1
|
Pan H, Zhang W, Qin Z, Jia K, Jia P, Yi M. MiR-192 and miR-731 synergically inhibit RGNNV infection by targeting ULK1-mediated autophagy in sea perch (Lateolabrax japonicus). Int J Biol Macromol 2024; 282:136748. [PMID: 39437957 DOI: 10.1016/j.ijbiomac.2024.136748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression and are closely linked to viral infections. Nervous necrosis virus (NNV) poses a significant threat to global fish aquaculture. This study investigates the roles of miR-192 and miR-731 in controlling NNV infection and associated autophagy in sea perch (Lateolabrax japonicus). Our findings reveal that both miRNAs are upregulated in infected brain tissues and cells of sea perch, leading to reduced NNV replication. miR-192 and miR-731 synergistically reduce NNV replication by downregulating the RNA-dependent RNA polymerase and capsid protein genes, and disrupting autophagy by altering LC3 distribution and autophagy-related protein expressions. Additionally, L. japonicus unc-51 like autophagy activating kinase 1 protein (LjULK1) was identified as the target of miR-192 and miR-731. LjULK1 is integrally associated to the ULK-VAPs-Atg13 autophagic signaling, enhancing NNV-induced autophagy, and facilitating viral infection. Modulating LjULK1 expression counteracts the inhibitory effects of miR-192 and miR-731 on NNV, suggesting these miRNAs act as negative regulators of NNV infection by targeting LjULK1-mediated autophagy. Our findings reveal a novel miRNAs-regulated antiviral mechanism against NNV, offering insights into potential strategy to prevent NNV infection in fish.
Collapse
Affiliation(s)
- Hongbo Pan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Wanwan Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Ziling Qin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Peng Jia
- Fuzhou Medical College of Nanchang University, Fuzhou 344100, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China.
| |
Collapse
|
2
|
Wang B, Liu X, Li C, Yang N. LncRNA (BCO1-AS) regulate inflammatory responses in bacterial infection through caspase-1 in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 279:135131. [PMID: 39208888 DOI: 10.1016/j.ijbiomac.2024.135131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
LncRNA plays key role in several biological processes, including transcriptional regulation, post transcriptional control and epigenetic regulation. However, research on the functional roles of lncRNAs in teleost species remains limited. Here, we discovered a lncRNA (BCO1-AS) with a critical role in antibacterial responses. Briefly, the full length of BCO1-AS was 2005 bp. Subsequently, BCO1-AS was distributed throughout the nucleus, where it may either trans- or cis-regulate the nearby genes. In addition, BCO1-AS was widely expressed in all the examined tissues with the highest expression level in intestine, while the lowest expression level was detected in muscle. Moreover, following Vibrio anguillarum challenge, BCO1-AS was significantly down-regulated in intestine, and up-regulated in gill and skin. In CHIRP experiment, BCO1-AS could effectively enrich RNA and might interact with several immune-related genes. Furthermore, we found that LPS could induce the expression of BCO1-AS. Finally, BCO1-AS could positively regulate caspase-1 at the mRNA and protein level. The BCO1-AS was speculated to inhibit the synthesis of inflammatory components. In summary, these results showed the roles of BCO1-AS in the regulation of inflammatory in turbot, which provided valuable information for further understanding the immune regulation network of lncRNA in teleost fish.
Collapse
Affiliation(s)
- Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Xue X, Eslamloo K, Caballero-Solares A, Katan T, Umasuthan N, Taylor RG, Fast MD, Andreassen R, Rise ML. Characterization of the impact of dietary immunostimulant CpG on the expression of mRNA biomarkers involved in the immune responses in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109840. [PMID: 39153579 DOI: 10.1016/j.fsi.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Infectious diseases have significantly impacted Atlantic salmon aquaculture worldwide. Modulating fish immunity with immunostimulant-containing functional feeds could be an effective strategy in mitigating disease problems. Previously, we characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida bacterin on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. A set of miRNA biomarkers of Atlantic salmon head kidney responding to pIC and/or bacterin immune stimulations was identified (Xue et al., 2019) [1]. Herein, we report a complementary qPCR study that investigated the impact of the pIC, bacterin and dietary CpG on the expression of immune-relevant mRNAs (n = 31) using the same samples as in the previous study (Xue et al., 2019) [1]. Twenty-six of these genes were predicted target transcripts of the pIC- and/or bacterin-responsive miRNAs identified in the earlier study. The current data showed that pIC and/or bacterin stimulations significantly modulated the majority of the qPCR-analyzed genes involved in various immune pathways. Some genes responded to both stimulations (e.g. tnfa, il10rb, ifng, irf9, cxcr3, campb) while others appeared to be stimulation specific [e.g. irf3, irf7a, il1r1, mxa, mapk3 (pIC only); clra (bacterin only)]. A. salmonicida bacterin stimulation produced a strong inflammatory response (e.g. higher expression of il1b, il8a and tnfa), while salmon stimulated with pIC showed robust interferon responses (both type I and II). Furthermore, the current data indicated significant down-regulation of immune-relevant transcripts (e.g. tlr9, irf5, il1r1, hsp90ab1, itgb2) by dietary immunostimulant CpG, especially among pre-injection and PBS-injected fish. Together with our prior miRNA study, the present research provided complementary information on Atlantic salmon anti-viral and anti-bacterial immune responses and on how dietary CpG may modulate these responses.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, N-0130, Oslo, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
4
|
Ma X, Wang Q, Xu X, Zhang W, Zhang R, Jiang Y, Wang X, Man C. miR-214-PTEN pathway is a potential mechanism for stress-induced immunosuppression affecting chicken immune response to avian influenza virus vaccine. Virology 2024; 595:110094. [PMID: 38692133 DOI: 10.1016/j.virol.2024.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China
| | - Qiuyuan Wang
- College of Sports and Human Sciences, Harbin Sport University, Harbin, 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, 150001, PR China.
| |
Collapse
|
5
|
Zhao Y, Gu J, Wu R, Liu B, Dong P, Yu G, Zhao D, Li G, Yang Z. Characteristics of conserved microRNAome and their evolutionary adaptation to regulation of immune defense functions in the spleen of silver carp and bighead carp. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109312. [PMID: 38122951 DOI: 10.1016/j.fsi.2023.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Immune defense functions of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) have shown obvious evolutionary divergence. MiRNAs participate in the fine regulation of immune function. However, the evolutionary adaptation of miRNAs in the regulation of immune defense function is still poorly understood in silver carp and bighead carp. Here, small RNA libraries were constructed from the spleen tissue of one-year-old and three-year-old healthy silver carp and bighead carp, 424 and 422 known conserved miRNAs were respectively identified from the spleen of silver carp and bighead carp by bioinformatic analysis, which 398 were shared between the two species. These conserved miRNAs showed highly similar expression patterns between silver carp and bighead carp, but the abundance in spleen varied greatly in different species. Family analysis showed that miRNA families including mir-8, mir-7, mir-23, mir-338, mir-30, mir-27, mir-221, mir-19, mir-181, mir-17, mir-15, mir-148, mir-130, mir-10 and let-7 were the main miRNAs in the spleen of silver carp and bighead carp. 27 and 51 significant differentially expressed (SDE) miRNAs were identified from silver carp and bighead carp, respectively. Evolution analysis for the predicted target genes of SDE-miRNAs showed that ten biological processes such as blood coagulation, cell adhesion mediated by integrin and adaptive immune response were positively selected. In addition, immune genes including TLR3, NFATC3, MALT1, B2M, GILT and MHCII were positively selected only in silver carp, and they were specifically targeted by the SDE-miRNAs including miR-9-5p, miR-196a-5p, miR-375, miR-122, miR-722, miR-132-3p, miR-727-5p, miR-724, miR-19d-5p and miR-138-5p, respectively. PLA2G4 in Fc epsilon RI signaling pathway was positively selected only in bighead carp and was specifically targeted by the SDE-miRNAs including miR-222b, miR-22b-5p, miR-15c, miR-146a, miR-125c-3p, miR-221-5p, miR-2188-5p, miR-142a-3p, miR-212, miR-138-5p and miR-15b-5p. In particular, SDE-miRNAs such as miR-144-3p, miR-2188-3p, miR-731, miR-363-3p and miR-218b could simultaneously target multiple evolutionarily differentiated immune-related genes. These results indicated that in the spleen of silver carp and bighead carp, conserved miRNAs have obvious evolutionary adaptations in the regulation of immune defense function. The results of this study can provide valuable resources for further revealing themechanism of miRNA in the formation of resistance traits evolution between silver carp and bighead carp.
Collapse
Affiliation(s)
- Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, PR China.
| | - Jinxing Gu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Ran Wu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Pengsheng Dong
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Daoquan Zhao
- Research Station for Field Scientific Observation of Aquatic Organisms in Yiluo River, Yellow River Basin, Lushi, Henan Province, 472200, PR China.
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Zhenjiang Yang
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| |
Collapse
|
6
|
Verleih M, Visnovska T, Nguinkal JA, Rebl A, Goldammer T, Andreassen R. The Discovery and Characterization of Conserved and Novel miRNAs in the Different Developmental Stages and Organs of Pikeperch ( Sander lucioperca). Int J Mol Sci 2023; 25:189. [PMID: 38203361 PMCID: PMC10778745 DOI: 10.3390/ijms25010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Marieke Verleih
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0424 Oslo, Norway
| | - Julien A. Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway;
| |
Collapse
|
7
|
Cadonic IG, Heath JW, Dixon B, Craig PM. Diploid and triploid Chinook salmon (Oncorhynchus tshawytscha) have altered microRNA responses in immune tissues after infection with Vibrio anguillarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101121. [PMID: 37634278 DOI: 10.1016/j.cbd.2023.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Production of sterile fishes through artificial retention of a third set of chromosomes (triploidy) is a sustainable alternative for aquaculture since it reduces escapee pressure on wild populations. However, these fishes have reduced survival in stressful conditions and in response to infection. In this study, the impact of Vibrio anguillarum infection on diploid and triploid Chinook salmon (Oncorhynchus tshawytscha) was investigated to identify if there was any significant immune regulation by microRNAs (miRNA). Small RNAs from hindgut, head kidney, and spleen were sequenced to determine if miRNA transcript abundance was altered due to ploidy and infection in nine-month old full-sibling diploids and triploids. All three tissues had differentially expressed miRNA prior to infection, indicating subtle changes in epigenetic regulation due to increased ploidy. Additionally, miRNA were altered by infection, but there was only a difference in spleen miRNA expression between diploids and triploids at three days of infection. Furthermore, one miRNA (ssa-miR-2188-3p) was confirmed as having an altered response to infection in triploids compared to diploids, implicating potential immune dysregulation due to increased ploidy. The miRNAs identified in this study are predicted to target immune pathways, providing evidence for their importance in regulating responses to pathogens. This study is the first to investigate how increased ploidy alters miRNA expression in response to infection. Additionally, it provides evidence for epigenetic dysregulation in triploid fishes, which may contribute to their poor performance in response to stress.
Collapse
Affiliation(s)
- Ivan G Cadonic
- Dept. of Biology, University of Waterloo, Waterloo, ON, Canada. https://twitter.com/@IvanCadonic
| | - John W Heath
- Yellow Island Aquaculture Limited, Heriot Bay, BC. Canada
| | - Brian Dixon
- Dept. of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Paul M Craig
- Dept. of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
8
|
Zhong S, Ma X, Jiang Y, Qiao Y, Zeng M, Huang L, Huang G, Zhao Y, Chen X. MicroRNA sequencing analysis reveals injury-induced immune responses of Scylla paramamosain against cheliped autotomy. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109055. [PMID: 37666314 DOI: 10.1016/j.fsi.2023.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
During pond culture or intensive culture system of crabs (mainly Eriocheir sinensis, Portunus trituberculatus and Scylla paramamosain), high-density farming has typically contributed to a higher limb autotomy level in juvenile animals, especially in S. paramamosain which has a high level of cannibalism. Due to the high limb autotomy level, the survival and growth rates in S. paramamosain farming are restricted, which limit the growth of the mud crab farming industry. MicroRNAs (miRNAs) are small noncoding RNAs that regulate a series of biological processes including innate immune responses by post-transcriptional suppression of their target genes. MiRNAs are believed to be crucial for innate immune process of host wound healing. Many miRNAs have been verified to be required in host immune responses to repair wound and to defense pathogen after tissue damage. However, to our best knowledge, the miRNAs functions of crustacean innate immune reactions against injury induced by limb autotomy have not been studied yet. Here in this study, for the first time, miRNAs involved in the S. paramamosain immune reactions against injury induced by cheliped autotomy were obtained by high-throughput sequencing. A total of 575 miRNAs (518 known miRNAs and 57 novel predicted miRNAs) were obtained, of which 141 differentially expressed microRNAs (93 up-regulated microRNAs and 48 down-regulated microRNAs) were revealed to be modified against cheliped autotomy, and the qPCR results of randomly selected miRNAs confirmed the expression patterns in the miRNAs sequencing data. Numerous immune-related target genes associated with innate immune system were mediated by miRNAs to induce host humoral immune and cellular immune defense to minimize acute physical damage. Furthermore, the genes expression in hemolymph coagulation and melanization pathways, as well as Toll and Imd signaling pathways were mediated by miRNAs to activate host immune responses including melanization and antimicrobial peptides for rapid wound healing and killing invaded pathogens. These results will help to understand injury-induced immune responses in crabs and to develop an effective control strategy of autotomy rate in crabs farming.
Collapse
Affiliation(s)
- Shengping Zhong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Engineering Technology Research Center for Marine Aquaculture, Guangxi Institute of Oceanology Co., Ltd., Beihai, 536000, China.
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Yan Jiang
- Guangxi Engineering Technology Research Center for Marine Aquaculture, Guangxi Institute of Oceanology Co., Ltd., Beihai, 536000, China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Mengqing Zeng
- Guangxi Engineering Technology Research Center for Marine Aquaculture, Guangxi Institute of Oceanology Co., Ltd., Beihai, 536000, China
| | - Lianghua Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Guoqiang Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530200, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530200, China.
| |
Collapse
|
9
|
Li Y, Chen L, Li Y, Deng P, Yang C, Li Y, Liao L, Zhu Z, Wang Y, Huang R. miR-2188-5p promotes GCRV replication by the targeted degradation of klf2a in Ctenopharyngodon idellus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104516. [PMID: 36084755 DOI: 10.1016/j.dci.2022.104516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Studies on host immunity evasion by aquatic viruses have largely focused on coding genes. There is accumulating evidence for the important biological functions of non-coding miRNAs in virus-host interactions. The regulatory functions of non-coding miRNAs in fish reovirus-host interactions remain unknown. Here, miR-2188-5p in grass carp (Ctenopharyngodon idellus), a miRNA specific to teleosts, was predicted to target the 3' UTR of the transcription factor klf2a. A correlation analysis and dual-luciferase reporter assay revealed that miR-2188-5p could induce the degradation of klf2a. The expression of miR-2188-5p induced the degradation of klf2a in a dose-dependent manner, suppressing the type I interferon response and promoting grass carp reovirus (GCRV) replication. As determined by a co-expression analysis, klf2a inhibited viral infection when miR-2188-5p was overexpressed. The targeted degradation of klf2a by miR-2188-5p could inhibit the type I interferon response and promote the replication of GCRV; however, this targeted degradation ability was insufficient to fully inhibit GCRV infection. These results provide novel insights into the regulatory effects and biological functions of non-coding miRNAs in fish-virus interactions.
Collapse
Affiliation(s)
- Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, 430207, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Liu H, Yu H, Yu YY, Bao XX, Zhou JH, Zeng WW, Peng ZQ, Yang Y, Duan N. miRNA and mRNA expression analysis reveals the effects of continuous heat stress on antibacterial responses to Aeromonas hydrophila lipopolysaccharide (LPS) in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 130:332-341. [PMID: 36115605 DOI: 10.1016/j.fsi.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Grass carp (Ctenopharyngodon idella) is the largest economic fish in freshwater culture in China, which is predisposed to infectious diseases under high temperature. Under the background of global warming, the industrialization of the Pearl River Delta region has led to aggravated thermal pollution, which has increasingly serious impacts on the aquatic ecological environment. This will result in more frequent exposure of grass carp to overheated water temperatures. Previous studies have only identified the regulatory genes of fish that respond to pathogens or temperature stress, but the transcriptional response to both is unknown. In this study, the histopathological analysis showed heat stress exacerbated spleen damage induced by Aeromonas hydrophila. The transcriptional responses of the spleens from A. hydrophila lipopolysaccharide (LPS) -injected grass carp undergoing heat stress and at normal temperatures for 6, 24, and 72 h were investigated by mRNA and microRNA sequencing. We identified 28, 20, and 141 differentially expressed (DE) miRNAs and 126, 383, and 4841 DE mRNAs between the two groups after 6, 24, and 72 h, respectively. There were 67 DE genes mainly involved in the cytochrome P450 pathway, antioxidant defense, inflammatory response, pathogen recognition pathway, antigen processing and presentation, and the ubiquitin-proteasome system. There were 5 DE miRNAs involved in regulating apoptosis and inflammation. We further verified 17 DE mRNAs and 5 DE miRNAs using quantitative real-time PCR. Based on miRNAs and mRNAs analysis, continuous heat stress will affect the antibacterial responses of grass carp spleens, resulting in aggravation of spleen injury. Together, these results provide data for further understanding of the decreased tolerance of fish to pathogen infection in persistent high-temperature environments.
Collapse
Affiliation(s)
- Hua Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China; School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Ying-Ying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Xiao-Xue Bao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Jun-Hao Zhou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Wei-Wei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Zhong-Qin Peng
- GuangDong MaoMing Agriculture and Forestry Techical College, Maoming, Guangdong, 525024, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China.
| | - Ning Duan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| |
Collapse
|
11
|
BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats. Stem Cell Res Ther 2022; 13:295. [PMID: 35841008 PMCID: PMC9284827 DOI: 10.1186/s13287-022-02975-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02975-0.
Collapse
|
12
|
Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2022; 23:168. [PMID: 35232381 PMCID: PMC8887032 DOI: 10.1186/s12864-022-08387-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. Results In this study, RNA sequencing (RNA–Seq) and small RNA sequencing (sRNA–Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA–Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K–Akt signaling pathway, Neuroactive ligand–receptor interaction and Jak–STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let–7e, miR–142a–5p, miR–144–3p, miR–23a–3p and miR–223. Conclusions Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08387-x.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
13
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
14
|
Gao C, Cai X, Cao M, Fu Q, Yang N, Liu X, Wang B, Li C. Comparative analysis of the miRNA-mRNA regulation networks in turbot (Scophthalmus maximus L.) following Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104164. [PMID: 34129850 DOI: 10.1016/j.dci.2021.104164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs could not only regulate posttranscriptional silencing of target genes in eukaryotic organisms, but also have positive effect on their target genes as well. These microRNAs have been reported to be involved in mucosal immune responses to pathogen infection in teleost. Therefore, we constructed the immune-related miRNA-mRNA networks in turbot intestine following Vibrio anguillarum infection. In our results, 1550 differentially expressed (DE) genes and 167 DE miRNAs were identified. 113 DE miRNAs targeting 89 DE mRNAs related to immune response were used to construct miRNA-mRNA interaction networks. Functional analysis showed that target genes were associated with synthesis and degradation of ketone bodies, mucin type O-Glycan biosynthesis, homologous recombination, biotin metabolism, and intestinal immune network for IgA production that were equivalent to the function of IgT and IgM in fish intestine. Finally, 10 DE miRNAs and 7 DE mRNAs were selected for validating the accuracy of high-throughput sequencing results by qRT-PCR. The results of this study will provide valuable information for the elucidation of the regulation mechanisms of miRNA-mRNA interactions involved in disease resistance in teleost mucosal immune system.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Zhao N, Jia L, Li G, He X, Zhu C, Zhang B. Comparative Mucous miRomics in Cynoglossus semilaevis Related to Vibrio harveyi Caused Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:766-776. [PMID: 34480240 DOI: 10.1007/s10126-021-10062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Epidermal mucus is an important barrier and regulating mediator in fish. MicroRNAs (miRNAs) are proved to be involved in various biological processes, also as promising biomarkers for disease diagnosis. Vibrio harveyi has long been a noticeable bacterial pathogen in Cynoglossus semilaevis aquaculture. To find the evidence whether there are indicating miRNAs in mucus and whether the miRNAs are related to infections caused by V. harveyi, miRNA profiles of mucus from V. harveyi infected fish and healthy controls were screened by small RNA sequencing and verified by quantitative real-time PCR. This is the first report about miRNA profiling of flatfish mucus, aiming at illustrating the pathogenesis of V. harveyi caused infection and developing disease-related biomarkers. The results revealed significant differences in expression levels of some miRNAs between infected fish and healthy ones. Three hundred differentially expressed miRNAs were obtained after filtering through FC > 2 or FC < 0.5 and most of the differential miRNAs were downregulated. After verification through qRT-PCR, four unique miRNAs, dre-miR-451, dre-miR-184, dre-miR-205-5p > ssa-miR-205b-5p, and dre-miR-181a-5p > ssa-miR-181a-5p, were identified as V. harveyi infection-related signatures, consistent with sequencing trend. The expression levels of these four miRNAs in the infected fish were all significantly lower than controls. These miRNAs in mucus could be used to differentiate diseased and healthy fish in a non-invasive way with practical value for large-scale disease screening. They also provided new insights into the mechanism underlying the bacterial infections in fish.
Collapse
Affiliation(s)
- Na Zhao
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences At, Shanghai Ocean University, Ocean University, Shanghai, 201306, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, 300200, China
| | - Guangli Li
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, 300200, China
| | - Chunhua Zhu
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Bo Zhang
- Guangdong Research Centre On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, 524000, China.
- Tianjin Fisheries Research Institute, Tianjin, 300200, China.
| |
Collapse
|
16
|
Zhou W, Xie Y, Li Y, Xie M, Zhang Z, Yang Y, Zhou Z, Duan M, Ran C. Research progress on the regulation of nutrition and immunity by microRNAs in fish. FISH & SHELLFISH IMMUNOLOGY 2021; 113:1-8. [PMID: 33766547 DOI: 10.1016/j.fsi.2021.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved, endogenous non-coding single-stranded small RNA molecules with a length of 18-25 nucleotides. MiRNAs can negatively regulate the target gene through complementary pairing with the mRNA. It has been more than 20 years since the discovery of miRNA molecules, and many achievements have been made in fish research. This paper reviews the research progress in the regulation of fish nutrition and immunity by miRNAs in recent years. MiRNAs regulate the synthesis of long-chain polyunsaturated fatty acids, and are involved in the metabolism of glucose, lipids, as well as cholesterol in fish. Moreover, miRNAs play various roles in antibacterial and antiviral immunity of fish. They can promote the immune response of fish, but may also participate in the immune escape mechanism of bacteria or viruses. One important aspect of miRNAs regulation on fish immunity is mediated by targeting pattern recognition receptors and downstream signaling factors. Together, current results indicate that miRNAs are widely involved in the complex regulatory network of fish. Further studies on fish miRNAs may deepen our understanding of the regulatory network of fish nutrition and immunity, and have the potential to promote the development of microRNA-based products and detection reagents that can be applied in aquaculture industry.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
17
|
Sex bias miRNAs in Cynoglossus semilaevis could play a role in transgenerational inheritance. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100853. [PMID: 33992844 DOI: 10.1016/j.cbd.2021.100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Alterations of non-coding RNA profiling in spermatozoa are candidate mechanisms related to changes in paternal environment and progeny. Transgenerational inheritance of sex in pseudomales of Cynoglossus semilaevis, a fish with significant sex dimorphism, is a typical example of non-Mendelian inheritance. In the present study, miRNA profiles of spermatozoa were compared between male and pseudomale of C. semilaevis. Differential miRNAs in sperm from F0 and F1 generation also provides clues for revealing the possible role of non-coding RNA mediated transgenerational inheritance. Four sexual bias miRNAs, dre-miR-26a-5p, dre-miR-27b-3p, dre-miR-125b-5p,pol-199a-5p, were identified and verified in F0 and F1 generation of C. semilaevis. All of them were highly expressed in male sperm compared with pseudomale sperm. Function of target genes indicates that target genes of these differential RNAs are highly correlated with sex differentiation, gametogenesis and maintenance of secondary sexual characteristics. In a word, identification of epigenetic markers in gametes has great prospects in predicting susceptibility and properties in offsprings, and providing an indicator of parentalgenetic property.
Collapse
|
18
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
19
|
Wang Q, Liu Y, Wu Y, Wen J, Man C. Immune function of miR-214 and its application prospects as molecular marker. PeerJ 2021; 9:e10924. [PMID: 33628646 PMCID: PMC7894119 DOI: 10.7717/peerj.10924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are a class of evolutionary conserved non-coding small RNAs that play key regulatory roles at the post-transcriptional level. In recent years, studies have shown that miR-214 plays an important role in regulating several biological processes such as cell proliferation and differentiation, tumorigenesis, inflammation and immunity, and it has become a hotspot in the miRNA field. In this review, the regulatory functions of miR-214 in the proliferation, differentiation and functional activities of immune-related cells, such as dendritic cells, T cells and NK cells, were briefly reviewed. Also, the mechanisms of miR-214 involved in tumor immunity, inflammatory regulation and antivirus were discussed. Finally, the value and application prospects of miR-214 as a molecular marker in inflammation and tumor related diseases were analyzed briefly. We hope it can provide reference for further study on the mechanism and application of miR-214.
Collapse
Affiliation(s)
- Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
20
|
Jin X, Morro B, Tørresen OK, Moiche V, Solbakken MH, Jakobsen KS, Jentoft S, MacKenzie S. Innovation in Nucleotide-Binding Oligomerization-Like Receptor and Toll-Like Receptor Sensing Drives the Major Histocompatibility Complex-II Free Atlantic Cod Immune System. Front Immunol 2020; 11:609456. [PMID: 33362798 PMCID: PMC7759675 DOI: 10.3389/fimmu.2020.609456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
The absence of MHC class II antigen presentation and multiple pathogen recognition receptors in the Atlantic cod has not impaired its immune response however how underlying mechanisms have adapted remains largely unknown. In this study, ex vivo cod macrophages were challenged with various bacterial and viral microbe-associated molecular patterns (MAMP) to identify major response pathways. Cytosolic MAMP-PRR pathways based upon the NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) were identified as the critical response pathways. Our analyses suggest that internalization of exogenous ligands through scavenger receptors drives both pathways activating transcription factors like NF-kB (Nuclear factor-kappa B) and interferon regulatory factors (IRFs). Further, ligand-dependent differential expression of a unique TLR25 isoform and multiple NLR paralogues suggests (sub)neofunctionalization toward specific immune defensive strategies. Our results further demonstrate that the unique immune system of the Atlantic cod provides an unprecedented opportunity to explore the evolutionary history of PRR-based signaling in vertebrate immunity.
Collapse
Affiliation(s)
- Xingkun Jin
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,College of Oceanography, Hohai University, Nanjing, China
| | - Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Visila Moiche
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
21
|
Smith NC, Wajnberg G, Chacko S, Woldemariam NT, Lacroix J, Crapoulet N, Ayre DC, Lewis SM, Rise ML, Andreassen R, Christian SL. Characterization of miRNAs in Extracellular Vesicles Released From Atlantic Salmon Monocyte-Like and Macrophage-Like Cells. Front Immunol 2020; 11:587931. [PMID: 33262769 PMCID: PMC7686242 DOI: 10.3389/fimmu.2020.587931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) participate in cell-cell communication via transfer of molecular cargo including genetic material like miRNAs. In mammals, it has previously been established that EV-mediated transfer of miRNAs can alter the development or function of immune cells, such as macrophages. Our previous research revealed that Atlantic salmon head kidney leukocytes (HKLs) change their morphology, phagocytic ability and miRNA profile from primarily “monocyte-like” at Day 1 to primarily “macrophage-like” at Day 5 of culture. Therefore, we aimed to characterize the miRNA cargo packaged in EVs released from these two cell populations. We successfully isolated EVs from Atlantic salmon HKL culture supernatants using the established Vn96 peptide-based pull-down. Isolation was validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. RNA-sequencing identified 19 differentially enriched (DE) miRNAs packaged in Day 1 versus Day 5 EVs. Several of the highly abundant miRNAs, including those that were DE (e.g. ssa-miR-146a, ssa-miR-155 and ssa-miR-731), were previously identified as DE in HKLs and are associated with macrophage differentiation and immune response in other species. Interestingly, the abundance relative of the miRNAs in EVs, including the most abundant miRNA (ssa-miR-125b), was different than the miRNA abundance in HKLs, indicating selective packaging of miRNAs in EVs. Further study of the miRNA cargo in EVs derived from fish immune cells will be an important next step in identifying EV biomarkers useful for evaluating immune cell function, fish health, or response to disease.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | | | | | - D Craig Ayre
- Department of Molecular Sciences, University of Medicine and Health Sciences, Basseterre, Saint Kitts and Nevis
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Biochemistry, Memorial University, St. John's, NL, Canada
| |
Collapse
|
22
|
Sun YL, Guan XL, Zhang P, Li MF, Zhang J, Sun L. Pol-miR-363-3p plays a significant role in the immune defense of Japanese flounder Paralichthys olivaceus against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2020; 104:439-446. [PMID: 32561457 DOI: 10.1016/j.fsi.2020.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we examined the function of a Japanese flounder (Paralichthys olivaceus) microRNA (miRNA), pol-miR-363-3p. We found that pol-miR-363-3p targets an ubiquitin-specific protease (USP), USP32. USP is a family of deubiquitinating enzymes essential to the functioning of the ubiquitin proteasome system. In mammals, USP32 is known to be associated with cancer and immunity. In fish, the function of USP32 is unknown. We found that flounder USP32 (PoUSP32) expression was detected in the major tissues of flounder, particularly intestine. In vitro and in vivo studies showed that pol-miR-363-3p directly regulated PoUSP32 in a negative manner by interaction with the 3'UTR of PoUSP32. Overexpression of pol-miR-363-3p or interference with PoUSP32 expression in flounder cells significantly blocked Streptococcus iniae infection. Consistently, in vivo knockdown of pol-miR-363-3p or overexpression of PoUSP32 enhanced dissemination of S. iniae in flounder tissues, whereas in vivo knockdown of PoUSP32 inhibited S. iniae dissemination. In addition, pol-miR-363-3p knockdown also significantly promoted the tissue dissemination of the viral pathogen megalocytivirus, which, as well as S. iniae, regulated pol-miR-363-3p expression. Together these results revealed an important role of pol-miR-363-3p in flounder immune defense against bacterial and viral infection.
Collapse
Affiliation(s)
- Yan-Ling Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
23
|
Smith NC, Christian SL, Woldemariam NT, Clow KA, Rise ML, Andreassen R. Characterization of miRNAs in Cultured Atlantic Salmon Head Kidney Monocyte-Like and Macrophage-Like Cells. Int J Mol Sci 2020; 21:ijms21113989. [PMID: 32498303 PMCID: PMC7312525 DOI: 10.3390/ijms21113989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages are among the first cells to respond to infection and disease. While microRNAs (miRNAs) are involved in the process of monocyte-to-macrophage differentiation in mammals, less is known in teleost fish. Here, Atlantic salmon head kidney leukocytes (HKLs) were used to study the expression of miRNAs in response to in vitro culture. The morphological analysis of cultures showed predominantly monocyte-like cells on Day 1 and macrophage-like cells on Day 5, suggesting that the HKLs had differentiated from monocytes to macrophages. Day 5 HKLs also contained a higher percentage of phagocytic cells. Small RNA sequencing and qPCR analysis were applied to examine the miRNA diversity and expression. There were 370 known mature Atlantic salmon miRNAs in HKLs. Twenty-two miRNAs (15 families) were downregulated while 44 miRNAs (25 families) were upregulated on Day 5 vs. Day 1. Mammalian orthologs of many of the differentially expressed (DE) miRNAs are known to regulate macrophage activation and differentiation, while the teleost-specific miR-2188, miR-462 and miR-731 were also DE and are associated with immune responses in fish. In silico predictions identified several putative target genes of qPCR-validated miRNAs associated with vertebrate macrophage differentiation. This study identified Atlantic salmon miRNAs likely to influence macrophage differentiation, providing important knowledge for future functional studies.
Collapse
Affiliation(s)
- Nicole C. Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John’s, NL A1C 5S7, Canada; (N.C.S.); (K.A.C.)
- Correspondence: ; Tel.: +1-709-864-7478
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
24
|
Ignatz EH, Braden LM, Benfey TJ, Caballero-Solares A, Hori TS, Runighan CD, Fast MD, Westcott JD, Rise ML. Impact of rearing temperature on the innate antiviral immune response of growth hormone transgenic female triploid Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2020; 97:656-668. [PMID: 31891812 DOI: 10.1016/j.fsi.2019.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.
Collapse
Affiliation(s)
- Eric H Ignatz
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada; Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Laura M Braden
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Tillmann J Benfey
- University of New Brunswick, Department of Biology, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| | - Albert Caballero-Solares
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Tiago S Hori
- Center for Aquaculture Technologies Canada, 20 Hope Street, Souris, PE, C0A 2B0, Canada.
| | - C Dawn Runighan
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada.
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Jillian D Westcott
- Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
25
|
Guan XL, Zhang BC, Sun L. Japanese flounder pol-miR-3p-2 suppresses Edwardsiella tarda infection by regulation of autophagy via p53. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103531. [PMID: 31668931 DOI: 10.1016/j.dci.2019.103531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that play vital roles in diverse physiological processes including immunity. In this study, we investigated the regulatory mechanism and function of a novel Japanese flounder (Paralichthys olivaceus) miRNA, pol-miR-3p-2. pol-miR-3p-2 was responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. pol-miR-3p-2 negatively regulated the expression of p53 through interaction with the 3'UTR of p53. Overexpression of pol-miR-3p-2 promoted autophagy, resulting in augmented production of LC3-II, while knockdown of p53 increased the level of beclin, a key factor of autophagy. In vivo and in vitro studies showed that E. tarda infection induced autophagy in flounder, and pol-miR-3p-2 inhibited the infectivity of E. tarda. Together these results indicate that pol-miR-3p-2 regulates autophagy through the target gene p53, thus revealing a regulatory link between p53 and autophagy in teleost, and that pol-miR-3p-2 plays an important role in the immune defense against E. tarda.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
26
|
Xue X, Woldemariam NT, Caballero-Solares A, Umasuthan N, Fast MD, Taylor RG, Rise ML, Andreassen R. Dietary Immunostimulant CpG Modulates MicroRNA Biomarkers Associated with Immune Responses in Atlantic Salmon ( Salmo salar). Cells 2019; 8:E1592. [PMID: 31817907 PMCID: PMC6952924 DOI: 10.3390/cells8121592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in fish immune responses. However, no study has previously characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida (ASAL) on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. To this end, first, we performed small RNA deep sequencing and qPCR analyses to identify and confirm pIC- and/or ASAL-responsive miRNAs in the head kidney of salmon fed a control diet. DESeq2 analyses identified 12 and 18 miRNAs differentially expressed in pIC and ASAL groups, respectively, compared to the controls. Fifteen of these miRNAs were studied by qPCR; nine remained significant by qPCR. Five miRNAs (miR-27d-1-2-5p, miR-29b-2-5p, miR-146a-5p, miR-146a-1-2-3p, miR-221-5p) were shown by qPCR to be significantly induced by both pIC and ASAL. Second, the effect of CpG-containing functional feed on miRNA expression was investigated by qPCR. In pre-injection samples, 6 of 15 miRNAs (e.g., miR-181a-5-3p, miR-462a-3p, miR-722-3p) had significantly lower expression in fish fed CpG diet than control diet. In contrast, several miRNAs (e.g., miR-146a-1-2-3p, miR-192a-5p, miR-194a-5p) in the PBS- and ASAL-injected groups had significantly higher expression in CpG-fed fish. Multivariate statistical analyses confirmed that the CpG diet had a greater impact on miRNA expression in ASAL-injected compared with pIC-injected fish. This study identified immune-relevant miRNA biomarkers that will be valuable in the development of diets to combat infectious diseases of salmon.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Nardos Tesfaye Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Mark D. Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
27
|
Yang D, Xiao J, Wang B, Li L, Kong X, Liao J. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109927. [DOI: 10.1016/j.msec.2019.109927] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
|
28
|
Inkpen SM, Solbakken MH, Jentoft S, Eslamloo K, Rise ML. Full characterization and transcript expression profiling of the interferon regulatory factor (IRF) gene family in Atlantic cod (Gadus morhua). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:166-180. [PMID: 30928323 DOI: 10.1016/j.dci.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Atlantic cod (Gadus morhua) represents a unique immune system among teleost fish, making it a species of interest for immunological studies, and especially for investigating the evolutionary history of immune gene families. The interferon regulatory factor (IRF) gene family encodes transcription factors which function in the interferon pathway, but also in areas including leukocyte differentiation, cell growth, autoimmunity, and development. We previously characterized several IRF family members in Atlantic cod (Irf4a, Irf4b, Irf7, Irf8, and two Irf10 splice variants) at the cDNA and putative amino acid levels, and in the current study we took advantage of the new and improved Atlantic cod genome assembly in combination with rapid amplification of cDNA ends (RACE) to characterize the remaining family members (i.e. Irf3, Irf5, Irf6, Irf9, and two Irf2 splice variants). Real-time quantitative PCR (QPCR) was used to investigate constitutive expression of all IRF transcripts during embryonic development, suggesting several putative maternal transcripts, and potential stage-specific roles. QPCR studies also showed 11 of 13 transcripts were responsive to stimulation with poly(I:C), while 6 of 13 transcripts were responsive to lipopolysaccharide (LPS) in Atlantic cod head kidney macrophages, indicating roles for cod IRF family members in both antiviral and antibacterial responses. This study is the first to investigate expression of the complete IRF family in Atlantic cod, and suggests potential novel roles for several of these transcription factors within immunity as well as in early development of this species.
Collapse
Affiliation(s)
- Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
29
|
Gao C, Cai X, Fu Q, Yang N, Song L, Su B, Tan F, Liu B, Li C. Dynamics of MiRNA Transcriptome in Turbot (Scophthalmus maximus L.) Intestine Following Vibrio anguillarum Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:550-564. [PMID: 31111338 DOI: 10.1007/s10126-019-09903-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs, which could bind to the 3'-untranslated regions of their target mRNAs to regulate gene expression in various biological processes, including immune-regulated signaling pathways. Turbot (Scophthalmus maximus L.), an important commercial fish species in China, has been suffering with Vibrio anguillarum infection resulted in dramatic economic loss. Therefore, we investigated the expression profiles of miRNAs, as well as the immune-related miRNA-mRNA pairs in turbot intestine at 1 h, 4 h, and 12 h following V. anguillarum infection. As a result, 266 predicted novel miRNAs and 283 conserved miRNAs belonging to 92 miRNA families were detected. A total of 44 miRNAs were differentially expressed in the intestine following V. anguillarum infection. Following prediction, the potential target genes of differentially expressed miRNAs were grouped into a wide range of functional categories, including immune defense/evasion, inflammatory responses, RIG-I signaling pathway, and Toll-like receptor signaling pathway. Moreover, we selected 15 differentially expressed immune genes and their related differentially expressed miRNAs to construct an interaction network for V. anguillarum infection in turbot. These results suggested that in teleost, as in higher vertebrates, miRNAs prominently contribute to immune responses, protecting the host against infection. In addition, this is the first report of comprehensive identification of turbot miRNAs being differentially regulated in the intestine related to V. anguillarum infection. Our results provided an opportunity for further understanding of the molecular mechanisms of miRNA regulation in turbot host-pathogen interactions.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baining Liu
- Menaul School Qingdao, Qingdao, 266200, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Zhang B, Zhao N, Jia L, Peng K, Che J, Li K, He X, Sun J, Bao B. Seminal Plasma Exosomes: Promising Biomarkers for Identification of Male and Pseudo-Males in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:310-319. [PMID: 30863906 DOI: 10.1007/s10126-019-09881-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
In mammals, small RNAs enclosed in exosomes have been identified as appropriate signatures for disease diagnosis. However, there is limited information on exosomes derived from seminal plasma, and few studies have reported analyzed the composition of exosomes and enclosed small RNAs in fish. The half-smooth tongue sole (Cynoglossus semilaevis) is an economically important fish for aquaculture, and it exhibits sexual dimorphism: the female gender show higher growth rates and larger body sizes than males. Standard karyotype analysis and artificial gynogenesis tests have revealed that this species uses heterogametic sex determination (ZW/ZZ), and so-called sex-reversed pseudo-males exist. In this study, we successfully identified exosomes in the seminal plasma of C. semilaevis; to the best of our knowledge, this is the first report of exosomes in fish seminal plasma. Analysis of the nucleotide composition showed that miRNAs were dominant in the exosomes, and the miRNAs were sequenced and compared to identify signature miRNAs as sexual biomarkers. Moreover, target genes of the signature miRNAs were predicted by sequence matching and annotation. Finally, four miRNAs (dre-miR-141-3P, dre-miR-10d-5p, ssa-miR-27b-3p, and ssa-miR-23a-3p) with significant differential expression in the males and pseudo-males were selected from the signature candidate miRNAs as markers for sex identification, and their expression profiles were verified using real-time quantitative PCR. Our findings could provide an effective detection method for sex differentiation in fish.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Sheng Fa Biotechnology Co, Ltd, Tianjin, China
| | - Lei Jia
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Kang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kunming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoxu He
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Jinsheng Sun
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
31
|
Guan XL, Zhang BC, Sun L. pol-miR-194a of Japanese flounder (Paralichthys olivaceus) suppresses type I interferon response and facilitates Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:220-225. [PMID: 30641186 DOI: 10.1016/j.fsi.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that participate in diverse cellular processes including microbial invasion and immune defense. In a previous study, we identified a large amount of Japanese flounder (Paralichthys olivaceus) miRNAs responsive to megalocytivirus infection. In the present study, we examined the function of one of these miRNAs, pol-miR-194a, in association with the infectivity of Edwardsiella tarda, an intracellular bacterial pathogen to many fish species including flounder. We found that pol-miR-194a was induced in expression to a significant extent in the spleen, liver, and gill of Japanese flounder infected by E. tarda. Transfection of flounder cells with pol-miR-194a mimic significantly enhanced the intracellular replication of E. tarda. pol-miR-194a was able to interact specifically with the 3'UTR of IRF7 in a negative manner, resulting in inhibition of IRF7 expression. Consistently, pol-miR-194a significantly blocked the promoter activity of type Ⅰ interferon. Taken together, these results indicate that pol-miR-194a plays an important role in the regulation of flounder immune response as well as microbial infection, and that pol-miR-194a probably serves as a target for E. tarda to manipulate and escape host immune defense.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
32
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
33
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Meng Y, Tian H, Hu Q, Liang H, Zeng L, Xiao H. MicroRNA repertoire and comparative analysis of Andrias davidianus infected with ranavirus using deep sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:108-114. [PMID: 29626489 DOI: 10.1016/j.dci.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Andrias davidianus is a large and economically important amphibian in China. Ranavirus infection causes serious losses in A. davidianus farming industry. MicroRNA mediated host-pathogen interactions are important in antiviral defense. In this study, five small-RNA libraries from ranavirus infected and non-infected A. davidianus spleens were sequenced using high throughput sequencing. The miRNA expression pattern, potential functions, and target genes were investigated. In total, 1356 known and 431 novel miRNAs were discovered. GO and KEGG analysis revealed that certain miRNA target genes are associated with apoptotic, signal pathway, and immune response categories. Analysis identified 82 downregulated and 9 upregulated differentially expressed miRNAs, whose putative target genes are involved in pattern-recognition receptor signaling pathways and immune response. These findings suggested miRNAs play key roles in A. davidianus's response to ranavirus and could provide a reference for further miRNA functional identification, leading to novel approaches to improve A. davidianus ranavirus resistance.
Collapse
Affiliation(s)
- Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China.
| |
Collapse
|
35
|
Salazar C, Marshall SH. Involvement of selected cellular miRNAs in the in vitro and in vivo infection of infectious salmon anemia virus (ISAV). Microb Pathog 2018; 123:353-360. [PMID: 30041004 DOI: 10.1016/j.micpath.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
Infectious salmon anemia virus (ISAV) is the causative agent of infectious salmon anemia (ISA), a relatively novel disease primarily affecting farmed salmon species, primarily in Salmo salar specimens, causing severe outbreaks in most producer countries. Although ISAV has been extensively studied at the molecular level, not much is known about the host/cell interaction at the small RNA level. MicroRNAs (miRNAs) are small, non-coding RNA that regulate mRNA expression at the post-transcriptional level. In recent years, the putative role of these molecules in host-pathogen interactions has drawn particular attention because of their pivotal involvement as regulatory elements in a number of eukaryotic organisms. Given the importance of the salmon industry in Chile, a deep understanding of the interaction between ISAV and its hosts is of importance. In the present work, we studied the kinetic expression of selected miRNAs during ISAV infection, both in vitro and in vivo. Based on initial experimental data derived from a small RNA-Seq analysis, a group of miRNAs that were differentially expressed in infected cells were selected for analysis. As a result, two miRNAs, miR-462a-5p and miR-125 b-5p, showed increased and decreased expression, respectively, during ISAV infection.
Collapse
Affiliation(s)
- Carolina Salazar
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|