1
|
Yabalak E, Özdemir S, Al-Nuaimy MNM, Tollu G. From cornfield to catalyst support: Eco-friendly synthesis of Cu/CuO nanoparticles, immobilization on the waste corn husk fibers, photocatalytic exploration and bioactivity evaluation. CHEMOSPHERE 2024; 365:143328. [PMID: 39271076 DOI: 10.1016/j.chemosphere.2024.143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
This study presents an innovative approach to eco-friendly synthesis and utilization of copper nanoparticles (CuNPs) for photocatalytic applications, employing waste corn husk fibers as sustainable catalyst support. The synthesis of CuNPs was achieved through a green synthesis method utilizing myrtle extract. Subsequently, the remarkable photocatalytic activity of the CuNPs explored (76% removal efficiency of Crystal Violet), showcased their potential in environmental remediation applications. Furthermore, the immobilization of CuNPs onto waste corn husk fibers was investigated, aiming to develop a novel composite material with enhanced catalytic performance. A distinctive approach was introduced by immobilizing CuNPs onto fibers derived from corn husks, and waste biomass material, leading to a significant enhancement in photocatalytic efficiency, surpassing 95.1%. Furthermore, bioactivity evaluation studies revealed the significant antioxidant, antidiabetic, DNA fragmentation, cell viability, antibiofilm and antimicrobial properties of CuNPs. The antioxidant ability was determined at 100 mg/L as 87.12%. The most powerful antimicrobial activity of CuNP was found as a MIC value of 8 mg/L against E. faecalis. The cell viability inhibition of CuNP was 90.05% at 20 mg/L. CuNP exhibited biofilm inhibition activity at different concentrations. The antibiofilm ability was investigated against Staphylococcus aureus compared to Pseudomonas aureginosa. While the DNA cleavage activity of CuNP observed double-strand breaks at 50 and 100 mg, complete fragmentation occurred at 200 mg concentrations. The bioactivity of the synthesized CuNPs shed light on their potential biomedical applications. The synthesized CuNPs are characterized using various analytical techniques to elucidate their structural and morphological properties. Fourier-transform infrared (FTIR) analysis provided insights into the chemical composition and surface properties of the synthesized materials. EDS analysis confirmed their successful integration into waste corn husk fibers. Overall, this interdisciplinary study highlights the potential of CuNPs immobilized on waste corn husk fibers for addressing environmental pollution, advancing sustainable technologies and paving the way for the development of efficient catalysts with diverse functionalities.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| | | | - Gulsah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| |
Collapse
|
2
|
Rocha V, Ferreira-Santos P, Aguiar C, Neves IC, Tavares T. Valorization of plant by-products in the biosynthesis of silver nanoparticles with antimicrobial and catalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14191-14207. [PMID: 38278998 PMCID: PMC10881659 DOI: 10.1007/s11356-024-32180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Biosynthesis based on natural compounds has emerged as a sustainable approach for the production of metallic nanoparticles (MNP). The main objective of this study was to biosynthesize stable and multifunctional silver nanoparticles (AgNP) using different plant by-products as reducers and capping agents. Extracts obtained from Eucalyptus globulus, Pinus pinaster, Citrus sinensis, Cedrus atlantica and Camellia sinensis by-products, were evaluated. From all plant by-products tested, aqueous extract of eucalyptus leaves (EL), green tea (GT) and black tea (BT) were selected due to their higher antioxidant phenolic content and were individually employed as reducers and capping agents to biosynthesize AgNP. The green AgNP showed zeta potential values of -31.8 to -36.3 mV, with a wide range of particle sizes (40.6 to 86.4 nm), depending on the plant extract used. Green AgNP exhibited an inhibitory effect against various pathogenic bacteria, including Gram-negative (P. putida, E. coli, Vibrio spp.) and Gram-positive (B. megaterium, S. aureus, S. equisimilis) bacteria with EL-AgNP being the nanostructure with the greatest antimicrobial action. EL-AgNP showed an excellent photodegradation of indigo carmine (IC) dye under direct sunlight, with a removal percentage of up to 100% after 75 min. A complete cost analysis revealed a competitive total cost range of 8.0-9.0 €/g for the biosynthesis of AgNP.
Collapse
Affiliation(s)
- Verónica Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, 32004, Ourense, Spain
| | - Cristina Aguiar
- CBMA-Centre of Molecular and Environmental Biology, University of Minho, 4710-057, Braga, Portugal
| | - Isabel C Neves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CQ-UM - Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Teresa Tavares
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Al-Askar AA, Aseel DG, El-Gendi H, Sobhy S, Samy MA, Hamdy E, El-Messeiry S, Behiry SI, Elbeaino T, Abdelkhalek A. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate ( Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112103. [PMID: 37299082 DOI: 10.3390/plants12112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.
Collapse
Affiliation(s)
- Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Sherien Sobhy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Marwa A Samy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Esraa Hamdy
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010 Valenzano Bari, Italy
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Kubavat K, Trivedi P, Ansari H, Kongor A, Panchal M, Jain V, Sindhav G. Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dietary and wholesome antioxidant rutin is considered advantageous due to its potential protective role for numerous diseases related to oxidative stress, high safety, cost-effectiveness, and extensive biological effects. The present study accounts for an expeditious method for the synthesis of silver nanoparticles (AgNPs) using rutin.
Results
The presence of AgNPs was affirmed by UV–visible spectroscopy at 425 nm, and FESEM and zeta sizer analysis revealed the average size of the AgNPs 80–85 nm and 160 d.nm, respectively. Zeta potential measurements (− 30.3 mV) showed that the AgNPs have reasonably good stability. Element mapping analysis of the AgNPs was confirmed by XRD and AFM, while FTIR spectra of the AgNPs showed the existence of functional groups. In the DPPH assay, highest radical scavenging activity of AgNPs, 86.95 ± 01.60%, was confirmed. The interaction of AgNPs with CT-DNA and HS-DNA was studied spectrophotometrically, and the data display a shift in the respective spectra. Furthermore, interaction with pBR322 DNA, λ DNA, CT-DNA, and HS-DNA was deliberated by a nicking assay that shows the physicochemical properties of AgNPs. Antibacterial activity was evaluated by the standard well-diffusion method against Escherichia coli and Staphylococcus aureus, and cytotoxicity was assessed against human WBCs by MTT assay.
Conclusion
As per this appraisal, it can be concluded that it is a cost-effective, simple, and eco-friendly tactic and such NPs are beneficial to improve therapeutics since the antioxidant, DNA interaction, antibacterial, and cytotoxic exploits offer a new horizon of euthenics.
Collapse
|
5
|
Yilmaz MT, İspirli H, Taylan O, Balubaid M, Dertli E. Facile biomimetic synthesis of AgNPs using aqueous extract of Helichrysum arenarium: characterization and antimicrobial activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mustafa Tahsin Yilmaz
- Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Humeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Osman Taylan
- Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Balubaid
- Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enes Dertli
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
6
|
Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103927] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
7
|
Macovei I, Luca SV, Skalicka-Woźniak K, Sacarescu L, Pascariu P, Ghilan A, Doroftei F, Ursu EL, Rimbu CM, Horhogea CE, Lungu C, Vochita G, Panainte AD, Nechita C, Corciova MA, Miron A. Phyto-Functionalized Silver Nanoparticles Derived from Conifer Bark Extracts and Evaluation of Their Antimicrobial and Cytogenotoxic Effects. Molecules 2021; 27:217. [PMID: 35011449 PMCID: PMC8746316 DOI: 10.3390/molecules27010217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of -10.8 and -14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.
Collapse
Affiliation(s)
- Irina Macovei
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | - Simon Vlad Luca
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany;
| | | | - Liviu Sacarescu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Petronela Pascariu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Alina Ghilan
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Elena-Laura Ursu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Cristina Mihaela Rimbu
- Department of Public Health, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700489 Iasi, Romania;
| | - Cristina Elena Horhogea
- Department of Public Health, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700489 Iasi, Romania;
| | - Cristina Lungu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | | | - Alina Diana Panainte
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | - Constantin Nechita
- Marin Dracea National Institute for Research and Development in Forestry, 725100 Campulung Moldovenesc, Romania;
| | - Maria Andreia Corciova
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| |
Collapse
|
8
|
Shafaei A, Khayati GR, Hoshyar R. Green and cost-effective synthesis, characterization and DFT studying of silver nanoparticles for improving their biological properties by opium syrup as biomedical drug and good biocompatibility. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1993257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amineh Shafaei
- Department of Nanotechnology, Mineral Industries Research Center (MIRC), Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reyhane Hoshyar
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI, USA
- Cellular and Molecular Research Center, Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5125681. [PMID: 34631882 PMCID: PMC8494549 DOI: 10.1155/2021/5125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
Collapse
|
10
|
Basiratnia E, Einali A, Azizian-Shermeh O, Mollashahi E, Ghasemi A. Biological Synthesis of Gold Nanoparticles from Suspensions of Green Microalga Dunaliella salina and Their Antibacterial Potential. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Rafiq A, Zahid K, Qadir A, Khan MN, Khalid ZM, Ali N. Inhibition of microbial growth by silver nanoparticles synthesized from Fraxinus xanthoxyloides leaf extract. J Appl Microbiol 2020; 131:124-134. [PMID: 33251642 DOI: 10.1111/jam.14944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023]
Abstract
AIMS Conventional antibiotics have been failed to treat infectious diseases due to emergence of multidrug resistance (MDR) in some common pathogens. The current study aimed to formulate new antimicrobials from greener sources. In the midst of these efforts, nanotechnology is a newly emerged field, in which the synthesis of new nanoparticles through novel and efficient means is on the rise. METHODS AND RESULTS The current work has been carried out to assess the potential of Fraxinus xanthoxyloides (FX) leaf extract in biosynthesis of silver nanoparticles (FX-AgNPs). This method is economical and simple one-step approach to synthesize AgNPs. Characterization of FX-AgNPs has been done by UV-Visible spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electronic microscope (TEM) and Fourier transforms infrared spectroscopy (FT-IR). The formation of FX-AgNPs has confirmed through UV-Visible spectroscopy (at 430 nm) by change of colour owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of FX-AgNPs has established. Functional groups existing in F. xanthoxyloides leaf extract are confirmed by FT-IR spectrum. SEM and TEM authenticated morphology of the AgNPs. The newly synthesized nanoparticles were evaluated for their antimicrobial potential. Minimum inhibitory concentration was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA) strains, Pseudomonas aeruginosa and Candida albicans by microtiter plate assay. The lowest inhibition (69%) observed against MRSA was at a concentration of 50 ppm FX-AgNPs and maximum inhibition (81%) observed was against P. aeruginosa. The biosynthesized AgNPs triggered up to 68·6% reduction of the P. aeruginosa biofilm when compared to the control. CONCLUSION It can be concluded that nanoparticles could be a better alternative of antibiotics with greater efficacies and represent a valuable milestone to fight against infections caused by MDR pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This study imparts a useful insight into the development of a new antimicrobial agent from a novel source.
Collapse
Affiliation(s)
- A Rafiq
- Department of Microbiology, Faculty of Biological sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - K Zahid
- Department of Microbiology, Faculty of Biological sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - A Qadir
- Departments of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M N Khan
- Department of Microbiology, Faculty of Biological sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Z M Khalid
- Departments of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - N Ali
- Department of Microbiology, Faculty of Biological sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
12
|
Du L, Zhang R, Yang H, Tang S, Hou Z, Jing J, Lin B, Zhang S, Lu Z, Xue P. Synthesis, characteristics and medical applications of plant nanomaterials. PLANTA 2020; 252:108. [PMID: 33219487 DOI: 10.1007/s00425-020-03509-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The recent preparations of metal nanoparticles using plant extracts as reducing agents are summarized here. The synthesis and characterization of plant-metal nanomaterials and the progress in antibacterial and anti-inflammatory medical applications are detailed, providing a new vision for plant-based medical applications. The medical application of plant-metal nanoparticles is becoming a research hotspot. Compared with traditional preparation methods, the synthesis of plant-metal nanoparticles is less toxic and more eco-friendly, increasing application potential. Highly efficient plant-metal nanoparticles are usually smaller than 100 nm. This review describes the synthesis, characterization and bioactivities of gold- and silver-plant nanoparticles as examples and clearly explained their antibacterial and anticancer mechanisms. An analysis of actual cases shows that the synthetic method and type of plant extract affect the activities of the products.
Collapse
Affiliation(s)
- Lidong Du
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Hanchao Yang
- Affiliated Hospital of Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jinjin Jing
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bingjie Lin
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Shujie Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhong Lu
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, People's Republic of China.
- Affiliated Hospital of Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
13
|
Essawy AA, Alsohaimi IH, Alhumaimess MS, Hassan HMA, Kamel MM. Green synthesis of spongy Nano-ZnO productive of hydroxyl radicals for unconventional solar-driven photocatalytic remediation of antibiotic enriched wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110961. [PMID: 32778271 DOI: 10.1016/j.jenvman.2020.110961] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/17/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Herein, novel green/facile approach to synthesize spongy defective zinc oxide nanoparticles (ZnONPs) is presented using for the first time pomegranate seeds molasses as a green capping fuel/reducing mediator during an aqueous solution combustion process. The developed ZnONPs is characterized by UV-Vis. Spectrophotometry and fluorimetry, XRD, Raman spectroscopy, SEM, TEM and BET. Interestingly, pomegranate seeds molasses within a viable content of bio-capping molecules reveal a defective nanoporous ZnO NPs of smaller particle size, greater pore size/volume, and higher surface area compared to the bulky non-biogenic ZnONPs. Moreover, the biosynthesized defective ZnONPs showed narrowed band gap and higher absorption of visible photons that breed higher density of hydroxyl radicals (•OH) under Solar-illumination. Even further, the bulk ZnO and the biosynthesized ZnO photocatalysts were examined in photodegrading flumequine (FL) antibiotic. The bulk ZnO gives 41.46% photodegradation efficiency compared to 97.6% for the biosynthesized ZnO. In highly acidic or highly alkaline media, FL photodegradability is greatly retarded. Scavenging experiment infers considerable contribution of holes over electrons in photodegradation reaction. The biosynthesized ZnO shows high durability in FL photodegradation after four reusing cycles. These promising findings highlight new insights for biogenic synthesis of tuned size/controlled morphology semiconductor NPs relevant to environmental remediation applications.
Collapse
Affiliation(s)
- Amr A Essawy
- Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia; Chemistry Department, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt.
| | - Ibrahim Hotan Alsohaimi
- Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia.
| | - Mosaed S Alhumaimess
- Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Hassan M A Hassan
- Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia; Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Mahmoud M Kamel
- Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| |
Collapse
|
14
|
Chand K, Cao D, Fouad DE, Shah AH, Lakhan MN, Dayo AQ, Sagar HJ, Zhu K, Mohamed AMA. Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanoparticles: A comparative study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113821] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1763. [PMID: 32906575 PMCID: PMC7558319 DOI: 10.3390/nano10091763] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022]
Abstract
Currently, metal nanoparticles have varied uses for different medical, pharmaceutical, and agricultural applications. Nanobiotechnology, combined with green chemistry, has great potential for the development of novel and necessary products that benefit human health, environment, and industries. Green chemistry has an important role due to its contribution to unconventional synthesis methods of gold and silver nanoparticles from plant extracts, which have exhibited antimicrobial potential, among other outstanding properties. Biodiversity-rich countries need to collect and convert knowledge from biological resources into processes, compounds, methods, and tools, which need to be achieved along with sustainable use and exploitation of biological diversity. Therefore, this paper describes the relevant reported green synthesis of gold and silver nanoparticles from plant extracts and their capacity as antimicrobial agents within the agricultural field for fighting against bacterial and fungal pathogens that can cause plant, waterborne, and foodborne diseases. Moreover, this work makes a brief review of nanoparticles' contribution to water treatment and the development of "environmentally-friendly" nanofertilizers, nanopesticides, and nanoherbicides, as well as presenting the harmful effects of nanoparticles accumulation in plants and soils.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - Karla Alfaro-Aguilar
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| | - Jeisson Ugalde-Álvarez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - Laura Vega-Fernández
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| | - Gabriela Montes de Oca-Vásquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - José Roberto Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| |
Collapse
|
16
|
Sarli S, Kalani MR, Moradi A. A Potent and Safer Anticancer and Antibacterial Taxus-Based Green Synthesized Silver Nanoparticle. Int J Nanomedicine 2020; 15:3791-3801. [PMID: 32547028 PMCID: PMC7266392 DOI: 10.2147/ijn.s251174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Paclitaxel is a generic drug produced based on Taxol which is an extract of Taxus tree, well known for its anticancer and antibacterial effects. This study was aimed at building up an agent with the antibacterial and anticancer benefits of both the silver ions and Taxol, together with less cytotoxic effects. Materials and Methods Colloidal silver nanoparticles (AgNPs) were synthesized by reducing aqueous AgNO3 with aqueous Taxus leaf extract at nonphotomediated conditions, without any catalyst, template or surfactant. The AgNP production was confirmed by ultraviolet-visible (UV-VIS) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared (FTI) spectroscopy. The MTT assay for human breast cancer cells as well as the DAPI fluorescent staining microscopy tested the biocompatibility and anticancer effects of AgNPs, silver nitrate, and Taxol. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were performed to determine the shape and size of the nanoparticles. MTT assay showed the best inhibitory concentration of AgNPs on cancer cells. The antibacterial activity of the three case study materials was tested for gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using well diffusion test. Results This work proposes more anticancer effects for AgNP made by Taxus brevifolia extract, comparing Taxol solution. IC50 was observed as 3.1 mM for Taxol while 1.5 mM for new AgNP. Moreover, Taxus showed no antibacterial effects while the new AgNP showed a dose-dependent biocompatibility along with slightly more antibacterial effects (MIC: 1.6 and 6.6mM for gram-positive and -negative bacteria, respectively) comparing with silver nitrate solution (MIC: 1.5 and 6.2 mM for gram-positive and -negative bacteria, respectively). Conclusion The production of herbal-mediated silver nanoparticles may be an efficient substitution for the silver nitrate–based medicines with less side effects.
Collapse
Affiliation(s)
- Sona Sarli
- Department of Chemistry, Arak Islamic Azad University, Arak, Iran
| | - Mohamad Reza Kalani
- Medical Cellular and Molecular Research Center, School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, College of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
17
|
Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.108] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Biosynthesized silver supported catalysts for disinfection of Escherichia coli and organic pollutant from drinking water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Barbinta-Patrascu ME, Badea N, Bacalum M, Ungureanu C, Suica-Bunghez IR, Iordache SM, Pirvu C, Zgura I, Maraloiu VA. 3D hybrid structures based on biomimetic membranes and Caryophyllus aromaticus - "green" synthesized nano-silver with improved bioperformances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:120-137. [PMID: 31029305 DOI: 10.1016/j.msec.2019.03.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The paper describes an innovative bio-design of some hybrid nanoarchitectures containing bioartificial membranes and silver nanoparticles phytogenerated by using a natural extract Caryophyllus aromaticus (cloves) that contains many bioactive compounds. Two kinds of liposomes with and without chlorophyll a (Chla) obtained through thin film hydration method were used to achieve bio-green-generated hybrids by a simple, cost effective bottom-up approach. The characteristic peaks of CE-nAg monitored by UV-Vis absorption have firstly demonstrated the biohybrids formation. The slightly blue shift and fluorescence quenching observed by fluorescence emission spectra highlighted the formation of hybrid systems by biointeraction between lipid vesicles and silver nanoparticles. The incorporation of silver nanoparticles in lipid vesicles resulted in significant changes of FT-IR spectra of liposomes, indicating a reorganization of biomimetic membranes. All the microscopic methods (SEM, AFM and TEM) confirmed the biosynthesis of "green" AgNPs together with associated biohybrids, their spherical and quasi-spherical shapes with nano-scaled size. By TEM assay it was shown that CE-nAg are surrounded by petal like cloud structures that consist of biopolymers like proteins or polysaccharides and other phytochemicals arising from clove extract. EDS spectra confirmed the formation of phyto-nanoAg and also the presence of silver in the biohybrids. In addition, Selected Area Electron Diffraction showed characteristic polycrystalline ring patterns for a cubic structure of the clove-generated AgNPs. The hybrid materials showed efficient physical stability,i.e. ξ value of -28.0 mV (for biohybrids without Chla, BH) and of -31.7 mV (for biohybrids labelled with Chla, Chla-BH), assured by strong electrostatic repulsive forces between particles. The "green" nano-silver particles (CE-nAg) showed remarkable antioxidant activity (AA = 90.2%). The biohybrids loaded with clove-AgNPs proved to be more effective, scavenging about 98.8% of free radicals (in case of Chla-BH), and of 92.6% (in case of BH). The antibacterial effectiveness showed that green AgNPs combine in a synergistic manner the antibacterial properties of clove extract with those of silver, resulting in an enhancement of inhibition diameter, by 20%. Chla-BH proved to be more potent against Escherichia coli, than BH, exhibiting an inhibition diameter of 42 mm. Regarding the in vitro cytotoxicity against tumour cells, the CE-nAg concentration significantly influenced the cell viability, i.e. IC50 was 3.6% (v/v) for HT-29 cells. Chla-BH was more effective against HT-29 cancer cells at the concentrations ranging from 0 to 18% (v/v), when the normal cells were not affected. Clove-generated AgNPs exhibited haemolytic activity against hRBCs, while the biohybrids were haemocompatible. The action mechanism on the two cell lines (mouse fibroblast L929 cells and human colorectal adenocarcinoma HT-29 cells) investigated by fluorescence microscopy demonstrated that CE-nAg killed almost all the cells (94%) through necrosis at a concentration of 33.4% (v/v). The treatment of HT-29 cells with BH resulted in: 71.5% viable cells, 19.5% apoptotic and only 9% necrotic cells, while in the case of Chla-BH treatment, only 77.5% cells were viable, 16% cells were apoptotic and 6.5% were necrotic. In this way, the developed silver-based nanoparticles can represent viable promoters to develop new biohybrids with improved features, e.g. antioxidant and antibacterial effectiveness, haemolytic activity and greater specificity towards tumour cells.
Collapse
Affiliation(s)
- Marcela Elisabeta Barbinta-Patrascu
- University of Bucharest, Faculty of Physics, Department of Electricity, Solid-State Physics and Biophysics, 405 Atomistilor Street, PO Box MG-11, Bucharest, Magurele 077125, Romania
| | - Nicoleta Badea
- University "Politehnica" of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7, Polizu Str., 011061 Bucharest, Romania.
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului, 30, Magurele, Romania.
| | - Camelia Ungureanu
- University "Politehnica" of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7, Polizu Str., 011061 Bucharest, Romania
| | | | - Stefan Marian Iordache
- University of Bucharest, Faculty of Physics, 3Nano-SAE Research Centre, PO Box MG-38, Bucharest, Magurele 077125, Romania
| | - Cristian Pirvu
- University "Politehnica" of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7, Polizu Str., 011061 Bucharest, Romania
| | - Irina Zgura
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, Bucharest, Magurele 077125, Romania
| | - Valentin Adrian Maraloiu
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, Bucharest, Magurele 077125, Romania
| |
Collapse
|
20
|
Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange ( Maclura pomifera ) leaf extract and their antimicrobial activities. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
|