several NF-κB driven antimicrobial peptide (AMP) genes (including ALF, PEN and crustin), but a decrease in LvCactus expression. Accordingly, overexpression of LvGSK3β could reduce the promoter activity of LvDorsal and several AMPs, while the promoter activity of LvCactus was increased. Electrophoretic mobility shift assays (EMSA) showed that LvDorsal could bind to the promoter of LvGSK3β. The interaction between LvGSK3β and LvDorsal or LvCactus was confirmed using co-immunoprecipitation (Co-IP) assays. In addition, the expression of LvGSK3β was dramatically reduced by knockdown of LvDorsal. In summary, the results presented in this study indicated that LvGSK3β had a negative effect on L. vannamei by mediating a feedback regulation of the NF-κB pathway when it is infected by WSSV.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Sheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, Yemen
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
9
|
Xiao B, Fu Q, Niu S, Zhu P, He J, Li C. Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. Emerg Microbes Infect 2020; 9:390-412. [PMID: 32397950 PMCID: PMC7048182 DOI: 10.1080/22221751.2020.1729068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging studies have indicated that some penaeidins restrict virus infection; however, the mechanism(s) involved are poorly understood. In the present study, we uncovered that penaeidins are a novel family of antiviral effectors against white spot syndrome virus (WSSV), which antagonize the envelope proteins to block viral entry. We found that the expression levels of four identified penaeidins from Litopenaeus vannamei, including BigPEN, PEN2, PEN3, and PEN4, were significantly induced in hemocytes during the early stage of WSSV infection. Knockdown of each penaeidin in vivo via RNA interference resulted in elevated viral loads and rendered shrimp more susceptible to WSSV, while the survival rate was rescued via the injection of recombinant penaeidins. All penaeidins, except PEN4, were shown to interact with several envelope proteins of WSSV, and all four penaeidins were observed to be located on the outer surface of the WSSV virion. Co-incubation of each recombinant penaeidin with WSSV inhibited virion internalization into hemocytes. More importantly, we found that PEN2 competitively bound to the envelope protein VP24 to release it from polymeric immunoglobulin receptor (pIgR), the cellular receptor required for WSSV infection. Moreover, we also demonstrated that BigPEN was able to bind to VP28 of WSSV, which disrupted the interaction between VP28 and Rab7 – the Rab GTPase that contributes to viral entry by binding with VP28. Taken together, our results demonstrated that penaeidins interact with the envelope proteins of WSSV to block multiple viral infection processes, thereby protecting the host against WSSV.
Collapse
Affiliation(s)
- Bang Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Qihui Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Shengwen Niu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, P. R. People's Republic of China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
10
|
Su YL, Chen JP, Mo ZQ, Zheng JY, Lv SY, Li PH, Wei YS, Liang YL, Wang SW, Yang M, Dan XM, Huang XH, Huang YH, Qin QW, Sun HY. A novel MKK gene (EcMKK6) in Epinephelus coioides: Identification, characterization and its response to Vibrio alginolyticus and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 92:500-507. [PMID: 31247318 DOI: 10.1016/j.fsi.2019.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Mitogen-activated protein kinase 6 (MKK6) is one of the major important central regulatory proteins response to environmental and physiological stimuli. In this study, a novel MKK6, EcMKK6, was isolated from Epinephelus coioides, an economically important cultured fish in China and Southeast Asian counties. The open reading frame (ORF) of EcMKK6 is 1077 bp encoding 358 amino acids. EcMKK6 contains a serine/threonine protein kinase (S_TKc) domain, a tyrosine kinase catalytic domain, a conserved dual phosphorylation site in the SVAKT motif and a conserved DVD domain. By in situ hybridization (ISH) with Digoxigenin-labeled probe, EcMKK6 mainly located at the cytoplasm of cells, and a little appears in the nucleus. EcMKK6 mRNA can be detected in all eleven tissues examined, but the expression level is different in these tissues. After challenge with Vibrio alginolyticus and Singapore grouper iridovirus (SGIV), the transcription level of EcMKK6 was apparently up-regulated in the tissues examined. The data demonstrated that the sequence and the characters of EcMKK6 were conserved, EcMKK6 showed tissue-specific expression profiles in healthy grouper, and the expression was significantly varied after pathogen infection, indicating that EcMKK6 may play important roles in E. coioides during pathogen-caused inflammation.
Collapse
Affiliation(s)
- Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jin-Peng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jia-Ying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Shun-You Lv
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yu-Si Wei
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yu-Lin Liang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Shao-Wen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xiao-Hong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - You-Hua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
11
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
13
|
Qu F, Tang J, Liao J, Chen B, Song P, Luo W, Xiong D, Liu T, Gao Q, Lu S, Liu Z. Mitogen-activated protein kinase kinase 6 is involved in the immune response to bacterial di-/tripeptide challenge in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 84:795-801. [PMID: 30393177 DOI: 10.1016/j.fsi.2018.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase kinase 6 (MKK6) is an essential component of the p38MAPK signaling pathway, which is involved in the modulation of inflammation, cell apoptosis and survival responses in mammals. However, the function of MKK6s in teleosts is still unclear. In this study, a fish MKK6 homolog (CiMKK6) was first identified from the grass carp (Ctenopharyngodon idella), a freshwater fish. CiMKK6 cDNA encodes a putative protein of 357 amino acids that contains conserved structural characteristics of the MKK6 family, including the S_TKc domain, SVAKT motif and DVD site. The deduced CiMKK6 protein exhibits high sequence homology with other reported fish MKK6s and shares the closest relationship with MKK6 from Danio rerio. Quantitative real-time PCR (qRT-PCR) analysis revealed that CiMKK6 mRNA was widely expressed in all tested tissues and stages of embryonic development. Additionally, the transcript levels of CiMKK6 in the intestine were significantly upregulated in response to bacterial muramyl dipeptide (MDP) and L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) stimulation. Moreover, subcellular localization analysis indicated that CiMKK6 was distributed in both the cytoplasm and the nucleus of HEK293T cells. Finally, overexpression of CiMKK6 significantly enhanced the transcriptional activity of the AP-1 reporter gene in HEK293T cells. Overall, these findings may help better clarify the immune function of teleost MKK6s and provide new insight into the immune defense mechanisms of grass carp.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jinting Liao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Bei Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Peng Song
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Tianting Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qianting Gao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Shuangqing Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
14
|
Zhan Y, Wang Y, Li K, Song J, Chang Y. A novel p38 MAPK gene in the sea cucumber Apostichopus japonicus (Ajp38) is associated with the immune response to pathogenic challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 81:250-259. [PMID: 30026174 DOI: 10.1016/j.fsi.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/11/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK), an important component of the MAPK signal cascade, is activated by extracellular stimuli, such as environmental stress and pathogenic infection. To clarify the function of p38 MAPKs in echinoderms, we used transcriptome database mining and rapid amplification of cDNA ends (RACE) to identify a novel p38 MAPK gene in the sea cucumber Apostichopus japonicus (here designated Ajp38). The full-length cDNA of Ajp38 was 2231 bp, including an open reading frame encoding 356 amino acid residues. Our sequence analysis indicated that the predicted Ajp38 protein contained the dual phosphorylation site Thr-Gly-Tyr (TGY) and was similar to the p38 homolog in sea urchins. Quantitative real-time PCR analysis showed that Ajp38 was ubiquitously expressed in all examined tissues of healthy adult A. japonicus, with the highest level of expression identified in the coelomocytes. Ajp38 mRNA expression was significantly upregulated in the coelomocytes 4, 12, and 72 h post in vivo infection with Vibrio splendidus. Our results provide more information about the characteristics and immune functions of the p38 homolog in sea cucumbers.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Kaiquan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
15
|
Yang Z, Xu X, Li F, Yang F. Characterization of the promoter of white spot syndrome virus immediate-early gene wsv249. Virus Res 2018; 252:76-81. [PMID: 29753890 DOI: 10.1016/j.virusres.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
White spot syndrome virus immediate early (IE) gene wsv249 encodes an E3 ubiquitin ligase that can interact with a shrimp ubiquitin-conjugating enzyme to mediate ubiquitination. In this study, to understand the transcriptional regulation of wsv249, a serial of 5'-truncated mutations were made on its promoter and the activities of mutated promoters was analyzed. Four 25 bp regions potentially containing either positive or negative regulatory elements were identified. Notably, the deletion of -275/-250, which abolished a cAMP-response element (CRE), greatly reduced the promoter activity by 84.2%. CRE serves as the binding site for proteins belong to the cAMP responsive element-binding proteins (CREBs) family and the activator protein 1 (AP-1) family. Electrophoretic mobility shift assay (EMSA) showed that Lvc-Jun could directly bind to the CRE element in the promoter region of wsv249. In addition, the regulation of shrimp homolog of c-Jun and CREB on wsv249 promoter was further investigated. We found that Lvc-Jun greatly upregulated the activity of wsv249 promoter by ∼12.4 fold, and the CRE at -212/-205 but not the one at -256/-249 was essential for the regulation. In contrast, LvCREB-3 could not activate wsv249 promoter activity. These findings extend our knowledge of the transcriptional regulation of WSSV IE genes.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen,361005, PR China
| | - Xiaomin Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; School of life Science, Xiamen University, Xiamen,361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
16
|
Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp Fenneropenaeus chinensis in response to viral and bacterial infections. Gene 2018; 642:381-388. [DOI: 10.1016/j.gene.2017.11.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/22/2017] [Accepted: 11/15/2017] [Indexed: 11/23/2022]
|
17
|
Li M, Ma C, Li H, Peng J, Zeng D, Chen X, Li C. Molecular cloning, expression, promoter analysis and functional characterization of a new Crustin from Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 73:42-49. [PMID: 29208497 DOI: 10.1016/j.fsi.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial peptides (AMPs) are the most important players in the innate immune system, providing a principal first-line of defense against the invading pathogens. Crustin, a type of whey acidic protein (WAP) domain-containing and cationic cysteine-rich AMP, can function in a protease inhibition or an effector molecule manner. In the present study, a new Crustin was cloned and identified from Pacific white shrimp Litopenaeus vannamei and designated as LvCrustinA. The full-length cDNA of LvCrustinA was 687 bp, with a 519 bp open reading frame (ORF) that encoded a peptide of 172 amino acids. Domain analysis indicated that LvCrustinA contained a Glycine-rich region in the N-terminal and a single WAP domain within eight cysteines in the C-terminal. The 5' upstream regulatory sequence of 1249 bp (promoter) was obtained using a genome walking method, and it contained several conserved transcription factors binding motifs including NF-κB, AP-1 and STAT (Signal transducers and activators of transcription). Dual-reporter assay showed that NF-κB transcription factors LvDorsal and LvRelish, and AP-1 transcription factor Lvc-Jun could up-regulate the promoter activity of LvCrustinA, suggesting that NF-κB and JNK-c-Jun pathways could be involved in regulating the expression of LvCrustinA. Moreover, LvCrustinA was abundantly expressed in immune related tissues such as gill, hemocyte and epithelium, and its expression was up-regulated in response to Vibrio parahaemolyticus and White spot syndrome virus (WSSV) challenges in gill tissue, suggesting that LvCrustinA could be involved in the host defense against bacterial and viral infection. Additionally, RNAi mediated knockdown of LvCrustinA resulted in shrimps with the higher cumulative mortality during V. parahaemolyticus and WSSV infection. Taken together, these results provided some insight into the expression and transcriptional regulatory role of LvCrustinA, and its defensive role against pathogenic infection.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Chunxia Ma
- Guangxi Veterinary Research Institute, Nanning, PR China
| | - Haoyang Li
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China.
| | - Chaozheng Li
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
18
|
Wang S, Yin B, Li H, Xiao B, Lǚ K, Feng C, He J, Li C. MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:61-70. [PMID: 28939483 DOI: 10.1016/j.dci.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
LvMKK4, a homologue of the mammalian mitogen-activated protein kinase kinase 4 (MKK4), was isolated and identified from Litopenaeus vannamei in the present study. The full-length cDNA of LvMKK4 is 1947 bp long, with an open reading frame (ORF) of 1185 bp encoding a putative protein of 388 amino acids. LvMKK4 contains several characteristic domains such as D domain, SIAKT motif and kinase domain, all of which are conserved in MAP kinase kinase family. Like mammalian MKK4 but not Drosophila MKK4, LvMKK4 could bind to, phosphorylate and activate p38 MAPK, which provided some insights into the signal transduction mechanism of MKK4-p38 cascade in invertebrates. Our real-time PCR data indicated that LvMKK4 was ubiquitously expressed in all tested tissues and extraordinarily abundant in muscle. Dual luciferase reporter assays in Drosophila S2 cells revealed that LvMKK4 activated the transcription of antimicrobial peptide genes (AMPs), including Drosophila Attacin A, Drosomycin, and shrimp Penaeidins. Additionally, LvMKK4 was up-regulated in both intestine and hepatopancreas by a variety of inflammatory stimuli including LPS, Vibrio parahaemolyticus, Staphhylococcu saureus, Poly (I: C) and white spot syndrome virus. Furthermore, RNAi-mediated knockdown of LvMKK4 enhanced the sensitivity of L. vannamei to V. parahaemolyticus infection. These findings suggested that LvMKK4 played an important role in anti-bacterial response and could be a potential target for inflammation treatment.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Chiguang Feng
- School of Medicine, University of Maryland, Maryland, USA
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
19
|
Zhao CS, Huang D, Peng T, Huang MZ, Xie CY, Chen J, Kong JR, Xie RC, Liu Y, Wang WN. Molecular cloning, characterization and function of a germinal center kinase MST4 gene from Litopenaeus vannamei in response to Vibrio alginolyticus challenge in TLR-TRAF6 signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:206-219. [PMID: 28377200 DOI: 10.1016/j.dci.2017.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The serine/threonine protein kinase MST4 plays multiple roles in the regulation of signaling pathways that govern cellular processes including mitosis, migration, homeostasis, polarity, proliferation, differentiation and apoptosis. Here we report the identification and characterization of the full-length sequence of LvMST4 from the shrimp L. vannamei, and investigations into its role in the shrimp's immune response to infection by the pathogenic bacterium Vibrio alginolyticus. Subcellular localization assays demonstrated the enzyme's presence in the shrimp's cytoplasm, and tissue-specific expression analysis revealed that it is expressed ubiquitously but at different levels in different tissues. Infection with V. alginolyticus increased LvMST4 expression and induced a rapid response via the TLR-TRAF6 signaling pathway, causing a decline in the total hemocyte count (THC) and an increase in respiratory burst (RB) activity. In non-infected shrimp, RNAi silencing of LvMST4 with dsRNA had no significant effect on THC but seemed to activate the TRAF6-MKK6-p38 pathway and reduced RB activity. In shrimp challenged with V. alginolyticus, LvMST4 silencing reduced bacterial clearance and increased the initial upregulation of LvTRAF6 while reducing the expression of LvMKK6 and Lvp38. LvMST4 silencing also slightly reduced the THC but caused pronounced increases in RB activity and cumulative mortality. These findings suggest that LvMST4 contributes to antimicrobial responses via the TLR-TRAF6 signal pathway, and helps maintain immunological homeostasis in L. vannamei.
Collapse
Affiliation(s)
- Chang-Sheng Zhao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Di Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ting Peng
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ming-Zhu Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chen-Ying Xie
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jun Chen
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Rong Kong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ren-Chong Xie
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei-Na Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
20
|
Zhang K, Pan G, Zhao Y, Hao X, Li C, Shen L, Zhang R, Su J, Cui H. A novel immune-related gene HDD1 of silkworm Bombyx mori is involved in bacterial response. Mol Immunol 2017. [DOI: 10.1016/j.molimm.2017.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Wang S, Li M, Yin B, Li H, Xiao B, Lǚ K, Huang Z, Li S, He J, Li C. Shrimp TAB1 interacts with TAK1 and p38 and activates the host innate immune response to bacterial infection. Mol Immunol 2017; 88:10-19. [PMID: 28577391 DOI: 10.1016/j.molimm.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Mammalian TAB1 has been previously identified as transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) binding protein, which functions as the activator of TAK1 and p38. This report, for the first time, identified and characterized the homolog of TAB1 in shrimp, to be specific, the homolog gene from Litopenaeus vannamei, containing a 1560-bp open reading frame (ORF) that encoded a putative protein of 519 amino acids with the conserved PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain in N-terminal and a TAK1 binding motif in C-terminus, has been cloned and named LvTAB1. LvTAB1 was most abundant in gills and its expression could respond significantly to a series of stimuli, including LPS, Vibrio parahemolyticus and Staphylococcus aureus. Moreover, Co-immunoprecipitation (Co-IP) experiments showed that LvTAB1 could combine with LvTAK1 as well as Lvp38, two members of IMD-NF-κB/MAPK pathway, which meant LvTAB1 could have a role in regulating the activities of these kinases. Over-expression of LvTAB1 in drosophila S2 cells could improve the transcriptional levels of antimicrobial peptide genes (AMPs) such as Diptericin (Dpt), the hallmark of drosophila NF-κB activated genes, indicating its activation effect on NF-κB pathway. Furthermore, suppression of LvTAB1 expression in vivo by RNA-interference increased the sensibility of shrimps to V. parahaemolyticus infection, implying its protective role against bacterial infection. In conclusion, these results provide some insight into the function of LvTAB1 during bacterial infection.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Mengqiao Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhijian Huang
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang, Zhanjiang, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
23
|
Identification of two p53 isoforms from Litopenaeus vannamei and their interaction with NF-κB to induce distinct immune response. Sci Rep 2017; 7:45821. [PMID: 28361937 PMCID: PMC5374463 DOI: 10.1038/srep45821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
p53 is a transcription factor with capability of regulating diverse NF-κB dependent biological progresses such as inflammation and host defense, but the actual mechanism remains unrevealed. Herein, we firstly identified two novel alternatively spliced isoforms of p53 from Litopenaeus vannamei (LvΔNp53 and the full-length of p53, LvFLp53). We then established that the two p53 isoforms exerted opposite effects on regulating NF-κB induced antimicrobial peptides (AMPs) and white spot syndrome virus (WSSV) immediate-early (IE) genes expression, suggesting there could be a crosstalk between p53 and NF-κB pathways. Of note, both of the two p53 isoforms could interact directly with LvDorsal, a shrimp homolog of NF-κB. In addition, the activation of NF-κB mediated by LvDorsal was provoked by LvΔNp53 but suppressed by LvFLp53, and the increased NF-κB activity conferred by LvΔNp53 can be attenuated by LvFLp53. Furthermore, silencing of LvFLp53 in shrimp caused higher mortalities and virus loads under WSSV infection, whereas LvΔNp53-knockdown shrimps exhibited an opposed RNAi phenotype. Taken together, these findings present here provided some novel insight into different roles of shrimp p53 isoforms in immune response, and some information for us to understand the regulatory crosstalk between p53 pathway and NF-κB pathway in invertebrates.
Collapse
|
24
|
Li H, Wang S, Lǚ K, Yin B, Xiao B, Li S, He J, Li C. An invertebrate STING from shrimp activates an innate immune defense against bacterial infection. FEBS Lett 2017; 591:1010-1017. [DOI: 10.1002/1873-3468.12607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Haoyang Li
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Sheng Wang
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Bin Yin
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Bang Xiao
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang; China
| | - Jianguo He
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
- School of Marine Sciences; Sun Yat-sen University; Guangzhou China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC); Sun Yat-sen University; Guangzhou China
| | - Chaozheng Li
- State Key Laboratory for Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; Sun Yat-sen University; Guangzhou China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering; Sun Yat-sen University; Guangzhou China
- School of Marine Sciences; Sun Yat-sen University; Guangzhou China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC); Sun Yat-sen University; Guangzhou China
| |
Collapse
|
25
|
Qu F, Xiang Z, Zhang Y, Li J, Xiao S, Zhang Y, Mao F, Ma H, Yu Z. A novel p38 MAPK indentified from Crassostrea hongkongensis and its involvement in host response to immune challenges. Mol Immunol 2016; 79:113-124. [PMID: 27768933 DOI: 10.1016/j.molimm.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are conserved serine/threonine-specific kinases that are activated by various extracellular stimuli and play crucial regulatory roles in immunity, development and homeostasis. However, the function of p38s in mollusks, the second most diverse group of animals, is still poorly understood. In this study, a novel molluscan p38 (designated Chp38) was cloned and characterized from the Hong Kong oyster Crassostrea hongkongensis. Its full-length cDNA encoded a putative protein of 353 amino acids with a calculated molecular weight of approximately 40.3kDa. Similar to other reported p38 family proteins, the deduced Chp38 sequence contained a conserved dual phosphorylation TGY motif and a substrate binding site of ATRW. Phylogenetic analysis revealed that Chp38 was closest to its homolog from the Pacific oyster and belonged to the mollusk cluster. Quantitative real-time PCR analysis showed that Chp38 was constitutively expressed in all examined oyster tissues and developmental stages and that its expression in hemocytes was significantly up-regulated after pathogen (Vibrio alginolyticus and Staphylococcus haemolyticus) and PAMP (lipopolysaccharide and peptidoglycan) infections. Moreover, overexpression analysis revealed that Chp38 was localized in both the cytoplasm and nucleus of HEK293T cells and that it could significantly enhance AP-1 reporter gene activation in a dose-dependent manner. Altogether, these results provide the first experimental evidence of a functional p38 in oysters and suggest its involvement in the innate immunity of C. hongkongensis.
Collapse
Affiliation(s)
- Fufa Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
26
|
Zhang S, Shi L, L K, Li H, Wang S, He J, Li C. Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 54:411-418. [PMID: 27036405 DOI: 10.1016/j.fsi.2016.03.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Wnt signaling is known to control multiple of cellular processes such as cell differentiation, communication, apoptosis and proliferation, and is also reported to play a role during microbial infection. β-catenin is a key regulator of the Wnt signaling cascade. In the present study, we cloned and identified a β-catenin homologue from Litopenaeus vannamei termed Lvβ-catenin. The full-length of Lvβ-catenin transcript was 2797 bp in length within a 2451 bp open reading frame (ORF) that encoded a protein of 816 amino acids. Lvβ-catenin protein was comprised of several characteristic domains such as an N-terminal region of GSK-β consensus phosphorylation site and Coed coil section, a central region of 12 continuous Armadillo/β-Catenin-like repeat (ARM) domains and a C-terminal region. Real-time PCR showed Lvβ-catenin expression was responsive to Vibrio parahaemolyticus and white spot syndrome virus (WSSV) infection. Dual-reporter analysis showed that over-expression of Lvβ-catenin could induce activation of the promoter activities of several antimicrobial peptides (AMPs) such as shrimp PEN4, suggesting that Lvβ-catenin could play a role in regulating the production of AMPs. Knockdown of Lvβ-catenin enhanced the sensitivity of shrimps to V. parahaemolyticus and WSSV challenge, suggesting Lvβ-catenin could play a positive role against bacterial and viral pathogens. In summary, the results presented in this study provided some insights into the function of Wnt/β-catenin of shrimp in regulating AMPs and the host defense against invading pathogens.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Kai L
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
27
|
Wang S, Li H, Lǚ K, Qian Z, Weng S, He J, Li C. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2016; 52:278-288. [PMID: 27033469 DOI: 10.1016/j.fsi.2016.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|