1
|
Dadashi J, Ali Ghasemzadeh M, Alipour S, Zamani F. A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2
|
Farooqi ZH, Begum R, Naseem K, Wu W, Irfan A. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2020.1807797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Khalida Naseem
- Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Nanoarchitectured Cu based catalysts supported on alginate/glycyl leucine hybrid beads for tainted water treatment. Int J Biol Macromol 2022; 208:56-69. [PMID: 35278516 DOI: 10.1016/j.ijbiomac.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Water pollution reached worrying point due to different dye pollutants which demands an instant solution. One of the best ways to manage water pollutants is their reduction and decolorization to less-toxic and useful compounds. However, reduction process requires an effective, stable, and recyclable catalyst to reduce such pollutants more effectively. Metal nanoparticles (M0) are highly effective catalysts but separation of nanoparticles after reaction is difficult and requires a high-speed centrifugation. If loaded on polymer-beads, they can be easily separated from the reaction-mixture. Hearin, alginate/glycyl leucine (AGL) hybrid-beads were prepared, and copper nanoparticles (Cu0) were grown on it by simple process. M0/AGL bead catalysts were tested toward reducing various toxic compounds. Among all developed composite-beads, the catalytic performance of Cu0/AGL was highest in terms of reduction kinetics. After initial screening for different pollutants, Cu0/AGL was much more effective for MO reduction, thus, all optimized different parameters i.e., catalyst dosage, stability, amount of reducing-agent and recyclability were experimentally determined. The Cu0/AGL showed high-rate constants (kapp) of 0.7566 and 2.9506 min-1 depending on beads content. The reusability of the Cu0/AGL catalysts up to the 7th cycle has been checked. With the use of AGL as support for the Cu nanoparticles, not only the catalytic activity was retained for longer times during reusability, but it helped in their easy separation.
Collapse
|
4
|
Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. CHEMOSPHERE 2022; 288:132589. [PMID: 34678344 DOI: 10.1016/j.chemosphere.2021.132589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Nikhil Singh
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda-VPO, Bathinda, 151401, Punjab, 151001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamilnadu, Thiruvar, 610005, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
5
|
Sachi, Singh AP, Thirumal M. Fabrication of AgNi Nano-alloy-Decorated ZnO Nanocomposites as an Efficient and Novel Hybrid Catalyst to Degrade Noxious Organic Pollutants. ACS OMEGA 2021; 6:34771-34782. [PMID: 34963960 PMCID: PMC8697397 DOI: 10.1021/acsomega.1c05266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Contamination through industrial effluents is a major threat to the environment. Degradation of organic pollutants remains a major challenge, and semiconductor-based catalysis is reported to be a viable solution. Recently, AgNi bimetallic alloy nanoparticles attracted great attention with superior properties. We report the synthesis of AgNi nano-alloy particles immobilized over the surface of ZnO hexagonal rods through an in situ chemical co-reduction process to develop a novel AgNi@ZnO nanocomposite for catalytic applications. The crystal structure, phase purity, morphology, particle size, and other properties of the as-synthesized AgNi@ZnO nanocomposite were scrutinized using powder X-ray diffraction, scanning electron microscopy, Raman spectroscopy, energy-dispersive X-ray analysis, multipoint Brunauer-Emmett-Teller, and transmission electron microscopy. The composite exhibits excellent catalytic activity toward the reduction of nitroarenes and environment polluting organic dyes. The synthesized nanocomposite shows enhanced catalytic activity with an incredible reaction rate constant, noticeable low degradation time, and greater stability. The catalyst is easily recyclable and exhibits consecutive catalytic cycle usage.
Collapse
Affiliation(s)
- Sachi
- Department of Chemistry, University
of Delhi, Delhi 110007, India
| | | | | |
Collapse
|
6
|
Pawar PS, Lokhande AA, Nandanwar SU, Niphadkar PS, Bokade VV. Active nickel hollow nanosphere supported over SiO 2 catalyst for reduction of nitro compound. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1947424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Priyanka S. Pawar
- Catalysis and Inorganic Chemistry Division, CSIR – National Chemical Laboratory, Pune, India
- School of Nanoscience and Technology, Shivaji University, Kolhapur, India
| | - Aboli A. Lokhande
- Catalysis and Inorganic Chemistry Division, CSIR – National Chemical Laboratory, Pune, India
| | - Sachin U. Nandanwar
- Catalysis and Inorganic Chemistry Division, CSIR – National Chemical Laboratory, Pune, India
| | - Prashant S. Niphadkar
- Catalysis and Inorganic Chemistry Division, CSIR – National Chemical Laboratory, Pune, India
| | - Vijay V. Bokade
- Catalysis and Inorganic Chemistry Division, CSIR – National Chemical Laboratory, Pune, India
| |
Collapse
|
7
|
Ali F, Khan SB, Shaheen N, Zhu YZ. Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. Carbohydr Polym 2021; 259:117681. [PMID: 33674021 DOI: 10.1016/j.carbpol.2021.117681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022]
Abstract
This study focusses on the effect of chitosan coating with eggshell membranes for the reduction of different organic pollutants. Chickens eggs were collected from the local market and utilized to extract the enrich eggshell membranes (ESM). The chicken eggshell membranes are abundant waste material which is inexpensive and illustrates remarkable physiognomies for many possible applications. Fresh fibers/strips coated by chitosan (CS) were prepared by mixing the eggshell membranes with CS solution (2 wt%/v) in different proportions i.e., 10 %, 30 %, 50 %, 60 %, 70 %, 80 %, and 90 %. These strips were then templated with copper and iron metal nanoparticles by putting them in their metal ions aqueous solution to adsorb the metals ions and were then reduced to zero-valent metal nanoparticles (MNPS) by using NaBH4 aqueous solution. These prepared materials (MNPS@ESM-CS) were characterized by using XRD, XPS, FE-SEM, and EDS to confirm the successful preparation of MNPs over the surface of ESM coated with CS. Afterwards, these prepared materials were investigated as a catalyst for the reduction of different organic pollutants, such as 4-nitroaniline (4-NA), 4-nitrophenol (4-NP) and methylene blue (MB) dye. The catalytic efficiency of ESM was enhanced 5.7-fold by adding only 20 % CS solution. It was observed that Cu@ESM-CS-80 % took 7 min for reduction of 4-NA, 6 min for 4-NP, and 7 min for MB dye. The reusability of the catalytic strip was also investigated for four cycles and found efficient and can be easily recovered by simply pulling it from the reaction mixture.
Collapse
Affiliation(s)
- Fayaz Ali
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, 999078, Macau; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, KPK, Pakistan.
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, KPK, Pakistan
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, 999078, Macau.
| |
Collapse
|
8
|
Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes (Basel) 2021. [DOI: 10.3390/pr9040719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring substances or polymeric biomolecules synthesized by living organisms during their entire life cycle are commonly defined as biopolymers. Different classifications of biopolymers have been proposed, focusing on their monomeric units, thus allowing them to be distinguished into three different classes with a huge diversity of secondary structures. Due to their ability to be easily manipulated and modified, their versatility, and their sustainability, biopolymers have been proposed in different fields of interest, starting from food, pharmaceutical, and biomedical industries, (i.e., as excipients, gelling agents, stabilizers, or thickeners). Furthermore, due to their sustainable and renewable features, their biodegradability, and their non-toxicity, biopolymers have also been proposed in wastewater treatment, in combination with different reinforcing materials (natural fibers, inorganic micro- or nano-sized fillers, antioxidants, and pigments) toward the development of novel composites with improved properties. On the other hand, the improper or illegal emission of untreated industrial, agricultural, and household wastewater containing a variety of organic and inorganic pollutants represents a great risk to aquatic systems, with a negative impact due to their high toxicity. Among the remediation techniques, adsorption is widely used and documented for its efficiency, intrinsic simplicity, and low cost. Biopolymers represent promising and challenging adsorbents for aquatic environments’ decontamination from organic and inorganic pollutants, allowing for protection of the environment and living organisms. This review summarizes the results obtained in recent years from the sustainable removal of contaminants by biopolymers, trying to identify open questions and future perspectives to overcome the present gaps and limitations.
Collapse
|
9
|
Jin Q, Lu B, Pan Y, Tao X, Himmelhaver C, Shen Y, Gu S, Zeng Y, Li X. Novel porous ceramic sheet supported metal reactors for continuous-flow catalysis. Catal Today 2021; 358:324-332. [PMID: 33424117 DOI: 10.1016/j.cattod.2019.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel porous ceramic sheet supported nickel particles reactor was obtained by an in-situ preparation method. This reactor was then used to investigate continuous-flow catalysis of nitroaromatic compounds and methyl orange. The details of the structure and morphology were characterized by XRD, SEM, XPS, Raman, element mapping, mercury intrusion method and Archimedes principle. The porous ceramic sheet supported Ni particles reactor exhibited excellent catalytic performance in the catalytic reduction of p-nitrophenol and methyl orange by sodium borohydride at room temperature. Both the conversion of p-nitrophenol (5 mM) and methyl orange (0.3 mM) reached nearly 100% at the injection speed of 2.67 mL·min-1. In addition, it maintained conversions of 100% after 10 recycling time since the porous ceramic sheet could reduce the aggregation for Ni particles. Furthermore, the chemisorbed oxygen, and the strong interaction between Ni and porous ceramic sheet resulted in a highly efficient, recoverable, and cost-effective multifunctional reactor. All of these advantages present new opportunities to be implemented in the field of waste water treatment and environmental toxicology. Ultimately, the porous ceramic sheet could also support other metal nanomaterial, and used in other fields of environmental catalysis.
Collapse
Affiliation(s)
- Qijie Jin
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.,Department of Chemistry and Biochemistry, Environmental Science & Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Bingxu Lu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Youchun Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Xingjun Tao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Cindy Himmelhaver
- Department of Chemistry and Biochemistry, Environmental Science & Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Yuesong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Sasa Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Yanwei Zeng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, Environmental Science & Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
10
|
Veisi H, Joshani Z, Karmakar B, Tamoradi T, Heravi MM, Gholami J. Ultrasound assisted synthesis of Pd NPs decorated chitosan-starch functionalized Fe 3O 4 nanocomposite catalyst towards Suzuki-Miyaura coupling and reduction of 4-nitrophenol. Int J Biol Macromol 2021; 172:104-113. [PMID: 33444655 DOI: 10.1016/j.ijbiomac.2021.01.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
In recent days the nanomagnetic biocomposites have been evolved as sustainable green catalysts. In that context, we are prompted to design and synthesize a novel Pd NP adorned chitosan-starch dual biopolymer encapsulated core-shell type magnetic nanocomposite (Fe3O4@CS-Starch/Pd) in an eco-friendly pathway applying ultrasound irradiations. The morphological and physicochemical features of the material were determined using several advanced techniques like FT-IR, FESEM, HRTEM, EDX, atomic mapping, VSM, XRD and ICP-OES. Catalytic efficiency of the material was investigated in the ultrasound assisted classical Suzuki-Miyaura coupling towards the synthesis of diverse range of biaryl derivatives and in the catalytic reduction of 4-Nitrophenol.In both the protocols the catalyst exhibited excellent performances. Sonication had a significant role in enhancing the catalytic performances in both the reactions as compared to conventional heating. Due to super-paramagnetism, the catalyst was easily magnetically isolable and reused in 11 cycles without considerable leaching and change in reactivity.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.
| | - Zeinab Joshani
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India.
| | - Taiebeh Tamoradi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Javad Gholami
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
| |
Collapse
|
11
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Ghobadifard M, Safaei E, Radovanovic PV, Mohebbi S. A porphyrin-conjugated TiO 2/CoFe 2O 4 nanostructure photocatalyst for the selective production of aldehydes under visible light. NEW J CHEM 2021. [DOI: 10.1039/d0nj06272c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZnTCPP-TiO2/CoFe2O4 nanohybrid easily reusable using a permanent magnet without losing its reactivity for the selective production of aldehydes from a mechanistic point of view.
Collapse
Affiliation(s)
- Mahdieh Ghobadifard
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
- Department of Chemistry
| | - Elham Safaei
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
| | | | - Sajjad Mohebbi
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
- Research Center for Nanotechnology
| |
Collapse
|
13
|
Khan SB, Ahmad S, Kamal T, Asiri AM, Bakhsh EM. Metal nanoparticles decorated sodium alginate‑carbon nitride composite beads as effective catalyst for the reduction of organic pollutants. Int J Biol Macromol 2020; 164:1087-1098. [DOI: 10.1016/j.ijbiomac.2020.07.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
|
14
|
Hachemaoui M, Mokhtar A, Mekki A, Zaoui F, Abdelkrim S, Hacini S, Boukoussa B. Composites beads based on Fe3O4@MCM-41 and calcium alginate for enhanced catalytic reduction of organic dyes. Int J Biol Macromol 2020; 164:468-479. [DOI: 10.1016/j.ijbiomac.2020.07.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
|
15
|
Jin Q, Ma L, Zhou W, Himmelhaver C, Chintalapalle R, Shen Y, Li X. Strong interaction between Au nanoparticles and porous polyurethane sponge enables efficient environmental catalysis with high reusability. Catal Today 2020; 358:246-253. [PMID: 33716402 PMCID: PMC7944585 DOI: 10.1016/j.cattod.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and recoverable platform of polyurethane (PU) sponge-supported Au nanoparticle catalyst was obtained by a water-based in-situ preparation process. The structure, chemical, and morphology properties of this platform were characterized by XRD, TGA, SEM, FT-IR, and XPS. The Au/PU sponge platform exhibited excellent catalytic performances in catalytic reductions of p-nitrophenol and o-nitroaniline at room temperature, and both catalytic reactions could be completed within 4.5 and 1.5 min, respectively. Furthermore, the strong interaction between Au nanoparticles and the PU sponge enabled the catalyst system to maintain a high catalytic efficiency after 5 recycling times, since the PU sponge reduced the trend of leaching and aggregation of Au nanoparticles. The unique nature of Au nanoparticles and the porous PU sponge along with their strong interaction resulted in a highly efficient, recoverable, and cost-effective multifunctional catalyst. The AuNP/Sponge nanocatalyst platform has great potential for wide environmental and other catalytic applications.
Collapse
Affiliation(s)
- Qijie Jin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Cindy Himmelhaver
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Ramana Chintalapalle
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yuesong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
- Environmental Science and Engineering, Biomedical Engineering, Border Biomedical Research Center University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
16
|
Preparation of Dawson heteropolyacid-embedded silver nanoparticles/graphene oxide nanocomposite thin film used to modify pencil graphite electrode as a sensor for trace electrochemical sensing of levodopa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111287. [PMID: 32919648 DOI: 10.1016/j.msec.2020.111287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Measurement of levodopa (LD) as the most efficient treatment accessible for controlling the symptoms of Parkinson's disease was investigated. The electrocatalytic measurement of LD was performed at the surface of pencil graphite electrode (PGE) modified with graphene oxide (GO) and silver nanoparticle@Dawson heteropolyacid (AgNPs@DHPA). For this purpose, GO and the intermediate (AgNPs@DHPA) were first synthesized using a simple, cost-effective and straightforward method. The synthetic compounds, morphology, and surface characteristics of the modified sensor were evaluated. The results demonstrated that AgNPs@DHPA well-dispersed on the GO/PGE surface with a mean size of 6.27 nm and thickness of 42 nm. The electrochemical behavior of the modified PGE was also investigated. The heterogeneous charge transfer rate constant (ks) and transfer coefficient (α) for the electron transfer between AgNPs@DHPA/GO and PGE were obtained as 16.44 s-1 and 0.59, respectively. Also, the diffusion coefficient of LD for AgNPs@DHPA/GO/PGE thin film was calculated using chronoamperometric experiments (D = 9.05 × 10-6 cm2 s-1). Optimal parameters were obtained to access the best response for the measurement of LD. The results revealed that the modified PGE was able to measure the trace amounts of LD in phosphate buffer solution (pH = 6.0) in the concentration ranges from 3.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 1.0 × 10-5 M. The calculated limit of detection was obtained 7.6 × 10-10 M which was much better than the previously reported electrochemical sensors. The modified electrode was used to measure LD in tablet, blood serum and urine.
Collapse
|
17
|
The Synthesis and Characterization of Novel Bi-/Trimetallic Nanoparticles and Their Nanocomposite Membranes for Envisaged Water Treatment. MEMBRANES 2020; 10:membranes10090232. [PMID: 32937760 PMCID: PMC7559779 DOI: 10.3390/membranes10090232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
The impact of worldwide water scarcity, further exacerbated by environmental pollution, necessitates the development of effective water treatment membranes. Herein, we report the synthesis and characterization of nanocomposite membranes containing hyperbranched polyethyleneimine (HPEI) stabilized bi-and trimetallic nanoparticles. These membranes were prepared by blending a pre-grafted Polyethersulfone (PES) powder with the Pd@Fe@HPEI and Pd@FeAg@HPEI nanoparticles followed by phase inversion. The membranes, together with stabilized nanoparticles, were characterized by several analytical techniques, such as attenuated total reflectance–Fourier transform infra-red spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), optical contact angle (OCA), scanning electron microscopy (SEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM). These techniques revealed the elemental composition, zerovalent nature of the nanoparticles, and their small and even size distribution. Surface analysis showed chemical bonding between the polymeric functional groups and the supported nanoparticles. Furthermore, the nanocomposite membranes were found to be hydrophilic. Additionally, the membranes were investigated for swelling (water uptake), porosity, pore size, pure water permeation fluxes, and they indicated a decreased protein adhesion property. As such, the membranes fabricated in this work indicate the required properties for application in water treatment.
Collapse
|
18
|
Danish EY, Bakhsh EM, Akhtar K. Design of chitosan nanocomposite hydrogel for sensitive detection and removal of organic pollutants. Int J Biol Macromol 2020; 159:276-286. [DOI: 10.1016/j.ijbiomac.2020.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
19
|
Zamani A, Sadjadi MS, Mahjoub A, Yousefi M, Farhadyar N. Synthesis, characterization and investigation of photocatalytic activity of ZnMnO3/Fe3O4 nanocomposite for degradation of dye Congo red under visible light irradiation. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2020. [DOI: 10.1007/s40090-020-00215-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Catalytic Activity of Hybrid Iron Oxide Silver Nanoparticles in Methyl Methacrylate Polymerization. Catalysts 2020. [DOI: 10.3390/catal10040422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the challenges in the preparation of poly(methyl methacrylate) (PMMA) is to develop new catalytic systems with improved efficiency. A hybrid iron oxide silver catalyst holds promise in solving this issue. Catalysts were prepared at room temperature by a two-step technique. First, iron oxide nanoparticles were prepared by the reduction of FeCl3 using sodium borohydride (NaBH4) at room temperature. Second, magnetic nanoparticles doped with a series of Ag nanoparticles (Ag, Ag/3 –amino propyltriethoxysilane (APTES) and Ag/poly(ethyleneimine) (PEI)). The prepared catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and Fourier-transform infrared spectroscopy (FTIR). The catalytic activity of Fe, Ag/Fe, PEI–Ag/Fe, and APTES–Ag/Fe in methyl methacrylate (MMA) polymerization was investigated in the presence of O2, N2, NaHSO3, and benzoyl peroxide in bulk or solution conditions. The produced polymer was characterized by gel permeation chromatography (GPC) and proton nuclear magnetic resonance spectroscopy (1HNMR). The structures of PEI–Ag/Fe and APTES–Ag/Fe are assumed. The conversion efficiency was 100%, 100%, 97.6%, and 99.1% using Fe, Ag/Fe, PEI–Ag/Fe, and APTES–Ag/Fe catalysts at the optimum conditions, respectively. Hybrid iron oxide silver nanoparticles are promising catalysts for PMMA preparation.
Collapse
|
21
|
Jin Q, Ma L, Zhou W, Shen Y, Fernandez-Delgado O, Li X. Smart paper transformer: new insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts. Chem Sci 2020; 11:2915-2925. [PMID: 34122792 PMCID: PMC8157501 DOI: 10.1039/c9sc05287a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although noble metal nanocatalysts show superior performance to conventional catalysts, they can be problematic when balancing catalytic efficiency and reusability. In order to address this dilemma, we developed a smart paper transformer (s-PAT) to support nanocatalysts, based on easy phase conversion between paper and pulp, for the first time. The pulp phase was used to maintain the high catalytic efficiency of the nanocatalysts and the transformation to paper enabled their high reusability. Herein, as an example of smart paper transformers, a novel chromatography paper-supported Au nanosponge (AuNS/pulp) catalyst was developed through a simple water-based preparation process for the successful reduction of p-nitrophenol to demonstrate the high catalytic efficiency and reusability of the noble metal nanocatalyst/pulp system. The composition, structure, and morphology of the AuNS/pulp catalyst were characterized by XRD, TGA, FE-SEM, ICP, TEM, FT-IR, and XPS. The AuNS/pulp catalyst was transformed into the pulp phase during the catalytic reaction and into the paper phase to recover the catalysts after use. Owing to this smart switching of physical morphology, the AuNS/pulp catalyst was dispersed more evenly in the solution. Therefore, it exhibited excellent catalytic performance for p-nitrophenol reduction. Under optimal conditions, the conversion rate of p-nitrophenol reached nearly 100% within 6 min and the k value of AuNS/pulp (0.0106 s−1) was more than twice that of a traditional chromatography paper-based catalyst (0.0048 s−1). Additionally, it exhibited outstanding reusability and could maintain its high catalytic efficiency even after fifteen recycling runs. Accordingly, the unique phase switching of this smart paper transformer enables Au nanosponge to transform into a highly efficient and cost-effective multifunctional catalyst. The paper transformer can support various nanocatalysts for a wide range of applications, thus providing a new insight into maintaining both high catalytic efficiency and reusability of nanocatalysts in the fields of environmental catalysis and nanomaterials. A smart paper transformer supported nanocatalyst platform is developed based on the facile phase conversion between paper and pulp for both high-efficiency and high-reusability catalysis, with wide applications demonstrated by using Au nanosponge.![]()
Collapse
Affiliation(s)
- Qijie Jin
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA .,College of Materials Science and Engineering, Nanjing Tech University Nanjing 210009 PR China
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Yuesong Shen
- College of Materials Science and Engineering, Nanjing Tech University Nanjing 210009 PR China
| | - Olivia Fernandez-Delgado
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA .,Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso El Paso Texas 79968 USA.,Environmental Science and Engineering, University of Texas at El Paso El Paso Texas 79968 USA
| |
Collapse
|
22
|
Emam HE, Mikhail MM, El-Sherbiny S, Nagy KS, Ahmed HB. Metal-dependent nano-catalysis in reduction of aromatic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6459-6475. [PMID: 31873885 DOI: 10.1007/s11356-019-07315-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Nanostructures have great potential in catalysis and their compositions may cause some interferences in the reactivity. Therefore, the present study focuses on comparison between three metallic nanoparticle-based Ag, Au, and Pd as nano-catalyst in reduction of aromatic pollutants. To neglect any interpenetration in their catalytic reactivity, the metallic nanoparticles were prepared via a consistent and reproducible one-step method with alkali-activated dextran. Interestingly, small sized/spherical AgNPs, AuNPs, and PdNPs were successively prepared with particle size of 3.4, 8.3, and 17.1 nm, respectively. The catalytic performance of the synthesized NPs was estimated for the reduction of p-nitroaniline and methyl red dye as different aromatic pollutants. Regardless of the particle size, there was a strong relation between catalytic action and the type of metal which followed the order of PdNP > AuNPs > AgNPs. Graphical Abstract.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Mary M Mikhail
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Samya El-Sherbiny
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Khaled S Nagy
- Food Engineering and Packaging Department, Agricultural Research Center, 9 Cairo University St, Giza, Egypt
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| |
Collapse
|
23
|
Photocrosslinked hybrid composites with Ag, Au or Au-Ag NPs as visible-light triggered photocatalysts for degradation/reduction of aromatic nitroderivatives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ni/NiO Nanocomposites with Rich Oxygen Vacancies as High-Performance Catalysts for Nitrophenol Hydrogenation. Catalysts 2019. [DOI: 10.3390/catal9110944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous catalysis often involves charge transfer between adsorbed molecules and the surface of catalyst, and thus their activity depends on the surface charge density. The efficiency of charge transfer could be optimized by adjusting the concentration of oxygen vacancies (Ov). In this work, hexagonal Ni(OH)2 nanoparticles were initially synthesized by a hydrothermal process using aluminum powder as the sacrificial agent, and were then converted into 2D Ni/NiO nanocomposites through in situ reduction in hydrogen flow. The oxygen vacancy concentration in the NiO nanosheet could be well-controlled by adjusting the reduction temperature. This resulted in strikingly high activities for hydrogenation of nitrophenol. The Ni/NiO nanocomposite could easily be recovered by a magnetic field for reuse. The present finding is beneficial for producing better hydrogenation catalysts and paves the way for the design of highly efficient catalysts.
Collapse
|
25
|
Wang S, Niu S, Li H, Lam KK, Wang Z, Du P, Leung CW, Qu S. Synthesis and controlled morphology of Ni@Ag core shell nanowires with excellent catalytic efficiency and recyclability. NANOTECHNOLOGY 2019; 30:385603. [PMID: 31174195 DOI: 10.1088/1361-6528/ab27ce] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ni@Ag core shell nanowires (NWs) were prepared by in situ chemical reduction of Ag+ around NiNWs as the inner core. Different Ni@Ag NWs with controllable morphologies were achieved through the layer-plus-island growth mode and this mechanism was confirmed by scanning electron microscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy analyses. When used as a catalyst, the synthesized Ni@Ag NWs exhibited high reduction efficiency by showing a high reaction rate constant k of 0.408 s-1 in reducing 4-nitrophenol at room temperature. Besides, combining the magnetic property, including high saturation magnetization and low coercivity, the magnetic NiNW core contributes to excellent recyclability and long-term stability with only a 2.2% performance loss after 10 recycles by magnets. The Ni@Ag NWs proposed here show unprecedentedly high potential in applications requiring high efficiency and a recyclable catalyst.
Collapse
Affiliation(s)
- Shan Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang province, 310027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Atarodi H, Faghihian H. Selective photodegradation of atrazine by a novel molecularly imprinted nanophotocatalyst prepared on the basis of chitosan. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Ahmed HB, Emam HE. Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (Ag Au, Au Pd) versus trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110975] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Abstract
Magnetic iron oxide nanoparticles have attracted attention because of their idiosyncratic physicochemical characteristics and vast range of applications such as protein separations, catalysis, magnetic resonance imaging (MRI), magnetic sensors, drug delivery, and magnetic refrigeration. The activity of the catalyst depends on the chemical composition, particle size, morphology and also on the atomic arrangements at the surface. The catalytic properties of iron oxide nanoparticles can be easily altered by controlling the shape, size, morphology and surface modification of nanomaterials. This review is focused on the use of iron oxide as a catalyst in various organic reactions viz. oxidation, hydrogenation, C-C coupling, dihydroxylation reactions and its reusability/recoverability.
Collapse
Affiliation(s)
- Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ruby Phul
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Huma Khan
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
29
|
Ibrahim I, Athanasekou C, Manolis G, Kaltzoglou A, Nasikas NK, Katsaros F, Devlin E, Kontos AG, Falaras P. Photocatalysis as an advanced reduction process (ARP): The reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:37-44. [PMID: 30606617 DOI: 10.1016/j.jhazmat.2018.12.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 05/27/2023]
Abstract
TiO2 photocatalysis is an advanced process, employed worldwide for the oxidation of organic compounds, that leads to significant technological applications in the fields of health and environment. The use of the photocatalytic approach in reduction reactions seems very promising and can open new horizons for green chemistry synthesis. For this purpose, titanium dioxide nanotubes (TNTs) were developed in autoclave conditions using TiO2 P25 as a precursor material. Based on these nanotubular substrates, TiO2/CoFe2O4 (TCF) nanocomposites were further obtained by wet impregnation method. The materials were thoroughly characterized and their structural, textural, vibrational, optoelectronic and magnetic properties were determined. The composite materials combine absorbance in the visible optical range and high BET surface area values (˜100 m2/g), showing extremely high yield in the photocatalytic reduction of 4-nitrophenol (4-NP), exceeding 94% within short illumination time (only 35 min). The developed nanocomposites were successfully reused in consecutive photocatalytic experiments and were easily removed from the reaction medium using magnets. Both remarkable recycling ability and high-performance stability in the photocatalytic reduction of nitrophenol were observed, thus justifying the significant economic potential and industrial perspectives for this advanced reduction process.
Collapse
Affiliation(s)
- Islam Ibrahim
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Zografou 157 84, Greece
| | - Chrysoula Athanasekou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Georgios Manolis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Andreas Kaltzoglou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Nektarios K Nasikas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Fotios Katsaros
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Eamonn Devlin
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Athanassios G Kontos
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Agia Paraskevi, Athens, Greece.
| |
Collapse
|
30
|
The elucidation of surrounding alginate gels on the pollutants degradation by entrapped nanoscale zero-valent iron. Colloids Surf B Biointerfaces 2018; 171:233-240. [DOI: 10.1016/j.colsurfb.2018.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/24/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022]
|
31
|
Ismail M, Khan M, Khan SB, Akhtar K, Khan MA, Asiri AM. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Ali F, Khan SB, Kamal T, Alamry KA, Bakhsh EM, Asiri AM, Sobahi TR. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr Polym 2018; 192:217-230. [DOI: 10.1016/j.carbpol.2018.03.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
|
33
|
Dhanavel S, Manivannan N, Mathivanan N, Gupta VK, Narayanan V, Stephen A. Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Cheng B, Li D, Huo Q, Zhao Q, Lan Q, Cui M, Pan W, Yang X. Two kinds of ketoprofen enteric gel beads (CA and CS-SA) using biopolymer alginate. Asian J Pharm Sci 2018; 13:120-130. [PMID: 32104385 PMCID: PMC7032093 DOI: 10.1016/j.ajps.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022] Open
Abstract
To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer-Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time.
Collapse
Affiliation(s)
- Bingchao Cheng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Dongyang Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Qiye Huo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Qianqian Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Qi Lan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Mengsuo Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
| | - Xinggang Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road 110016, Shenyang, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, 222001, Jiangsu, Lianyungang, China
| |
Collapse
|
35
|
Silver Nanoparticles Engineered β-Cyclodextrin/γ-Fe2O3@ Hydroxyapatite Composite: Efficient, Green and Magnetically Retrievable Nanocatalyst for the Aqueous Reduction of Nitroarenes. Catal Letters 2017. [DOI: 10.1007/s10562-017-2272-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Yang X, You X, Zhang B, Guo C, Yu C. Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1676-1686. [PMID: 28991784 DOI: 10.2166/wst.2017.342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetic imprinted N-doped P25/Fe3O4-graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe3O4-GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.
Collapse
Affiliation(s)
- Xiaochao Yang
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China E-mail:
| | - Xiaoxiao You
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China E-mail:
| | - Bin Zhang
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China E-mail:
| | - Chuigen Guo
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China E-mail:
| | - Chaosheng Yu
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China E-mail:
| |
Collapse
|
37
|
Mahmoud ME, Abdou AE, Shehata AK, Header HM, Hamed EA. Surface functionalized γ-alumina nanoparticles with N-cetyl- N , N , N -trimethyl ammonium bromide for adsorptive interaction with 2-nitrobenzoic and 4-nitrobenzoic acids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Xu J, Zhang Y, Gutha Y, Zhang W. Antibacterial property and biocompatibility of Chitosan/Poly(vinyl alcohol)/ZnO (CS/PVA/ZnO) beads as an efficient adsorbent for Cu(II) removal from aqueous solution. Colloids Surf B Biointerfaces 2017; 156:340-348. [DOI: 10.1016/j.colsurfb.2017.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/07/2022]
|
39
|
Mahmoud ME, Nabil GM. Nano zirconium silicate coated manganese dioxide nanoparticles: Microwave-assisted synthesis, process optimization, adsorption isotherm, kinetic study and thermodynamic parameters for removal of 4-nitrophenol. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 2017; 103:234-241. [PMID: 28499948 DOI: 10.1016/j.ijbiomac.2017.05.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 12/07/2022]
Abstract
Treatment against bacterial infection is crucial for wound healing. Development of cost-effective antibacterial agent with wound healing properties is still in high demand. In this study we aimed to design chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO) beads as novel antibacterial agent with wound healing properties. CS/PVA/ZnO beads were synthesized, and characterized by using XRD, FTIR, SEM, and TEM analysis. Pure chitosan exhibits two peaks at 2θ=10 and 20 and the CS/PVA polymer matrix exhibit the peaks at 2θ=19.7° and another of low intensity at 2θ=11.5°. Pure ZnO shows the characteristic peaks at (100), (002), (101), (102), (110), (103), (200), and (112) that were in good agreement with wurtzite ore having hexagonal lattice structure. The antibacterial activity of CS/PVA/ZnO against Escherichia coli, and Staphylococcus aureus were evaluated with the zone of inhibition method. Antibacterial activity of CS/PVA/ZnO was higher than that of chitosan (CS) and poly(vinyl alcohol (PVA). Hemocompatibility and biocompatibility of CS/PVA/ZnO were tested in in vitro. Wound healing properties of CS/PVA/ZnO were tested in mice skin wound. CS/PVA/ZnO showed strong antimicrobial, wound healing effect, hemocompatibility and biocompatibility. Hence the results strongly support the possibility of using this novel CS/PVA/ZnO material for the anti bacterial and wound healing application.
Collapse
Affiliation(s)
- Yuvaraja Gutha
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Janak L Pathak
- School of pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Weijiang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaping Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xu Jiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
41
|
Wu H, Feng Q. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride. J Environ Sci (China) 2017; 54:346-357. [PMID: 28391946 DOI: 10.1016/j.jes.2016.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/30/2016] [Accepted: 11/18/2016] [Indexed: 06/07/2023]
Abstract
As an effective conventional absorbent, biochar exhibited limited adsorption ability toward small hydrophobic molecules. To enhance the adsorption capacity, a novel adsorbent was prepared by immobilizing nanoscale zero-valent iron onto modified biochar (MB) and then the elemental silver was attached to the surface of iron (Ag/Fe/MB). It's noted that spherical Ag/Fe nanoparticles with diameter of 51nm were highly dispersed on the surface of MB. As the typical hydrophobic contaminant, carbon tetrachloride was selected for examining the removal efficiency of the adsorbent. The removal efficiencies of carbon tetrachloride by original biochar (OB), Ag/Fe, Ag/Fe/OB and Ag/Fe/MB were fully investigated. It's found that Ag/Fe/MB showed higher carbon tetrachloride removal efficiency, which is about 5.5 times higher than that of the OB sample due to utilizing the merits of high adsorption and reduction. Thermodynamic parameters revealed that the removal of carbon tetrachloride by Ag/Fe/MB was a spontaneous and exothermic process, which was affected by solution pH, initial carbon tetrachloride concentration and temperature. The novel Ag/Fe/MB composites provided a promising material for carbon tetrachloride removal from effluent.
Collapse
Affiliation(s)
- Hongwei Wu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Department of Chemistry, Zaozhuang University, Zaozhuang 277160, China.
| | - Qiyan Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
42
|
Thirumalraj B, Rajkumar C, Chen SM, Lin KY. Determination of 4-nitrophenol in water by use of a screen-printed carbon electrode modified with chitosan-crafted ZnO nanoneedles. J Colloid Interface Sci 2017; 499:83-92. [PMID: 28364718 DOI: 10.1016/j.jcis.2017.03.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
The toxicity and environmental pollution by nitro aromatic compounds in water samples is the most recognized problem in worldwide. Hence, we have developed a simple and highly sensitive electrochemical method for the determination of 4-nitrophenol (4-NP) in water samples based on a chitosan (CHT) crafted zinc oxide nanoneedles (ZnO NDs) modified screen printed carbon electrode. The CHT/ZnO NDs were characterized by Field emission scanning electron microscope, Fourier transform infrared spectroscopy and X-ray diffraction technique. The CHT/ZnO NDs modified electrode showed an enhanced electrocatalytic activity and lower potential detection towards 4-NP, compared with other modified electrodes. Under optimum conditions, the differential pulse voltammetry (DPV) response of CHT/ZnO NDs modified electrode displayed a wide linear response range from 0.5 to 400.6μM towards the detection of 4-NP with a detection limit (LOD) of 0.23μM. The CHT/ZnO NDs modified electrode was used for specific and sensitive detection of 4-NP in presence of possible interfering species and common metal ions with long-term stability. In addition, the excellent analytical performance of the proposed sensor was successfully applied for determination of 4-NP in water samples.
Collapse
Affiliation(s)
- Balamurugan Thirumalraj
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Chellakannu Rajkumar
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Kuan-Yu Lin
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| |
Collapse
|
43
|
Bai H, He P, Pan J, Chen J, Chen Y, Dong F, Li H. Boron-doped diamond electrode: Preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene. J Colloid Interface Sci 2017; 497:422-428. [PMID: 28314147 DOI: 10.1016/j.jcis.2017.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Boron-doped diamond (BDD) electrode was successfully prepared via microwave plasma chemical vapor deposition method and it was used in electrocatalytic degradation of m-dinitrobenzene (m-DNB). The electrocatalytic degradation efficiency of m-DNB was evaluated under different experimental parameters including current density, temperature, pH, Na2SO4 concentration and initial m-DNB concentration. Under optimal parameters, degradation efficiency of m-DNB reached up to 82.7% after 150min. The degradation process of m-DNB was fitted well with pseudo first-order kinetics. Moreover, UV and HPLC analyses implied that m-DNB was totally destroyed and mineralized after 240min degradation, and the proposed mechanism during the electrocatalytic degradation process was analyzed. All these results demonstrated that BDD electrode possessed excellent electrocatalytic property and showed a great potential application in wastewater treatment.
Collapse
Affiliation(s)
- Hongmei Bai
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Ping He
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Jing Pan
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jingchao Chen
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Yang Chen
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Faqing Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hong Li
- National Engineering Research Center for Municipal Wastewater Treatment and Reuse, Mianyang 621000, Sichuan, China
| |
Collapse
|
44
|
Wu H, Feng Q, Yang H, Alam E, Gao B, Gu D. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Adsorption studies of some phenol derivatives onto Ag-cuttlebone nanobiocomposite: modeling of process by response surface methodology. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2874-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
46
|
Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:340-346. [DOI: 10.1016/j.msec.2016.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/14/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023]
|
47
|
Mishra K, Poudel TN, Basavegowda N, Lee YR. Enhanced catalytic performance of magnetic Fe3O4–MnO2 nanocomposites for the decolorization of rhodamine B, reduction of 4-nitroaniline, and sp3 C–H functionalization of 2-methylpyridines to isatins. J Catal 2016. [DOI: 10.1016/j.jcat.2016.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Catalytic Activity of BiVO 4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes. ELASTOMERS AND COMPOSITES 2016. [DOI: 10.7473/ec.2016.51.3.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Fard NE, Fazaeli R. A Novel Kinetic Approach for Photocatalytic Degradation of Azo Dye with CdS and Ag/CdS Nanoparticles Fixed on a Cement Bed in a Continuous-Flow Photoreactor. INT J CHEM KINET 2016. [DOI: 10.1002/kin.21025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Narges Elmi Fard
- Department of Chemistry; Faculty of science; East Tehran Branch; Islamic Azad University; Tehran Iran
| | - Reza Fazaeli
- Department of Chemical engineering; Faculty of engineering; South Tehran Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
50
|
Ali I, AL-Othman ZA, Alwarthan A. Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.031] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|