1
|
Kou M, Wang L. Surface toll-like receptor 9 on immune cells and its immunomodulatory effect. Front Immunol 2023; 14:1259989. [PMID: 37724102 PMCID: PMC10505433 DOI: 10.3389/fimmu.2023.1259989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Toll like receptor 9 (TLR9) has been considered as a crucial intracellular pattern recognition receptor in the immune system, which can directly or indirectly mediate innate and adaptive immune responses by recognizing CpG DNA in endosomes to initiate its downstream signaling. However, TLR9 can also be expressed on the membrane surface of some immune and non-immune cells, called surface TLR9 (sTLR9), which covers the TLR9 and its immunomodulatory role with a mysterious veil. In this review, we mainly focus on the sTLR9 expressed on neutrophils, B cells and erythrocytes, and its immunomodulatory roles displayed alone or in coordination with endosomal TLR9 (eTLR9), providing a theoretical reference for the application of its modulators.
Collapse
Affiliation(s)
- Mengyuan Kou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Wu K, Lu X, Li Y, Wang Y, Liu M, Li H, Li H, Liu Q, Shao D, Chen W, Zhou Y, Tu Z, Mao H. Polyglycerol-Amine Covered Nanosheets Target Cell-Free DNA to Attenuate Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300604. [PMID: 37276385 PMCID: PMC10427348 DOI: 10.1002/advs.202300604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Increased levels of circulating cell-free DNA (cfDNA) are associated with poor clinical outcomes in patients with acute kidney injury (AKI). Scavenging cfDNA by nanomaterials is regarded as a promising remedy for cfDNA-associated diseases, but a nanomaterial-based cfDNA scavenging strategy has not yet been reported for AKI treatment. Herein, polyglycerol-amine (PGA)-covered MoS2 nanosheets with suitable size are synthesized to bind negatively charged cfDNA in vitro, in vivo and ex vivo models. The nanosheets exhibit higher cfDNA binding capacity than polymer PGA and PGA-based nanospheres owing to the flexibility and crimpability of their 2D backbone. Moreover, with low cytotoxicity and mild protein adsorption, the nanosheets effectively reduced serum cfDNA levels and predominantly accumulated in the kidneys to inhibit the formation of neutrophil extracellular traps and renal inflammation, thereby alleviating both lipopolysaccharide and ischemia-reperfusion induced AKI in mice. Further, they decreased the serum cfDNA levels in samples from AKI patients. Thus, PGA-covered MoS2 nanosheets can serve as a potent cfDNA scavenger for treating AKI and other cfDNA-associated diseases. In addition, this work demonstrates the pivotal feature of a 2D sheet-like structure in the development of the cfDNA scavenger, which can provide a new insight into the future design of nanoplatforms for modulating inflammation.
Collapse
Affiliation(s)
- Kefei Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Xiaohui Lu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Ming Liu
- Department of Otolaryngologythe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Hongyu Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Huiyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Qinghua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong511442China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Zhaoxu Tu
- Department of Otolaryngologythe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| |
Collapse
|
3
|
Kou M, Lu W, Zhu M, Qu K, Wang L, Yu Y. Massively recruited sTLR9 + neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother 2023:10.1007/s00262-023-03451-1. [PMID: 37079065 DOI: 10.1007/s00262-023-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Neutrophils exert either pro- or anti-tumor activities. However, few studies have focused on neutrophils at the tumor initiation stage. In this study, we unexpectedly found a subcutaneous nodule in the groin areas of mice inoculated with tumor cells. The nodule was developed 24 h after the inoculation, filled with tumor cells and massively recruited neutrophils, being designated as tumor nodules. 22% of the neutrophils in tumor nodules are surface TLR9 (sTLR9) expressing neutrophils (sTLR9+ neutrophils). With tumor progression, sTLR9+ neutrophils were sustainably increased in tumor nodules/tumor tissues, reaching to 90.8% on day 13 after inoculation, with increased expression of IL-10 and decreased or no expression of TNFα. In vivo administration of CpG 5805 significantly reduced sTLR9 expression of the sTLR9+ neutrophils. The reduction of sTLR9 on neutrophils in tumor nodules contributed to the induction of an anti-tumor microenvironment conductive to the inhibition of tumor growth. Overall, the study provides insights for understanding the role of sTLR9+ neutrophils in the tumor development, especially in the early stage.
Collapse
Affiliation(s)
- Mengyuan Kou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Mengru Zhu
- Department of Developmental-Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
4
|
Wang H, Su Y, Chen D, Li Q, Shi S, Huang X, Fang M, Yang M. Advances in the mechanisms and applications of inhibitory oligodeoxynucleotides against immune-mediated inflammatory diseases. Front Pharmacol 2023; 14:1119431. [PMID: 36825156 PMCID: PMC9941346 DOI: 10.3389/fphar.2023.1119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs). Inhibitory oligodeoxynucleotides could be divided into three categories according to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with immunomodulatory activity, it can target RNAs or proteins in a specific way, resulting in the reduction, increase or recovery of protein expression, and then regulate the state of immune activation. More importantly, inhibitory oligodeoxynucleotides have been used to treat immune-mediated inflammatory diseases, including inflammatory disorders and autoimmune diseases. Several inhibitory oligodeoxynucleotide drugs have been developed and approved on the market already. These drugs vary in their chemical structures, action mechanisms and cellular targets, but all of them could be capable of inhibiting excessive inflammatory responses. This review summarized their chemical modifications, action mechanisms and applications of the three kinds of inhibitory oligodeoxynucleotidesin the precise treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Duoduo Chen
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| |
Collapse
|
5
|
Tilstra JS, John S, Gordon RA, Leibler C, Kashgarian M, Bastacky S, Nickerson KM, Shlomchik MJ. B cell-intrinsic TLR9 expression is protective in murine lupus. J Clin Invest 2020; 130:3172-3187. [PMID: 32191633 PMCID: PMC7260024 DOI: 10.1172/jci132328] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/05/2020] [Indexed: 12/26/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a regulator of disease pathogenesis in systemic lupus erythematosus (SLE). Why TLR9 represses disease while TLR7 and MyD88 have the opposite effect remains undefined. To begin to address this question, we created 2 alleles to manipulate TLR9 expression, allowing for either selective deletion or overexpression. We used these to test cell type-specific effects of Tlr9 expression on the regulation of SLE pathogenesis. Notably, Tlr9 deficiency in B cells was sufficient to exacerbate nephritis while extinguishing anti-nucleosome antibodies, whereas Tlr9 deficiency in dendritic cells (DCs), plasmacytoid DCs, and neutrophils had no discernable effect on disease. Thus, B cell-specific Tlr9 deficiency unlinked disease from autoantibody production. Critically, B cell-specific Tlr9 overexpression resulted in ameliorated nephritis, opposite of the effect of deleting Tlr9. Our findings highlight the nonredundant role of B cell-expressed TLR9 in regulating lupus and suggest therapeutic potential in modulating and perhaps even enhancing TLR9 signals in B cells.
Collapse
Affiliation(s)
- Jeremy S. Tilstra
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shinu John
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rachael A. Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Claire Leibler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin M. Nickerson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark J. Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Dawulieti J, Sun M, Zhao Y, Shao D, Yan H, Lao YH, Hu H, Cui L, Lv X, Liu F, Chi CW, Zhang Y, Li M, Zhang M, Tian H, Chen X, Leong KW, Chen L. Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. SCIENCE ADVANCES 2020; 6:eaay7148. [PMID: 32523983 PMCID: PMC7259927 DOI: 10.1126/sciadv.aay7148] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/25/2020] [Indexed: 05/20/2023]
Abstract
Severe sepsis represents a common, expensive, and deadly health care issue with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis would help develop new therapeutic strategies against severe sepsis. In this study, we identified the crucial role of cell-free DNA (cfDNA) in the regulation of the Toll-like receptor 9-mediated proinflammatory pathway in severe sepsis progression. Hypothesizing that removing cfDNA would be beneficial for sepsis treatment, we used polyethylenimine (PEI) and synthesized PEI-functionalized, biodegradable mesoporous silica nanoparticles with different charge densities as cfDNA scavengers. These nucleic acid-binding nanoparticles (NABNs) showed superior performance compared with their nucleic acid-binding polymer counterparts on inhibition of cfDNA-induced inflammation and subsequent multiple organ injury caused by severe sepsis. Furthermore, NABNs exhibited enhanced accumulation and retention in the inflamed cecum, along with a more desirable in vivo safety profile. Together, our results revealed a key contribution of cfDNA in severe sepsis and shed a light on the development of NABN-based therapeutics for sepsis therapy, which currently remains intractable.
Collapse
Affiliation(s)
- Jianati Dawulieti
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Madi Sun
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
- Institutes of Life Sciences, National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
| | - Yawei Zhao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Dan Shao
- Institutes of Life Sciences, National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Huize Yan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Lianzhi Cui
- Clinical Laboratory, Jilin Cancer Hospital, Changchun 130012, China
| | - Xiaoyan Lv
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130021, China
| | - Feng Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Chun-Wei Chi
- Department of Biomedical Engineering CUNY–City College of New York, New York, NY 10031, USA
| | - Yue Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
De Dios R, Nguyen L, Ghosh S, McKenna S, Wright CJ. CpG-ODN-mediated TLR9 innate immune signalling and calcium dyshomeostasis converge on the NFκB inhibitory protein IκBβ to drive IL1α and IL1β expression. Immunology 2020; 160:64-77. [PMID: 32064589 DOI: 10.1111/imm.13182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Sterile inflammation contributes to many pathological states associated with mitochondrial injury. Mitochondrial injury disrupts calcium homeostasis and results in the release of CpG-rich mitochondrial DNA. The role of CpG-stimulated TLR9 innate immune signalling and sterile inflammation is well studied; however, how calcium dyshomeostasis affects this signalling is unknown. Therefore, we interrogated the relationship beτween intracellular calcium and CpG-induced TLR9 signalling in murine macrophages. We found that CpG-ODN-induced NFκB-dependent IL1α and IL1β expression was significantly attenuated by both calcium chelation and calcineurin inhibition, a finding mediated by inhibition of degradation of the NFκB inhibitory protein IκBβ. In contrast, calcium ionophore exposure increased CpG-induced IκBβ degradation and IL1α and IL1β expression. These results demonstrate that through its effect on IκBβ degradation, increased intracellular Ca2+ drives a pro-inflammatory TLR9-mediated innate immune response. These results have implications for the study of innate immune signalling downstream of mitochondrial stress and injury.
Collapse
Affiliation(s)
- Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
8
|
Guo HY, Cui ZJ. Extracellular Histones Activate Plasma Membrane Toll-Like Receptor 9 to Trigger Calcium Oscillations in Rat Pancreatic Acinar Tumor Cell AR4-2J. Cells 2018; 8:E3. [PMID: 30577532 PMCID: PMC6356355 DOI: 10.3390/cells8010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
In acute pancreatitis, histones are released by infiltrating neutrophils, but how histones modulate pancreatic acinar cell function has not been investigated. We have examined histone modulation of rat pancreatic acini and pancreatic acinar tumor cell AR4-2J by calcium imaging. Histones were found to have no effect on calcium in pancreatic acini but blocked calcium oscillations induced by cholecystokinin or acetylcholine. Both mixed (Hx) and individual (H1, H2A, H2B, H3, H4) histones induced calcium oscillations in AR4-2J. RT-PCR and Western blot verified the expression of histone-targeted Toll-like receptor (TLR) 2, 4 and 9. Immunocytochemistry identified TLR2/TLR4 on apical plasma membrane and TLR9 in zymogen granule regions in pancreatic acini. TLR2 was found on neighboring and TLR9 on peripheral plasma membranes, but TLR4 was in the nucleus in AR4-2J clusters. Neither TLR2 agonist zymosan-A nor TLR4 agonist lipopolysaccharide had any effect on calcium, but TLR9 agonist ODN1826 induced calcium oscillations; TLR9 antagonist ODN2088 blocked H4-induced calcium oscillations in AR4-2J, which also disappeared after treatment of AR4-2J with glucocorticoid dexamethasone, with concurrent TLR9 migration from plasma membrane to cell interiors. TLR9 down regulation with siRNA suppressed H4-induced calcium oscillations. These data together suggest that extracellular histones activate plasma membrane TLR9 to trigger calcium oscillations in AR4-2J cells.
Collapse
Affiliation(s)
- Hai Yan Guo
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
E. coli induced larger neutrophils in the peritoneal cavity of mice with severe septic peritonitis. Mol Immunol 2018; 105:86-95. [PMID: 30500625 DOI: 10.1016/j.molimm.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022]
Abstract
Neutrophils, classified as professional phagocytes, are crucial in killing bacteria and preventing inflammation. When studying the roles of neutrophils in the development of the septic peritonitis induced by E. coli, we noticed some of the larger cells existed among peritoneal lavage fluid cells (PLCs). Besides the large size, their nuclei are segmented and flat, and squeezed to the marginal zone of the inner membrane. The cells, therefore, were designated as E. coli induced larger neutrophils (e-Neus). Further studies showed that, the e-Neus were ly6G positive, indicating the e-Neus were a type of neutrophils. The enlarged cell size and marginal nucleus of the e-Neus were caused by engulfing abundant of E. coli, marking the active participation of the e-Neus in clearance of E. coli. Functionally, the e-Neus generated reactive oxygen species (ROS) and IL-10. Furthermore, the occurrence and accumulation of the e-Neus were closely correlated with the severity of septic peritonitis and mortality of the mice. Overall, the e-Neus presented here may enrich the understandings on neutrophil transitions in response to various insults, and could be used to evaluate the severity of septic peritonitis induced by E. coli.
Collapse
|