1
|
Tomioka N, Abe Y, Matsuda Y. Diffusion of individual nanoparticles in cylindrical diatom frustule. NANOSCALE ADVANCES 2024:d4na00576g. [PMID: 39391628 PMCID: PMC11462474 DOI: 10.1039/d4na00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Diatoms are characterised by silica cell walls (frustules), which have highly ordered micro-/nano-structures. As the synthesis of such structures remains challenging, diatom frustules offer a promising alternative to conventional porous particles in micro-/nano-engineering. In particular, for applications in drug delivery systems, biosensors, and filters, an understanding of particle motion inside frustules is of great importance. In this study, we investigated nanoparticle (NP) motions inside diatom frustules using the single particle tracking (SPT) method. For these measurements, the diameter of the NP was about one-tenth smaller than that of the frustule. Inside the frustule, the diffusion motions of the NPs were suppressed, but this suppression was weakened near the exit of the frustule. Moreover, diffusion anisotropy between the axial and radial directions of the frustule was observed. This anisotropy is difficult to detect with ensemble methods; thus, the SPT method is a powerful approach for investigating NP motions in frustules.
Collapse
Affiliation(s)
- Naoki Tomioka
- Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Yusaku Abe
- Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Yu Matsuda
- Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
2
|
Khan MJ, Ahirwar A, Sirotiya V, Rai A, Varjani S, Vinayak V. Nanoengineering TiO 2 for evaluating performance in dye sensitized solar cells with natural dyes. RSC Adv 2023; 13:22630-22638. [PMID: 37501775 PMCID: PMC10369046 DOI: 10.1039/d3ra02927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The current study employs nanoengineering diatom and TiO2 NPs to form diatom-Si-TiO2 nanoengineered structures to fabricate a dye sensitized solar cell (DSSC) (DsTnas-DSSC). This was characterized and spin coated on a Fluorine-doped Tin Oxide (FTO) anode plate. The counter cathode was prepared by spin coating graphene oxide on a FTO glass plate and using Lugol's iodine as an electrolyte. The power density of DsTnas-DSSC was estimated with different natural dyes in comparison to conventional photosensitive ruthenium dye. It was found that the natural dyes extracted from plants and microalgae show significant power efficiencies in DSSC. The percentage efficiency of maximum power densities (PDmax) of DsTnas-DSSC obtained with photosensitive dyes were 9.4% with synthetic ruthenium dye (control) and 7.19% > 4.08% > 0.72% > 0.58% > 0.061% from natural dyes found in Haematococcus pluvialis (astaxanthin) > Syzygium cumini (anthocyanin) > Rosa indica (anthocyanin) > Hibiscus rosa-sinensis (anthocyanin) > Beta vulgaris (betalains), respectively. Among all the natural dyes used, the PDmax for the control ruthenium dye was 6.164 mW m-2 followed by the highest in astaxanthin natural dye from Haematococcus pluvialis (5.872 mW m-2). Overall, the use of natural dye DsTnas-DSSC makes the fuel cell low cost and an alternative to conventional expensive, metal and synthetic dyes.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Maharishi Markendeshwar University Ambala Haryana 133203 India
- State Forensic Science Laboratory Haryana Madhuban 132037 India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong Tat Chee Avenue Kowloon 999077 Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies Dehradun-248 007 Uttarakhand India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| |
Collapse
|
3
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Kesharwani K, Singh R, Kumar N, Singh N, Gupta P, Joshi KB. Mercury-instructed assembly (MiA): architecting clathrin triskelion-inspired highly functional C3-symmetric triskelion nanotorus functional structures into microtorus structures. NANOSCALE 2022; 14:10200-10210. [PMID: 35796347 DOI: 10.1039/d2nr01524b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To detect heavy metal toxicity using self-assembled nanostructures, a clathrin triskelion-inspired highly functional C3-symmetric trimerized biotinylated di-tryptophan peptide was used. This triskelion peptide is known to self-assemble into nanotorus-like structures and can therefore act as a nanocage for various analytes. In this work, in addition to spectroscopy, force and electron microscopy were successfully used to detect the effect of toxic metal ions such as zinc, cadmium, and mercury by exploiting the change in the nanotorus morphology. Different concentrations of mercury led to the expansion of nanotorus structures into microtori. Therefore, we provide a unique application of heavy metal toxicity by utilizing "material nanoarchitectonics" to architect nanotorus structures into higher-order microtorus structures, as instructed by mercury. Such a strategy can make heavy metal sensing easier for materials scientists and open new avenues for biomedical/environmental science applications.
Collapse
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| | - Nikunj Kumar
- Computational Chemistry Center, Department of Chemistry, Indian Institute of Technology, Roorkee-247667.
| | - Narendra Singh
- Department of Chemistry, Indian Institute of Technology of Kanpur, U.P. 208016, India
| | - Puneet Gupta
- Computational Chemistry Center, Department of Chemistry, Indian Institute of Technology, Roorkee-247667.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| |
Collapse
|
5
|
Khan MJ, Gordon R, Varjani S, Vinayak V. Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153667. [PMID: 35131253 DOI: 10.1016/j.scitotenv.2022.153667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 μgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive Panacea, FL 32346, USA; C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India.
| | - Vandana Vinayak
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
6
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
7
|
Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. CHEMOSPHERE 2022; 288:132589. [PMID: 34678344 DOI: 10.1016/j.chemosphere.2021.132589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Nikhil Singh
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda-VPO, Bathinda, 151401, Punjab, 151001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamilnadu, Thiruvar, 610005, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
8
|
Marella TK, Saxena A, Tiwari A, Datta A, Dixit S. Treating agricultural non-point source pollutants using periphyton biofilms and biomass volarization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113869. [PMID: 34619588 DOI: 10.1016/j.jenvman.2021.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Untreated domestic wastewater and agricultural runoff are emerging as a potent cause of non-point source (NPS) pollutants which are a major threat to aquatic ecosystems. Periphyton biofilm-based technologies due to their high growth rate, energy efficiency and low input costs offer promising solutions for controlling nutrient pollution in agricultural systems. In this study we employed periphyton floway to treat NPS pollution from the agricultural watershed. The process performance of outdoor single pass algae floway (AFW) was evaluated. Steady state average biomass concentration of 11.73 g m-2 d-1 and removal rate of nitrogen: 0.60 g m-2 d-1, phosphorus: 0.27 g m-2d-1, arsenic: 9.26 mg m-2 d-1, chromium: 255.3 mg m-2 d-1 and lead: 238.6 mg m-2 d-1 was achieved. In addition, the microalgae and their associated bacterial diversity and dynamics were analyzed. The results revealed a high diversity and rapid variations in the microbiome structure with diatom and cyanobacteria dominance combined with high N fixing and P solubilizing bacteria during most of the operational period. Elemental analysis of periphyton biomass was done for its safe use as slow-release fertilizer. Biofuel feedstock potential and nanoparticle generation potential of the biomass were analyzed. This work highlights the potential use of periphyton biofilms in remediation and recycling of NPS pollutants with simultaneous resource recovery.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 313, India.
| | - Aviraj Datta
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State, India
| | - Sreenath Dixit
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State, India
| |
Collapse
|
9
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
10
|
Khan MJ, Ahirwar A, Schoefs B, Pugazhendhi A, Varjani S, Rajendran K, Bhatia SK, Saratale GD, Saratale RG, Vinayak V. Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. ENVIRONMENTAL RESEARCH 2021; 201:111550. [PMID: 34224710 DOI: 10.1016/j.envres.2021.111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/16/2023]
Abstract
Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Arivalagan Pugazhendhi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
11
|
Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021; 7:3053-3068. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic characteristics, mechanical resistance, and eco-friendliness, can be utilized as smart delivery platforms. The micro- to nanoscale properties of the diatom frustules have garnered a great deal of attention for their application in diverse areas of nanotechnology and biotechnology, such as bioimaging/biosensing, biosensors, drug/gene delivery, photodynamic therapy, microfluidics, biophotonics, solar cells, and molecular filtrations. Additionally, the genetically engineered diatom microalgae-derived nanoporous biosilica have enabled the targeted anticancer drug delivery to neuroblastoma and B-lymphoma cells as well as the mouse xenograft model of neuroblastoma. In this perspective, current trends and recent advances related to the applications of diatoms for the synthesis of nanoparticles, gene/drug delivery, biosensing determinations, biofuel production, and remediation of heavy metals are deliberated, including the underlying significant challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
12
|
Tang Y, Zhang Z, Yang S, Smith GJ, Liu L. Diatomite encapsulated AgNPs as novel hair dye cosmetics: Preparation, performance, and toxicity. Colloids Surf B Biointerfaces 2021; 200:111599. [PMID: 33571866 DOI: 10.1016/j.colsurfb.2021.111599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
Naturally-occurring diatomite has been successfully utilised as a unique encapsulating material to obtain a highly dispersed suspension of uniformly-sized silver nanoparticles (AgNPs). Plant derived gallic acid was used as the reducing and capping agent. High-resolution scanning and transmission electron microscopy results confirmed the attachment of AgNPs on the surface of diatom frustule and maintained an excellent dispersion stability against particle aggregation. The AgNPs obtained were employed for the colouration of bleached human hair owing to the local surface plasmonic absorption (LSPR) of the AgNPs. The effects of Ag/diatomite concentration, dyeing pH, temperature and time on the produced colour were investigated. Hair fibres treated under optimised conditions display good colour fastness toward solar radiation. The morphology and chemical composition of AgNP-dyed hair were determined by energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses. The biocompatibility of the Ag/diatomite composite, AgNPs, and the dyebaths were confirmed by in vitro acute dermal and ocular toxicity tests. The diatomite supporting AgNPs therefore hold good promise and enormous potential to be exploited for sustainable dyeing of human hair.
Collapse
Affiliation(s)
- Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhaolun Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shuyan Yang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Gerald J Smith
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
13
|
Mishra B, Saxena A, Tiwari A. Biosynthesis of silver nanoparticles from marine diatoms Chaetoceros sp., Skeletonema sp., Thalassiosira sp., and their antibacterial study. ACTA ACUST UNITED AC 2020; 28:e00571. [PMID: 33312881 PMCID: PMC7721619 DOI: 10.1016/j.btre.2020.e00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
Marine Diatoms have been envisaged for AgNP synthesis. The average size of AgNP ranges from 150 to 350 nm. Diatom based AgNP exhibits excellent biocidal activity. These AgNP showed inhibition against both Gram-positive and Gram negative bacteria.
Diatoms are a reservoir of metabolites with diverse applications and silver nanoparticle (AgNP) from diatoms holds immense therapeutic potentials against pathogenic microbes owing to their silica frustules. In the present study, Chaetoceros sp., Skeletonema sp., and Thalassiosira sp were used for synthesis of AgNP. The average particle size of AgNP synthesized was 149.03 ± 3.0 nm, 186.73 ± 4.9 nm, and 239.46 ± 44.3 nm as reported in DLS whereas 148.3 ± 46.8 nm, 238.0 ± 60.9 nm, and 359.8 ± 92.33 nm in SEM respectively. EDX analysis strongly indicates the confirmation of AgNP displaying a sharp peak of Ag+ ions within the spectra. High negative zeta potential values indicate a substantial degree of stabilization even after three months. The antibacterial efficacy of biosynthesized AgNP tested against Aeromonas sp., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Streptococcus pneumonia exhibits broad-spectrum antibacterial activity. This study encourages the synthesis of diatom based AgNP for a variety of applications owing least toxicity and biodegradable nature.
Collapse
Affiliation(s)
- Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
14
|
Singh R, Khan MJ, Rane J, Gajbhiye A, Vinayak V, Joshi KB. Biofabrication of Diatom Surface by Tyrosine‐Metal Complexes:Smart Microcontainers to Inhibit Bacterial Growth. ChemistrySelect 2020. [DOI: 10.1002/slct.201904248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ramesh Singh
- Department of ChemistrySchool of Chemical Science and TechnologyDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Lab (DNM)School of Applied SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Jagdish Rane
- Department of Pharmaceutical SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Ashmita Gajbhiye
- Department of Pharmaceutical SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Lab (DNM)School of Applied SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Khashti Ballabh Joshi
- Department of ChemistrySchool of Chemical Science and TechnologyDr. Harisingh Gour Central University Sagar MP 470003 India
| |
Collapse
|
15
|
Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Understanding the mechanism of adsorption of CTAB and polylysine on silver nanoparticles and detection of Hg2+: Experimental and DFT study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Gupta S, Singh R, Kumar V, Shukla P, Joshi KB. Ornamentation of Triskelion Peptide Nanotori to Produce Gold Nanoparticle (AuNP)-Embedded Peptide Nanobangles. Chem Asian J 2018; 13:3285-3295. [DOI: 10.1002/asia.201801270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Shradhey Gupta
- Department of Chemistry, School of Chemical Science and Technology; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| | - Vikas Kumar
- Current address: BIOPEP group; Stellenbosch University; Stellenbosch 7600 South Africa
| | - Prashant Shukla
- Department of Physics; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology; Dr. Harisingh Gour Central University; Sagar, MP 470003 India
| |
Collapse
|
19
|
Gupta S, Kumar A, Joshi KB. Study of electron transfer process in aqueous methanol system by using tryptophan based short peptide – Amino acid pairs. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|